

ECS4620-28T/P/F ECS4620-28T/F-DC ECS4620-52T/P 28/52-Port Layer 3 Stackable GE Switch

Software Release v1.2.2.0

CLI Reference Guide

CLI Reference Guide

ECS4620-28T Stackable GE Switch

Layer 3 Stackable Gigabit Ethernet Switch with 24 10/100/1000BASE-T (RJ-45) Ports, 2 10-Gigabit SFP+ Ports, and Optional Module with 2 10-Gigabit SFP+ Ports

ECS4620-28T-DC Stackable GE Switch

Layer 3 Stackable Gigabit Ethernet Switch with 24 10/100/1000BASE-T (RJ-45) Ports, 2 10-Gigabit SFP+ Ports, and Optional Module with 2 10-Gigabit SFP+ Ports

ECS4620-28P Stackable GE PoE Switch

Layer 3 Stackable Gigabit Ethernet PoE Switch with 24 10/100/1000BASE-T (RJ-45) Ports, 2 10-Gigabit SFP+ Ports, and Optional Module with 2 10-Gigabit SFP+ Ports

ECS4620-28F Stackable GE Fiber Switch

Layer 3 Stackable Gigabit Ethernet Fiber Switch with 22 SFP Ports, 2 10/100/1000BASE-T (RJ-45/SFP) Ports, 2 10-Gigabit SFP+ Ports, and Optional Module with 2 10-Gigabit SFP+ Ports

ECS4620-28F-DC Stackable GE Fiber Switch

Layer 3 Stackable Gigabit Ethernet Fiber Switch with 22 SFP Ports,
2 10/100/1000BASE-T (RJ-45/SFP) Ports,
2 10-Gigabit SFP+ Ports,
and Optional Module with 2 10-Gigabit SFP+ Ports

ECS4620-52T Stackable GE Switch

Layer 3 Stackable Gigabit Ethernet Switch with 48 10/100/1000BASE-T (RJ-45) Ports, 2 10-Gigabit SFP+ Ports, and Optional Module with 2 10-Gigabit SFP+ Ports

ECS4620-52P Stackable GE PoE Switch

Layer 3 Stackable Gigabit Ethernet PoE Switch with 48 10/100/1000BASE-T (RJ-45) Ports, 2 10-Gigabit SFP+ Ports, and Optional Module with 2 10-Gigabit SFP+ Ports

E122014/ST-R04

ECS4620-28T/P/F ECS4620-52T/P 149100000245A

ECS4620-28T-DC ECS4620-28F-DC 150200000987A

How to Use This Guide

This guide includes detailed information on the switch software, including how to operate and use the management functions of the switch. To deploy this switch effectively and ensure trouble-free operation, you should first read the relevant sections in this guide so that you are familiar with all of its software features.

Who Should Read This This guide is for network administrators who are responsible for operating and Guide? maintaining network equipment. The guide assumes a basic working knowledge of LANs (Local Area Networks), the Internet Protocol (IP), and Simple Network Management Protocol (SNMP).

How This Guide is This guide describes the switch's command line interface (CLI). For more detailed Organized information on the switch's key features or information about the web browser management interface refer to the Web Management Guide.

The guide includes these sections:

- ◆ Section I "Getting Started" Includes information on initial configuration.
- Section II "Command Line Interface" Includes all management options available through the CLI.
- Section III "Appendices" Includes information on troubleshooting switch management access.

Documentation

Related This guide focuses on switch software configuration through the CLI.

For information on how to manage the switch through the Web management interface, see the following guide:

Web Management Guide

For information on how to install the switch, see the following guide:

Installation Guide

For all safety information and regulatory statements, see the following documents:

Ouick Start Guide Safety and Regulatory Information

Conventions The following conventions are used throughout this guide to show information:

Note: Emphasizes important information or calls your attention to related features or instructions.

Caution: Alerts you to a potential hazard that could cause loss of data, or damage the system or equipment.

Warning: Alerts you to a potential hazard that could cause personal injury.

Revision History This section summarizes the changes in each revision of this guide.

December 2014 Revision

This is the fourth version of this guide. This guide is valid for software release v1.2.2.0. It contains the following changes:

Added information for ECS4620-28F-DC.

July 2014 Revision

This is the third version of this guide. This guide is valid for software release v1.2.2.0. It contains the following changes:

- Added information for ECS4620-28T-DC.
- Updated usage information for the command "mac-learning" on page 304.
- Updated syntax and usage information for the command "ip source-guard binding" on page 353.
- Updated usage information for the command "ip source-guard mode" on page 357.
- Added the command "loopback-detection action" on page 492.

April 2014 Revision

This is the second version of this guide. This guide is valid for software release v1.2.1.3. It contains the following changes:

- Added information for ECS4620-28F, ECS4620-28T, and ECS4620-28P.
- Extended configurable VLAN range from 1-4093 to 1-4094.
- Added "Stack Operations" on page 69.

- ◆ Added the command "show process cpu task" on page 128.
- Added "Stacking" on page 195.
- ◆ Updated syntax for "snmp-server enable traps" on page 204.
- ◆ Added the commands "snmp-server enable port-traps mac-notification" on page 208 and "show snmp-server enable port-traps" on page 208.
- Updated command usage section for the command "pppoe intermediate-agent port-format-type" on page 296.
- ◆ Added the command "pppoe intermediate-agent port-format-type remote-id-delimiter" on page 297.
- ◆ Added the command "mac-learning" on page 304.
- Updated command usage section for the command "port security" on page 305.
- ◆ Added the command "port security mac-address-as-permanent" on page 307.
- ◆ Added the commands "ip dhcp snooping information option encode nosubtype" on page 334, "ip dhcp snooping information option remote-id" on page 335, and "ip dhcp snooping information option tr101 board-id" on page 336.
- ◆ Added the commands "ipv6 dhcp snooping option remote-id" on page 346, and "ipv6 dhcp snooping option remote-id policy" on page 347.
- Updated syntax for the command "ip source-guard binding" on page 353 and "ip source-guard max-binding" on page 357, and "show ip source-guard binding" on page 359.
- ◆ Added the commands "ip source-guard mode" on page 357 and "clear ip source-guard binding blocked" on page 358.
- ◆ Updated syntax for the command "media-type" on page 419.
- Updated range for the commands "transceiver-threshold current" on page 432, "transceiver-threshold rx-power" on page 433, "transceiver-threshold temperature" on page 434, "transceiver-threshold tx-power" on page 435, and "transceiver-threshold voltage" on page 436.
- ◆ Added the command "show interfaces transceiver-threshold" on page 438.
- Updated command usage section for the command "power inline maximum allocation" on page 458.

How to Use This Guide

- Updated syntax for the command "auto-traffic-control control-release" on page 485.
- ◆ Added the command "loopback-detection action" on page 492.
- Removed the command "loopback-detection mode."
- ◆ Added the command "loopback detection trap" on page 494.
- ◆ Added the commands "udld detection-interval" on page 497, "udld recovery" on page 499, and "udld recovery-interval" on page 499.
- Updated range for the command "mac-address-table aging-time" on page 505.
- ◆ Added the commands "spanning-tree tc-prop" on page 521, "spanning-tree tc-prop-stop" on page 537, and "show spanning-tree tc-prop" on page 541.
- Updated syntax for the command "mac-vlan" on page 611.
- Updated syntax for the commands "show qos map cos-dscp" on page 631, "show qos map dscp-mutation" on page 631, and "show qos map phb-queue" on page 632.
- ◆ Added the commands "clear ip igmp snooping groups dynamic" on page 673, and "clear ip igmp snooping statistics" on page 673.
- Updated command usage section for the command "ip igmp authentication" on page 683.
- ◆ Added the commands "clear ipv6 mld snooping groups dynamic" on page 699 and "clear ipv6 mld snooping statistics" on page 700.
- ◆ Updated range for the command "mvr priority" on page 714.
- ◆ Added the commands "clear mrv groups dynamic" on page 723 and "clear mrv statistics" on page 723.
- ◆ Updated syntax for the command "show mvr members" on page 727 and "show mvr statistics" on page 729.
- ◆ Added the command "mvr6 priority" on page 736.
- ◆ Added the command "clear efm oam event-log" on page 850.
- Updated syntax for the commands "ip route" on page 958 and "show ip route" on page 960.
- ◆ Added BGP to the parameter list for the RIP command "redistribute" on page 973.

- ◆ Added BGP to the parameter list for the OSPFv2 command "redistribute" on page 993.
- ◆ Added the command "area authentication" on page 996.
- ◆ Added the command "neighbor password" on page 1107.

December 2013 Revision

This is the first version of this guide. This guide is valid for software release v1.1.1.1.

How to Use This Guide

	How to use This Guide	3
	Contents	9
	Figures	53
	Tables	55
Section I	Getting Started	63
	1 Initial Switch Configuration	65
	Connecting to the Switch	65
	Configuration Options	65
	Connecting to the Console Port	66
	Logging Onto the Command Line Interface	67
	Setting Passwords	67
	Remote Connections	68
	Stack Operations	69
	Selecting the Stack Master	69
	Selecting the Backup Unit	70
	Recovering from Stack Failure or Topology Change	70
	Renumbering the Stack	71
	Ensuring Consistent Code is Used Across the Stack	71
	Configuring the Switch for Remote Management	72
	Using the Network Interface	72
	Setting an IP Address	72
	Enabling SNMP Management Access	78
	Managing System Files	80
	Upgrading the Operation Code	81
	Saving or Restoring Configuration Settings	81

	Automatic Installation of Operation Code and Configuration Set	tings 82
	Downloading Operation Code from a File Server	82
	Specifying a DHCP Client Identifier	85
	Downloading a Configuration File Referenced by a DHCP Se	rver 86
	Setting the System Clock	88
	Setting the Time Manually	88
	Configuring SNTP	89
	Configuring NTP	89
Section II	Command Line Interface	91
	2 Using the Command Line Interface	93
	Accessing the CLI	93
	Console Connection	93
	Telnet Connection	94
	Entering Commands	95
	Keywords and Arguments	95
	Minimum Abbreviation	95
	Command Completion	95
	Getting Help on Commands	96
	Partial Keyword Lookup	98
	Negating the Effect of Commands	98
	Using Command History	98
	Understanding Command Modes	98
	Exec Commands	99
	Configuration Commands	100
	Command Line Processing	102
	Showing Status Information	103
	CLI Command Groups	103
	3 General Commands	107
	prompt	107
	reload (Global Configuration)	108
	enable	109
	quit	110

_							
\boldsymbol{c}	0	n	٠	Δ	n	٠	¢

	show history	110
	configure	111
	disable	112
	reload (Privileged Exec)	112
	show reload	113
	end	113
	exit	113
4	System Management Commands	115
	Device Designation	115
	hostname	116
	Banner Information	116
	banner configure	117
	banner configure company	118
	banner configure dc-power-info	119
	banner configure department	119
	banner configure equipment-info	120
	banner configure equipment-location	121
	banner configure ip-lan	121
	banner configure lp-number	122
	banner configure manager-info	123
	banner configure mux	123
	banner configure note	124
	show banner	125
	System Status	125
	show access-list tcam-utilization	126
	show memory	126
	show process cpu	127
	show process cpu task	128
	show running-config	129
	show startup-config	131
	show system	131
	show tech-support	133
	show users	133
	show version	134

	show watchdog	135
	watchdog software	135
Fan	n Control	136
	fan-speed force-full	136
Fra	me Size	136
	jumbo frame	136
File	e Management	137
	General Commands	139
	boot system	139
	сору	140
	delete	143
	dir	144
	whichboot	145
	Automatic Code Upgrade Commands	146
	upgrade opcode auto	146
	upgrade opcode path	147
	upgrade opcode reload	148
	show upgrade	149
	TFTP Configuration Commands	149
	ip tftp retry	149
	ip tftp timeout	150
	show ip tftp	150
Line	e	151
	line	152
	databits	152
	exec-timeout	153
	login	154
	parity	155
	password	155
	password-thresh	156
	silent-time	157
	speed	158
	stopbits	158
	timeout login response	159
	disconnect	150

_						
\cap	n	٠	Δ	n	n	c

terminal	160
show line	161
Event Logging	162
logging facility	162
logging history	163
logging host	164
logging on	164
logging trap	165
clear log	166
show log	166
show logging	167
SMTP Alerts	169
logging sendmail	169
logging sendmail host	169
logging sendmail level	170
logging sendmail destination-email	171
logging sendmail source-email	171
show logging sendmail	172
Time	172
SNTP Commands	173
sntp client	173
sntp poll	174
sntp server	175
show sntp	175
NTP Commands	176
ntp authenticate	176
ntp authentication-key	177
ntp client	178
ntp server	178
show ntp	179
Manual Configuration Commands	180
clock summer-time (date)	180
clock summer-time (predefined)	181
clock summer-time (recurring)	182
clock timezone	184

	calendar set	185
	show calendar	185
	Time Range	186
	time-range	186
	absolute	187
	periodic	188
	show time-range	189
	Switch Clustering	189
	cluster	190
	cluster commander	191
	cluster ip-pool	192
	cluster member	192
	rcommand	193
	show cluster	194
	show cluster members	194
	show cluster candidates	194
	Stacking	195
	switch all renumber	195
	switch master button	196
	switch stacking button	197
	show switch master button	197
	show switch stacking button	198
5	SNMP Commands	199
	General SNMP Commands	201
	snmp-server	201
	snmp-server community	201
	snmp-server contact	202
	snmp-server location	203
	show snmp	203
	SNMP Target Host Commands	204
	snmp-server enable traps	204
	snmp-server host	206
	snmp-server enable port-traps mac-notification	208
	show snmp-server enable port-traps	208

- 4	~	_	n	٠	Δ	n	٠	

	Sinimpus Commands	209
	snmp-server engine-id	209
	snmp-server group	210
	snmp-server user	211
	snmp-server view	213
	show snmp engine-id	214
	show snmp group	214
	show snmp user	215
	show snmp view	216
	Notification Log Commands	217
	nlm	217
	snmp-server notify-filter	218
	show nlm oper-status	219
	show snmp notify-filter	219
	Additional Trap Commands	220
	memory	220
	process cpu	220
6	Remote Monitoring Commands	223
	rmon alarm	224
	rmon event	225
	rmon collection history	226
	rmon collection rmon1	227
	show rmon alarms	228
	show rmon events	228
	show rmon history	228
	show rmon statistics	229
_	Flow Sampling Commands	231
7	riow sampling Commands	231
/	sflow owner	231
/		
/	sflow owner	231

8	Authentication Commands	237
	User Accounts and Privilege Levels	238
	enable password	238
	username	239
	privilege	241
	show privilege	241
	Authentication Sequence	242
	authentication enable	242
	authentication login	243
	RADIUS Client	244
	radius-server acct-port	244
	radius-server auth-port	245
	radius-server host	245
	radius-server key	246
	radius-server retransmit	247
	radius-server timeout	247
	show radius-server	248
	TACACS+ Client	248
	tacacs-server host	249
	tacacs-server key	249
	tacacs-server port	250
	tacacs-server retransmit	250
	tacacs-server timeout	251
	show tacacs-server	251
	AAA	252
	aaa accounting commands	252
	aaa accounting dot1x	253
	aaa accounting exec	254
	aaa accounting update	255
	aaa authorization exec	256
	aaa group server	257
	server	257
	accounting dot1x	258
	accounting commands	258

_						
\boldsymbol{c}	^	n	•	n	٠	c

	accounting exec	25	59
	authorization exec	25	59
	show accounting	26	60
authorization exec		26	61
	ip http port	26	61
	ip http server	26	62
	ip http secure-port	26	62
	ip http secure-server	26	63
Telnet	Server	26	64
	ip telnet max-sessions	26	65
	ip telnet port	26	65
	ip telnet server	26	66
	show ip telnet	26	66
Secure	e Shell	26	67
	ip ssh authentication-retries	27	70
	ip ssh server	27	70
	ip ssh server-key size	27	71
	ip ssh timeout	27	71
	delete public-key	27	72
	ip ssh crypto host-key generate	27	73
	ip ssh crypto zeroize	27	73
	ip ssh save host-key	27	74
	show ip ssh	27	74
	show public-key	27	75
	show ssh	27	76
802.1X	(Port Authentication	27	76
Ge	neral Commands	2	77
	dot1x default	27	77
	dot1x eapol-pass-through	27	78
	dot1x system-auth-control	27	78
Au	thenticator Commands	2	79
	dot1x intrusion-action	27	79
	dot1x max-reauth-req	27	79
	dot1x max-req	28	80
	dot1x operation-mode	28	ጸሰ

	dot1x port-control	281
	dot1x re-authentication	282
	dot1x timeout quiet-period	282
	dot1x timeout re-authperiod	283
	dot1x timeout supp-timeout	283
	dot1x timeout tx-period	284
	dot1x re-authenticate	284
	Supplicant Commands	285
	dot1x identity profile	285
	dot1x max-start	286
	dot1x pae supplicant	286
	dot1x timeout auth-period	287
	dot1x timeout held-period	287
	dot1x timeout start-period	288
	Information Display Commands	288
	show dot1x	288
	Management IP Filter	291
	management	291
	show management	292
	PPPoE Intermediate Agent	293
	pppoe intermediate-agent	294
	pppoe intermediate-agent format-type	295
	pppoe intermediate-agent port-enable	295
	pppoe intermediate-agent port-format-type	296
	pppoe intermediate-agent port-format-type remote-id-delimiter	297
	pppoe intermediate-agent trust	298
	pppoe intermediate-agent vendor-tag strip	298
	clear pppoe intermediate-agent statistics	299
	show pppoe intermediate-agent info	299
	show pppoe intermediate-agent statistics	300
9	General Security Measures	303
	Port Security	304
	mac-learning	304
	port security	305

_							
_	_	-	4	_	-	4	_

	port security mac-address-as-permanent	30)7
	show port security	30)7
Netwo	rk Access (MAC Address Authentication)	30)9
	network-access aging	31	IC
	network-access mac-filter	31	11
	mac-authentication reauth-time	31	12
	network-access dynamic-qos	31	12
	network-access dynamic-vlan	31	13
	network-access guest-vlan	31	4
	network-access link-detection	31	15
	network-access link-detection link-down	31	15
	network-access link-detection link-up	31	16
	network-access link-detection link-up-do	wn 31	17
	network-access max-mac-count	31	17
	network-access mode mac-authentication	n 31	18
	network-access port-mac-filter	31	19
	mac-authentication intrusion-action	32	20
	mac-authentication max-mac-count	32	20
	clear network-access	32	21
	show network-access	32	21
	show network-access mac-address-table	32	22
	show network-access mac-filter	32	23
Web A	uthentication	32	24
	web-auth login-attempts	32	25
	web-auth quiet-period	32	25
	web-auth session-timeout	32	26
	web-auth system-auth-control	32	26
	web-auth	32	27
	web-auth re-authenticate (Port)	32	27
	web-auth re-authenticate (IP)	32	28
	show web-auth	32	28
	show web-auth interface	32	29
	show web-auth summary	32	29
DHCPv	4 Snooping	33	30
	ip dhcp snooping	33	3 1

	ip dhcp snooping information option	333
	ip dhcp snooping information option encode no-subtype	334
	ip dhcp snooping information option remote-id	335
	ip dhcp snooping information option tr101 board-id	336
	ip dhcp snooping information policy	336
	ip dhcp snooping limit rate	337
	ip dhcp snooping verify mac-address	337
	ip dhcp snooping vlan	338
	ip dhcp snooping information option circuit-id	339
	ip dhcp snooping trust	340
	clear ip dhcp snooping binding	341
	clear ip dhcp snooping database flash	341
	ip dhcp snooping database flash	342
	show ip dhcp snooping	342
	show ip dhcp snooping binding	343
DHCPv	6 Snooping	343
	ipv6 dhcp snooping	344
	ipv6 dhcp snooping option remote-id	346
	ipv6 dhcp snooping option remote-id policy	347
	ipv6 dhcp snooping vlan	348
	ipv6 dhcp snooping max-binding	349
	ipv6 dhcp snooping trust	349
	clear ipv6 dhcp snooping binding	350
	clear ipv6 dhcp snooping statistics	351
	show ipv6 dhcp snooping	351
	show ipv6 dhcp snooping binding	352
	show ipv6 dhcp snooping statistics	352
IPv4 Sc	ource Guard	353
	ip source-guard binding	353
	ip source-guard	355
	ip source-guard max-binding	357
	ip source-guard mode	357
	clear ip source-guard binding blocked	358
	show ip source-guard	359
	show ip source-guard binding	359

_		_			_	
	n	•	Δ	n	•	c

IPv6 S	ource Guard	360
	ipv6 source-guard binding	360
	ipv6 source-guard	362
	ipv6 source-guard max-binding	363
	show ipv6 source-guard	364
	show ipv6 source-guard binding	365
ARP In	spection	365
	ip arp inspection	366
	ip arp inspection filter	367
	ip arp inspection log-buffer logs	368
	ip arp inspection validate	369
	ip arp inspection vlan	370
	ip arp inspection limit	371
	ip arp inspection trust	371
	show ip arp inspection configuration	372
	show ip arp inspection interface	372
	show ip arp inspection log	373
	show ip arp inspection statistics	373
	show ip arp inspection vlan	374
Denial	of Service Protection	374
	dos-protection echo-chargen	375
	dos-protection smurf	375
	dos-protection tcp-flooding	376
	dos-protection tcp-null-scan	376
	dos-protection tcp-syn-fin-scan	377
	dos-protection tcp-udp-port-zero	377
	dos-protection tcp-xmas-scan	378
	dos-protection udp-flooding	378
	dos-protection win-nuke	379
	show dos-protection	379
Port-b	ased Traffic Segmentation	380
	traffic-segmentation	380
	traffic-segmentation session	381
	traffic-segmentation uplink/downlink	382
	traffic-segmentation uplink-to-uplink	383

	show traffic-segmentation	384
10	Access Control Lists	385
	IPv4 ACLs	385
	access-list ip	386
	ip access-group (Global Configuration)	387
	permit, deny (Standard IP ACL)	388
	permit, deny (Extended IPv4 ACL)	389
	ip access-group (Interface Configuration)	391
	show ip access-group	392
	show ip access-list	392
	IPv6 ACLs	393
	access-list ipv6	393
	ipv6 access-group (Global Configuration)	394
	permit, deny (Standard Pv6 ACL)	395
	permit, deny (Extended IPv6 ACL)	396
	ipv6 access-group (Interface Configuration)	398
	show ipv6 access-group	398
	show ipv6 access-list	399
	MAC ACLs	399
	access-list mac	400
	mac access-group (Global Configuration)	401
	permit, deny (MAC ACL)	401
	mac access-group (Interface Configuration)	405
	show mac access-group	406
	show mac access-list	406
	ARP ACLs	407
	access-list arp	407
	permit, deny (ARP ACL)	408
	show access-list arp	409
	ACL Information	409
	clear access-list hardware counters	409
	show access-group	410
	show access-list	410

_							
\boldsymbol{c}	_		4	_		•	_
	$\boldsymbol{\cap}$	n	ш	$oldsymbol{\circ}$	n	ш	c

11	Interface Commands	413
	Interface Configuration	414
	interface	414
	alias	415
	capabilities	416
	description	417
	discard	417
	flowcontrol	418
	media-type	419
	negotiation	420
	shutdown	421
	speed-duplex	421
	clear counters	422
	show discard	423
	show interfaces brief	423
	show interfaces counters	424
	show interfaces status	428
	show interfaces switchport	429
	Transceiver Threshold Configuration	431
	transceiver-monitor	431
	transceiver-threshold-auto	431
	transceiver-threshold current	432
	transceiver-threshold rx-power	433
	transceiver-threshold temperature	434
	transceiver-threshold tx-power	435
	transceiver-threshold voltage	436
	show interfaces transceiver	437
	show interfaces transceiver-threshold	438
	Cable Diagnostics	439
	test cable-diagnostics	439
	show cable-diagnostics	440
	Power Savings	441
	power-save	441
	show power-save	442

12	Link Aggregation Commands	443
	Manual Configuration Commands	444
	port channel load-balance	444
	channel-group	446
	Dynamic Configuration Commands	447
	lacp	447
	lacp admin-key (Ethernet Interface)	448
	lacp port-priority	449
	lacp system-priority	450
	lacp admin-key (Port Channel)	450
	lacp timeout	451
	Trunk Status Display Commands	452
	show lacp	452
	show port-channel load-balance	455
13	Power over Ethernet Commands	457
	power inline	457
	power inline maximum allocation	458
	power inline priority	459
	show power inline status	460
	show power mainpower	461
14	Port Mirroring Commands	463
	Local Port Mirroring Commands	463
	port monitor	463
	show port monitor	465
	RSPAN Mirroring Commands	466
	rspan source	468
	rspan destination	469
	rspan remote vlan	470
	no rspan session	471
	show rspan	472
15	Congestion Control Commands	473
	Rate Limit Commands	473
	rate-limit	474

_							
\boldsymbol{c}	0	n	٠	Δ	n	٠	¢

	Storm Control Commands	475
	switchport packet-rate	475
	Automatic Traffic Control Commands	476
	Threshold Commands	479
	auto-traffic-control apply-timer	479
	auto-traffic-control release-timer	480
	auto-traffic-control	481
	auto-traffic-control action	481
	auto-traffic-control alarm-clear-threshold	482
	auto-traffic-control alarm-fire-threshold	483
	auto-traffic-control auto-control-release	484
	auto-traffic-control control-release	485
	SNMP Trap Commands	485
	snmp-server enable port-traps atc broadcast-alarm-clear	485
	snmp-server enable port-traps atc broadcast-alarm-fire	486
	snmp-server enable port-traps atc broadcast-control-apply	486
	snmp-server enable port-traps atc broadcast-control-release	487
	snmp-server enable port-traps atc multicast-alarm-clear	487
	snmp-server enable port-traps atc multicast-alarm-fire	488
	snmp-server enable port-traps atc multicast-control-apply	488
	snmp-server enable port-traps atc multicast-control-release	489
	ATC Display Commands	489
	show auto-traffic-control	489
	show auto-traffic-control interface	490
16	Loopback Detection Commands	491
	loopback-detection	492
	loopback-detection action	492
	loopback-detection recover-time	493
	loopback-detection transmit-interval	494
	loopback detection trap	494
	loopback-detection release	495
	show loopback-detection	495
17	UniDirectional Link Detection Commands	497
	udld detection-interval	497

	udld message-interval	498
	udld recovery	499
	udld recovery-interval	499
	udld aggressive	500
	udld port	501
	show udld	502
18	Address Table Commands	505
	mac-address-table aging-time	505
	mac-address-table hash-lookup-depth	506
	mac-address-table static	507
	clear collision-mac-address-table	508
	clear mac-address-table dynamic	508
	show collision-mac-address-table	508
	show mac-address-table	509
	show mac-address-table aging-time	510
	show mac-address-table count	510
	show mac-address-table hash-lookup-depth	511
19	Spanning Tree Commands	513
	spanning-tree	514
	spanning-tree cisco-prestandard	515
	spanning-tree forward-time	515
	spanning-tree hello-time	516
	spanning-tree max-age	517
	spanning-tree mode	517
	spanning-tree pathcost method	519
	spanning-tree priority	519
	spanning-tree mst configuration	520
	spanning-tree system-bpdu-flooding	520
	spanning-tree tc-prop	521
	spanning-tree transmission-limit	522
	max-hops	522
	mst priority	523
	mst vlan	524
	name	524

_							
\boldsymbol{c}	_	-	4	_	-	4-	

	revision	525
	spanning-tree bpdu-filter	526
	spanning-tree bpdu-guard	526
	spanning-tree cost	527
	spanning-tree edge-port	529
	spanning-tree link-type	529
	spanning-tree loopback-detection	530
	spanning-tree loopback-detection action	531
	spanning-tree loopback-detection release-mode	531
	spanning-tree loopback-detection trap	532
	spanning-tree mst cost	533
	spanning-tree mst port-priority	534
	spanning-tree port-bpdu-flooding	534
	spanning-tree port-priority	535
	spanning-tree root-guard	536
	spanning-tree spanning-disabled	537
	spanning-tree tc-prop-stop	537
	spanning-tree loopback-detection release	538
	spanning-tree protocol-migration	538
	show spanning-tree	539
	show spanning-tree mst configuration	541
	show spanning-tree tc-prop	541
20	ERPS Commands	543
	erps	545
	erps domain	546
	control-vlan	546
	enable	547
	guard-timer	548
	holdoff-timer	549
	major-domain	549
	meg-level	550
	mep-monitor	551
	node-id	552
	non-erps-dev-protect	552

	non-revertive	554
	propagate-tc	557
	raps-def-mac	558
	raps-without-vc	559
	ring-port	561
	rpl neighbor	562
	rpl owner	562
	version	563
	wtr-timer	564
	clear erps statistics	565
	erps clear	565
	erps forced-switch	566
	erps manual-switch	568
	show erps	569
21	VLAN Commands	575
	GVRP and Bridge Extension Commands	576
	bridge-ext gvrp	576
	garp timer	577
	switchport forbidden vlan	578
	switchport gvrp	578
	show bridge-ext	579
	show garp timer	580
	show gvrp configuration	581
	Editing VLAN Groups	581
	vlan database	581
	vlan	582
	Configuring VLAN Interfaces	583
	interface vlan	584
	switchport acceptable-frame-types	584
	switchport allowed vlan	585
	switchport ingress-filtering	586
	switchport mode	587
	switchport native vlan	588
	vlan-trunking	588

_							
_	_	-	4	_	-	4	_

Displaying VLAN Information	590
show vlan	590
Configuring IEEE 802.1Q Tunneling	591
dot1q-tunnel system-tunnel-control	592
switchport dot1q-tunnel mode	593
switchport dot1q-tunnel service match cvid	594
switchport dot1q-tunnel tpid	596
show dot1q-tunnel	597
Configuring L2CP Tunneling	598
l2protocol-tunnel tunnel-dmac	598
switchport I2protocol-tunnel	601
show I2protocol-tunnel	602
Configuring VLAN Translation	602
switchport vlan-translation	602
show vlan-translation	604
Configuring Protocol-based VLANs	604
protocol-vlan protocol-group (Configuring Groups)	605
protocol-vlan protocol-group (Configuring Interfaces)	606
show protocol-vlan protocol-group	607
show interfaces protocol-vlan protocol-group	607
Configuring IP Subnet VLANs	608
subnet-vlan	609
show subnet-vlan	610
Configuring MAC Based VLANs	610
mac-vlan	611
show mac-vlan	612
Configuring Voice VLANs	612
voice vlan	613
voice vlan aging	614
voice vlan mac-address	614
switchport voice vlan	615
switchport voice vlan priority	616
switchport voice vlan rule	617
switchport voice vlan security	617
show voice vlan	618

22	Class of Service Commands	621
	Priority Commands (Layer 2)	621
	queue mode	622
	queue weight	623
	switchport priority default	624
	show queue mode	625
	show queue weight	625
	Priority Commands (Layer 3 and 4)	626
	qos map cos-dscp	626
	qos map dscp-mutation	628
	qos map phb-queue	629
	qos map trust-mode	630
	show qos map cos-dscp	631
	show qos map dscp-mutation	631
	show qos map phb-queue	632
	show qos map trust-mode	633
23	Quality of Service Commands	635
	class-map	636
	description	637
	match	638
	rename	639
	policy-map	640
	class	640
	police flow	642
	police srtcm-color	643
	police trtcm-color	646
	set cos	648
	set ip dscp	649
	set phb	650
	service-policy	651
	show class-map	651
	show policy-map	652
	show policy-map interface	653

24	Multicast Filtering Commands	655
	IGMP Snooping	656
	ip igmp snooping	657
	ip igmp snooping priority	658
	ip igmp snooping proxy-reporting	659
	ip igmp snooping querier	659
	ip igmp snooping router-alert-option-check	660
	ip igmp snooping router-port-expire-time	661
	ip igmp snooping tcn-flood	661
	ip igmp snooping tcn-query-solicit	662
	ip igmp snooping unregistered-data-flood	663
	ip igmp snooping unsolicited-report-interval	664
	ip igmp snooping version	664
	ip igmp snooping version-exclusive	665
	ip igmp snooping vlan general-query-suppression	666
	ip igmp snooping vlan immediate-leave	666
	ip igmp snooping vlan last-memb-query-count	667
	ip igmp snooping vlan last-memb-query-intvl	668
	ip igmp snooping vlan mrd	669
	ip igmp snooping vlan proxy-address	670
	ip igmp snooping vlan query-interval	671
	ip igmp snooping vlan query-resp-intvl	672
	ip igmp snooping vlan static	672
	clear ip igmp snooping groups dynamic	673
	clear ip igmp snooping statistics	673
	show ip igmp snooping	674
	show ip igmp snooping group	675
	show ip igmp snooping mrouter	676
	show ip igmp snooping statistics	676
	Static Multicast Routing	679
	ip igmp snooping vlan mrouter	679
	IGMP Filtering and Throttling	680
	ip igmp filter (Global Configuration)	681
	ip igmp profile	681

	permit, deny	682
	range	682
	ip igmp authentication	683
	ip igmp filter (Interface Configuration)	685
	ip igmp max-groups	685
	ip igmp max-groups action	686
	ip igmp query-drop	687
	ip multicast-data-drop	687
	show ip igmp authentication	688
	show ip igmp filter	688
	show ip igmp profile	689
	show ip igmp query-drop	690
	show ip igmp throttle interface	690
	show ip multicast-data-drop	691
MLD Sr	nooping	692
	ipv6 mld snooping	693
	ipv6 mld snooping querier	693
	ipv6 mld snooping query-interval	694
	ipv6 mld snooping query-max-response-time	694
	ipv6 mld snooping robustness	695
	ipv6 mld snooping router-port-expire-time	696
	ipv6 mld snooping unknown-multicast mode	696
	ipv6 mld snooping version	697
	ipv6 mld snooping vlan immediate-leave	697
	ipv6 mld snooping vlan mrouter	698
	ipv6 mld snooping vlan static	699
	clear ipv6 mld snooping groups dynamic	699
	clear ipv6 mld snooping statistics	700
	show ipv6 mld snooping	700
	show ipv6 mld snooping group	701
	show ipv6 mld snooping group source-list	701
	show ipv6 mld snooping mrouter	702
MLD Fi	ltering and Throttling	702
	ipv6 mld filter (Global Configuration)	703
	ipv6 mld profile	704

	permit, deny	704
	range	705
	ipv6 mld filter (Interface Configuration)	706
	ipv6 mld max-groups	706
	ipv6 mld max-groups action	707
	ipv6 mld query-drop	708
	ipv6 multicast-data-drop	708
	show ipv6 mld filter	709
	show ipv6 mld profile	709
	show ipv6 mld query-drop	710
	show ipv6 mld throttle interface	710
ΜV	R for IPv4	711
	mvr	712
	mvr associated-profile	713
	mvr domain	713
	mvr priority	714
	mvr profile	715
	mvr proxy-query-interval	716
	mvr proxy-switching	716
	mvr robustness-value	717
	mvr source-port-mode dynamic	718
	mvr upstream-source-ip	719
	mvr vlan	719
	mvr immediate-leave	720
	mvr type	721
	mvr vlan group	722
	clear mrv groups dynamic	723
	clear mrv statistics	723
	show mvr	724
	show mvr associated-profile	725
	show mvr interface	726
	show mvr members	727
	show mvr profile	729
	show mvr statistics	729

MVR for IPv6	734
mvr6 associated-profile	735
mvr6 domain	736
mvr6 priority	736
mvr6 profile	737
mvr6 proxy-query-interval	738
mvr6 proxy-switching	738
mvr6 robustness-value	740
mvr6 source-port-mode dynamic	740
mvr6 upstream-source-ip	741
mvr6 vlan	742
mvr6 immediate-leave	742
mvr6 type	743
mvr6 vlan group	744
clear mvr6 groups dynamic	745
clear mvr6 statistics	746
show mvr6	746
show mvr6 associated-profile	747
show mvr6 interface	748
show mvr6 members	749
show mvr6 profile	750
show mvr6 statistics	751
IGMP (Layer 3)	753
ip igmp	754
ip igmp last-member-query-interval	755
ip igmp max-resp-interval	755
ip igmp query-interval	756
ip igmp robustval	757
ip igmp static-group	758
ip igmp version	759
clear ip igmp group	759
show ip igmp groups	760
show ip igmp interface	762
IGMP Proxy Routing	763
ip igmp proxy	763

C	_	n	+	_	n	+
	C)	п		_	п	

	ip igmp proxy unsolicited-report-interval	/65
	MLD (Layer 3)	765
	ipv6 mld	766
	ipv6 mld last-member-query-response-interval	766
	ipv6 mld max-resp-interval	767
	ipv6 mld query-interval	768
	ipv6 mld robustval	769
	ipv6 mld static-group	769
	ipv6 mld version	770
	clear ipv6 mld group	771
	show ipv6 mld groups	772
	show ipv6 mld interface	773
	MLD Proxy Routing	774
	ipv6 mld proxy	774
	ipv6 mld proxy unsolicited-report-interval	776
25	LLDP Commands	777
	lldp	779
	lldp holdtime-multiplier	779
	lldp med-fast-start-count	780
	lldp notification-interval	780
	lldp refresh-interval	781
	lldp reinit-delay	781
	lldp tx-delay	782
	lldp admin-status	783
	lldp basic-tlv management-ip-address	783
	lldp basic-tlv port-description	784
	lldp basic-tlv system-capabilities	784
	lldp basic-tlv system-description	785
	lldp basic-tlv system-name	785
	lldp dot1-tlv proto-ident	786
	lldp dot1-tlv proto-vid	786
	lldp dot1-tlv pvid	787
	lldp dot1-tlv vlan-name	787
	lldp dot3-tlv link-agg	788

	liap dot3-tiv mac-pny	/88
	lldp dot3-tlv max-frame	789
	lldp dot3-tlv poe	789
	lldp med-location civic-addr	790
	lldp med-notification	792
	lldp med-tlv ext-poe	792
	lldp med-tlv inventory	793
	lldp med-tlv location	793
	lldp med-tlv med-cap	794
	lldp med-tlv network-policy	794
	lldp notification	795
	show Ildp config	796
	show lldp info local-device	797
	show Ildp info remote-device	798
	show IIdp info statistics	800
26	CFM Commands	803
	Defining CFM Structures	806
	ethernet cfm ais level	806
	ethernet cfm ais ma	807
	ethernet cfm ais period	808
	ethernet cfm ais suppress alarm	808
	ethernet cfm domain	809
	ethernet cfm enable	811
	ma index name	812
	ma index name-format	813
	ethernet cfm mep	814
	ethernet cfm port-enable	815
	clear ethernet cfm ais mpid	815
	show ethernet cfm configuration	816
	show ethernet cfm md	818
	show ethernet cfm ma	818
	show ethernet cfm maintenance-points local	819
	show ethernet cfm maintenance-points local detail mep	820
	show ethernet cfm maintenance-points remote detail	821

-	_		4	_		4	
\boldsymbol{c}	$\boldsymbol{\cap}$	n	•	Δ	n	1	ľ

823

	ethernet cfm cc ma interval	823
	ethernet cfm cc enable	824
	snmp-server enable traps ethernet cfm cc	825
	mep archive-hold-time	826
	clear ethernet cfm maintenance-points remote	826
	clear ethernet cfm errors	827
	show ethernet cfm errors	828
	Cross Check Operations	829
	ethernet cfm mep crosscheck start-delay	829
	snmp-server enable traps ethernet cfm crosscheck	829
	mep crosscheck mpid	830
	ethernet cfm mep crosscheck	831
	show ethernet cfm maintenance-points remote crosscheck	832
	Link Trace Operations	832
	ethernet cfm linktrace cache	832
	ethernet cfm linktrace cache hold-time	833
	ethernet cfm linktrace cache size	834
	ethernet cfm linktrace	834
	clear ethernet cfm linktrace-cache	836
	show ethernet cfm linktrace-cache	836
	Loopback Operations	837
	ethernet cfm loopback	837
	Fault Generator Operations	838
	mep fault-notify alarm-time	838
	mep fault-notify lowest-priority	839
	mep fault-notify reset-time	840
	show ethernet cfm fault-notify-generator	841
	Delay Measure Operations	842
	ethernet cfm delay-measure two-way	842
27	OAM Commands	845
	efm oam	846
	efm oam critical-link-event	846
	efm oam link-monitor frame	847

Continuity Check Operations

	efm oam link-monitor frame threshold	848
	efm oam link-monitor frame window	848
	efm oam mode	849
	clear efm oam counters	850
	clear efm oam event-log	850
	efm oam remote-loopback	851
	efm oam remote-loopback test	852
	show efm oam counters interface	853
	show efm oam event-log interface	853
	show efm oam remote-loopback interface	855
	show efm oam status interface	855
	show efm oam status remote interface	856
28	Domain Name Service Commands	857
	ip domain-list	857
	ip domain-lookup	858
	ip domain-name	859
	ip host	860
	ip name-server	860
	ipv6 host	861
	clear dns cache	862
	clear host	862
	show dns	863
	show dns cache	863
	show hosts	864
29	DHCP Commands	865
	DHCP Client	865
	DHCP for IPv4	866
	ip dhcp client class-id	866
	ip dhcp restart client	867
	DHCP for IPv6	868
	ipv6 dhcp client rapid-commit vlan	868
	show ipv6 dhcp duid	869
	show ipv6 dhcp vlan	869

_						
\boldsymbol{c}	^	n	•	n	٠	c

	DHCP Relay	870
	DHCP Relay for IPv4	870
	ip dhcp relay server	870
	ip dhcp restart relay	871
	DHCP Relay for IPv6	872
	ipv6 dhcp relay destination	872
	show ipv6 dhcp relay destination	873
	DHCP Server	874
	ip dhcp excluded-address	875
	ip dhcp pool	875
	service dhcp	876
	bootfile	876
	client-identifier	877
	default-router	878
	dns-server	878
	domain-name	879
	hardware-address	879
	host	880
	lease	881
	netbios-name-server	882
	netbios-node-type	883
	network	883
	next-server	884
	clear ip dhcp binding	885
	show ip dhcp	885
	show ip dhcp binding	886
	show ip dhcp pool	886
30	IP Interface Commands	889
	IPv4 Interface	889
	Basic IPv4 Configuration	890
	ip address	890
	ip default-gateway	892
	show ip interface	893
	show ip traffic	894

traceroute	895
ping	896
ARP Configuration	897
arp	897
arp timeout	898
ip proxy-arp	899
clear arp-cache	900
show arp	900
UDP Helper Configuration	901
ip forward-protocol udp	901
ip helper	902
ip helper-address	903
show ip helper	904
IPv6 Interface	904
Interface Address Configuration and Utilities	906
ipv6 default-gateway	906
ipv6 address	907
ipv6 address eui-64	908
ipv6 address link-local	910
ipv6 enable	911
ipv6 mtu	912
show ipv6 interface	914
show ipv6 mtu	916
show ipv6 traffic	916
clear ipv6 traffic	921
ping6	921
traceroute6	922
Neighbor Discovery	924
ipv6 hop-limit	924
ipv6 neighbor	924
ipv6 nd dad attempts	926
ipv6 nd managed-config-flag	927
ipv6 nd other-config-flag	928
ipv6 nd ns-interval	929
ipv6 nd raguard	930

_						
\boldsymbol{C}	_	-	$\overline{}$	-	•	•
			_			•

	ipvo na reachable-time	931
	ipv6 nd prefix	931
	ipv6 nd ra interval	933
	ipv6 nd ra lifetime	934
	ipv6 nd ra router-preference	934
	ipv6 nd ra suppress	935
	clear ipv6 neighbors	936
	show ipv6 nd raguard	936
	show ipv6 neighbors	936
	ND Snooping	938
	ipv6 nd snooping	939
	ipv6 nd snooping auto-detect	940
	ipv6 nd snooping auto-detect retransmit count	941
	ipv6 nd snooping auto-detect retransmit interval	941
	ipv6 nd snooping prefix timeout	942
	ipv6 nd snooping max-binding	943
	ipv6 nd snooping trust	943
	clear ipv6 nd snooping binding	944
	clear ipv6 nd snooping prefix	944
	show ipv6 nd snooping	944
	show ipv6 nd snooping binding	945
	show ipv6 nd snooping prefix	945
31	VRRP Commands	947
	vrrp authentication	948
	vrrp ip	948
	vrrp preempt	949
	vrrp priority	950
	vrrp timers advertise	951
	show vrrp	952
	show vrrp interface	954
	show vrrp interface counters	954
	show vrrp router counters	956

50	IP Routing Commands	957
	Global Routing Configuration	957
	IPv4 Commands	958
	ip route	958
	maximum-paths	959
	show ip host-route	960
	show ip route	960
	show ip route database	961
	show ip route summary	962
	show ip traffic	962
	IPv6 Commands	964
	ipv6 route	964
	show ipv6 route	965
	Routing Information Protocol (RIP)	966
	router rip	967
	default-information originate	968
	default-metric	968
	distance	969
	maximum-prefix	970
	neighbor	970
	network	971
	passive-interface	972
	redistribute	973
	timers basic	974
	version	975
	ip rip authentication mode	976
	ip rip authentication string	977
	ip rip receive version	978
	ip rip receive-packet	978
	ip rip send version	979
	ip rip send-packet	980
	ip rip split-horizon	981
	clear ip rip route	981
	show ip protocols rip	982
	show ip rip	983

Open Shortest Path First (OSPFv2)	984
General Configuration	985
router ospf	985
compatible rfc1583	986
default-information originate	987
router-id	988
timers spf	989
clear ip ospf process	990
Route Metrics and Summaries	990
area default-cost	990
area range	991
auto-cost reference-bandwidth	992
default-metric	993
redistribute	993
summary-address	995
Area Configuration	996
area authentication	996
area nssa	997
area stub	999
area virtual-link	1000
network area	1002
Interface Configuration	1003
ip ospf authentication	1003
ip ospf authentication-key	1005
ip ospf cost	1006
ip ospf dead-interval	1007
ip ospf hello-interval	1007
ip ospf message-digest-key	1008
ip ospf priority	1009
ip ospf retransmit-interval	1010
ip ospf transmit-delay	1011
passive-interface	1012
Display Information	1012
show ip ospf	1012
show ip ospf border-routers	1014

show ip ospf database	1015
show ip ospf interface	1021
show ip ospf neighbor	1023
show ip ospf route	1024
show ip ospf virtual-links	1024
show ip protocols ospf	1025
Open Shortest Path First (OSPFv3)	1026
General Configuration	1028
router ipv6 ospf	1028
abr-type	1029
max-current-dd	1030
router-id	1031
timers spf	1032
Route Metrics and Summaries	1032
area default-cost	1032
area range	1033
default-metric	1034
redistribute	1035
Area Configuration	1036
area stub	1036
area virtual-link	1037
ipv6 router ospf area	1039
ipv6 router ospf tag area	1040
Interface Configuration	1041
ipv6 ospf cost	1041
ipv6 ospf dead-interval	1042
ipv6 ospf hello-interval	1043
ipv6 ospf priority	1043
ipv6 ospf retransmit-interval	1044
ipv6 ospf transmit-delay	1045
passive-interface	1046
Display Information	1047
show ipv6 ospf	1047
show ipv6 ospf database	1048
show ipv6 ospf interface	1049

_					
	n	T	ρ	n	Ťς

show ipv6 ospf neighbor	1050
show ipv6 ospf route	1051
show ipv6 ospf virtual-links	1052
Border Gateway Protocol (BGPv4)	1053
BGP Overview	1053
External and Internal BGP	1053
BGP Routing Basics	1055
Internal BGP Scalability	1058
Route Flap Dampening	1063
BGP Command List	1064
General Configuration	1067
router bgp	1067
ip as-path access-list	1068
ip community-list	1069
ip extcommunity-list	1071
ip prefix-list	1073
aggregate-address	1075
bgp client-to-client reflection	1076
bgp cluster-id	1077
bgp confederation identifier	1078
bgp confederation peer	1079
bgp dampening	1080
bgp enforce-first-as	1081
bgp fast-external-failover	1081
bgp log-neighbor-changes	1082
bgp network import-check	1082
bgp router-id	1083
bgp scan-time	1083
network	1084
redistribute	1085
timers bgp	1086
clear ip bgp	1087
clear ip bgp dampening	1088
Route Metrics and Selection	1089
bgp always-compare-med	1089

	bgp bestpath as-path ignore	1089
	bgp bestpath compare-confed-aspath	1090
	bgp bestpath compare-routerid	1090
	bgp bestpath med	1091
	bgp default local-preference	1092
	bgp deterministic-med	1092
	distance	1093
	distance bgp	1094
Ne	ighbor Configuration	1095
	neighbor activate	1095
	neighbor advertisement-interval	1096
	neighbor allowas-in	1096
	neighbor attribute-unchanged	1097
	neighbor capability dynamic	1098
	neighbor capability orf prefix-list	1098
	neighbor default-originate	1099
	neighbor description	1100
	neighbor distribute-list	1100
	neighbor dont-capability-negotiate	1101
	neighbor ebgp-multihop	1102
	neighbor enforce-multihop	1103
	neighbor filter-list	1103
	neighbor interface	1104
	neighbor maximum-prefix	1105
	neighbor next-hop-self	1106
	neighbor override-capability	1106
	neighbor password	1107
	neighbor passive	1108
	neighbor peer-group (Creating)	1108
	neighbor peer-group (Group Members)	1109
	neighbor port	1109
	neighbor prefix-list	1110
	neighbor remote-as	1111
	neighbor remove-private-as	1112
	neighbor route-map	1112

Conte	nto
Conte	1163

neighbor route-reflector-client	1113
neighbor route-server-client	1114
neighbor send-community	1115
neighbor shutdown	1115
neighbor soft-reconfiguration inbound	1116
neighbor strict-capability-match	1117
neighbor timers	1118
neighbor timers connect	1118
neighbor unsuppress-map	1119
neighbor update-source	1120
neighbor weight	1120
Display Information	1121
show ip bgp	1121
show ip bgp attribute-info	1122
show ip bgp cidr-only	1123
show ip bgp community	1123
show ip bgp community-info	1124
show ip bgp community-list	1125
show ip bgp dampening	1126
show ip bgp filter-list	1127
show ip bgp neighbors	1127
show ip bgp paths	1129
show ip bgp prefix-list	1130
show ip bgp regexp	1130
show ip bgp route-map	1131
show ip bgp scan	1131
show ip bgp summary	1132
show ip community-list	1132
show ip extcommunity-list	1133
show ip prefix-list	1133
show ip prefix-list detail	1134
show ip prefix-list summary	1134
Policy-based Routing for BGP	1135
route-map	1137
call	1138

	continue	1138
	description	1139
	match as-path	1139
	match community	1140
	match extcommunity	1141
	match ip address	1141
	match ip next-hop	1142
	match ip route-source	1142
	match metric	1143
	match origin	1143
	match pathlimit as	1144
	match peer	1145
	on-match	1145
	set aggregator as	1146
	set as-path	1146
	set atomic-aggregate	1147
	set comm-list delete	1148
	set community	1148
	set extcommunity	1150
	set ip next-hop	1151
	set local-preference	1152
	set metric	1152
	set origin	1153
	set originator-id	1154
	set pathlimit ttl	1154
	set weight	1155
	show route-map	1155
51	Multicast Routing Commands	1157
	General Multicast Routing	1157
	IPv4 Commands	1157
	ip multicast-routing	1157
	show ip mroute	1158
	IPv6 Commands	1160
	ipv6 multicast-routing	1160

_						
\boldsymbol{c}	^	n	•	n	٠	c

show ipv6 mroute	1161
Static Multicast Routing	1163
ip igmp snooping vlan mrouter	1163
show ip igmp snooping mrouter	1164
PIM Multicast Routing	1165
IPv4 PIM Commands	1165
PIM Shared Mode Commands	1166
router pim	1166
ip pim	1167
ip pim hello-holdtime	1168
ip pim hello-interval	1169
ip pim join-prune-holdtime	1169
ip pim lan-prune-delay	1170
ip pim override-interval	1171
ip pim propagation-delay	1172
ip pim trigger-hello-delay	1172
show ip pim interface	1173
show ip pim neighbor	1174
PIM-DM Commands	1174
ip pim graft-retry-interval	1174
ip pim max-graft-retries	1175
ip pim state-refresh origination-interval	1175
PIM-SM Commands	1176
ip pim bsr-candidate	1176
ip pim register-rate-limit	1178
ip pim register-source	1178
ip pim rp-address	1179
ip pim rp-candidate	1181
ip pim spt-threshold	1182
ip pim dr-priority	1183
ip pim join-prune-interval	1184
clear ip pim bsr rp-set	1185
show ip pim bsr-router	1186
show ip pim rp mapping	1187
show ip pim rp-hash	1188

I۲۱	vo Pilvi Commands	1188
ΡIΛ	M6 Shared Mode Commands	1189
	router pim6	1189
	ipv6 pim	1190
	ipv6 pim hello-holdtime	1191
	ipv6 pim hello-interval	1192
	ipv6 pim join-prune-holdtime	1192
	ipv6 pim lan-prune-delay	1193
	ipv6 pim override-interval	1194
	ipv6 pim propagation-delay	1195
	ipv6 pim trigger-hello-delay	1195
	show ipv6 pim interface	1196
	show ipv6 pim neighbor	1197
PΙΛ	M6-DM Commands	1197
	ipv6 pim graft-retry-interval	1197
	ipv6 pim max-graft-retries	1198
	ipv6 pim state-refresh origination-interval	1199
PΙΛ	M6-SM Commands	1200
	ipv6 pim bsr-candidate	1200
	ipv6 pim register-rate-limit	1201
	ipv6 pim register-source	1202
	ipv6 pim rp-address	1202
	ipv6 pim rp-candidate	1204
	ipv6 pim spt-threshold	1205
	ipv6 pim dr-priority	1206
	ipv6 pim join-prune-interval	1207
	clear ipv6 pim bsr rp-set	1208
	show ipv6 pim bsr-router	1209
	show ipv6 pim rp mapping	1210
	show ipv6 pim rp-hash	1211

Section III	Appendices	1213
Α	Troubleshooting	1215
	Problems Accessing the Management Interface	1215
	Using System Logs	1216
В	License Information	1217
	The GNU General Public License	1217
	Glossary	1221
	Index of CLI Commands	1229
	Index	1241

Figures

Figure 1:	Storm Control by Limiting the Traffic Rate	478
Figure 2:	Storm Control by Shutting Down a Port	479
Figure 3:	Non-ERPS Device Protection	553
Figure 4:	Sub-ring with Virtual Channel	560
Figure 5:	Sub-ring without Virtual Channel	560
Figure 6:	Configuring VLAN Trunking	589
Figure 7:	Mapping QinQ Service VLAN to Customer VLAN	595
Figure 8:	Configuring VLAN Translation	603
Figure 1:	Connections for Internal and External BGP	1054
Figure 2:	Connections for Single Route Reflector	1059
Figure 3:	Connections for Multiple Route Reflectors	1059
Figure 4:	Connections for BGP Confederation	1061
Figure 5:	Connections for Route Server	1062

Figures

Table 1:	Options 60, 66 and 67 Statements	87
Table 2:	Options 55 and 124 Statements	87
Table 3:	General Command Modes	99
Table 4:	Configuration Command Modes	101
Table 5:	Keystroke Commands	102
Table 6:	Command Group Index	103
Table 7:	General Commands	107
Table 8:	System Management Commands	115
Table 9:	Device Designation Commands	115
Table 10:	Banner Commands	116
Table 11:	System Status Commands	125
Table 12:	show system – display description	132
Table 13:	show version – display description	134
Table 14:	Fan Control Commands	136
Table 15:	Frame Size Commands	136
Table 16:	Flash/File Commands	138
Table 17:	File Directory Information	145
Table 18:	Line Commands	151
Table 19:	Event Logging Commands	162
Table 20:	Logging Levels	163
Table 21:	show logging flash/ram - display description	168
Table 22:	show logging trap - display description	168
Table 23:	Event Logging Commands	169
Table 24:	Time Commands	172
Table 25:	Predefined Summer-Time Parameters	182
Table 26:	Time Range Commands	186
Table 27:	Switch Cluster Commands	189
Table 28:	Stacking Commands	195
Table 29:	SNMP Commands	199

Table 30:	show snmp engine-id - display description	214
Table 31:	show snmp group - display description	215
Table 32:	show snmp user - display description	216
Table 33:	show snmp view - display description	217
Table 34:	RMON Commands	223
Table 35:	sFlow Commands	231
Table 36:	Authentication Commands	237
Table 37:	User Access Commands	238
Table 38:	Default Login Settings	240
Table 39:	Authentication Sequence Commands	242
Table 40:	RADIUS Client Commands	244
Table 41:	TACACS+ Client Commands	248
Table 42:	AAA Commands	252
Table 43:	Web Server Commands	261
Table 44:	HTTPS System Support	264
Table 45:	Telnet Server Commands	264
Table 46:	Secure Shell Commands	267
Table 47:	show ssh - display description	276
Table 48:	802.1X Port Authentication Commands	276
Table 49:	Management IP Filter Commands	291
Table 50:	PPPoE Intermediate Agent Commands	293
Table 51:	show pppoe intermediate-agent statistics - display description	300
Table 52:	General Security Commands	303
Table 53:	Management IP Filter Commands	304
Table 54:	show port security - display description	308
Table 55:	Network Access Commands	309
Table 56:	Dynamic QoS Profiles	313
Table 57:	Web Authentication	324
Table 58:	DHCP Snooping Commands	330
Table 59:	Option 82 information	339
Table 60:	DHCP Snooping Commands	343
Table 61:	IPv4 Source Guard Commands	353
Table 62:	IPv6 Source Guard Commands	360
Table 63:	ARP Inspection Commands	366
Table 64:	DoS Protection Commands	374

_	_		
		h	\sim

Table 65:	Commands for Configuring Traffic Segmentation	380
Table 66:	Traffic Segmentation Forwarding	381
Table 67:	Access Control List Commands	385
Table 68:	IPv4 ACL Commands	385
Table 69:	IPv6 ACL Commands	393
Table 70:	MAC ACL Commands	399
Table 71:	ARP ACL Commands	407
Table 72:	ACL Information Commands	409
Table 73:	Interface Commands	413
Table 74:	show interfaces counters - display description	425
Table 75:	show interfaces switchport - display description	430
Table 76:	Link Aggregation Commands	443
Table 77:	show lacp counters - display description	453
Table 78:	show lacp internal - display description	453
Table 79:	show lacp neighbors - display description	454
Table 80:	show lacp sysid - display description	455
Table 81:	PoE Commands	457
Table 82:	show power inline status - display description	460
Table 83:	show power mainpower - display description	461
Table 84:	Port Mirroring Commands	463
Table 85:	Mirror Port Commands	463
Table 86:	RSPAN Commands	466
Table 87:	Congestion Control Commands	473
Table 88:	Rate Limit Commands	473
Table 89:	Rate Limit Commands	475
Table 90:	ATC Commands	476
Table 91:	Loopback Detection Commands	491
Table 92:	UniDirectional Link Detection Commands	497
Table 93:	show udld - display description	502
Table 94:	Address Table Commands	505
Table 95:	Spanning Tree Commands	513
Table 96:	Recommended STA Path Cost Range	527
Table 97:	Default STA Path Costs	528
Table 98:	ERPS Commands	543
Table 90.	EDDS Request/State Priority	567

Table 100:	show erps - summary display description	570
Table 101:	show erps domain - detailed display description	571
Table 102:	show erps statistics - detailed display description	573
Table 103:	VLAN Commands	575
Table 104:	GVRP and Bridge Extension Commands	576
Table 105:	show bridge-ext - display description	579
Table 106:	Commands for Editing VLAN Groups	581
Table 107:	Commands for Configuring VLAN Interfaces	583
Table 108:	Commands for Displaying VLAN Information	590
Table 109:	802.1Q Tunneling Commands	591
Table 110:	L2 Protocol Tunnel Commands	598
Table 111:	VLAN Translation Commands	602
Table 112:	Protocol-based VLAN Commands	604
Table 113:	IP Subnet VLAN Commands	608
Table 114:	MAC Based VLAN Commands	610
Table 115:	Voice VLAN Commands	612
Table 116:	Priority Commands	621
Table 117:	Priority Commands (Layer 2)	621
Table 118:	Priority Commands (Layer 3 and 4)	626
Table 119:	Default Mapping of CoS/CFI to Internal PHB/Drop Precedence	627
Table 120:	Default Mapping of DSCP Values to Internal PHB/Drop Values	628
Table 121:	Mapping Internal Per-hop Behavior to Hardware Queues	629
Table 122:	Quality of Service Commands	635
Table 123:	Multicast Filtering Commands	655
Table 124:	IGMP Snooping Commands	656
Table 125:	show ip igmp snooping statistics input - display description	677
Table 126:	show ip igmp snooping statistics output - display description	678
Table 127:	show ip igmp snooping statistics vlan query - display description	678
Table 128:	Static Multicast Interface Commands	679
Table 129:	IGMP Filtering and Throttling Commands	680
Table 130:	IGMP Authentication RADIUS Attribute Value Pairs	684
Table 131:	MLD Snooping Commands	692
Table 132:	MLD Filtering and Throttling Commands	702
Table 133:	Multicast VLAN Registration for IPv4 Commands	711
Table 134·	show myr - display description	725

Table 135:	show mvr interface - display description	726
Table 136:	show mvr members - display description	728
Table 137:	show mvr statistics input - display description	730
Table 138:	show mvr statistics output - display description	730
Table 139:	show mvr statistics query - display description	731
Table 140:	show mvr statistics summary interface - display description	732
Table 141:	show mvr statistics summary interface mvr vlan - description	733
Table 142:	Multicast VLAN Registration for IPv6 Commands	734
Table 143:	show mvr6 - display description	747
Table 144:	show mvr6 interface - display description	748
Table 145:	show mvr6 members - display description	750
Table 146:	show mvr6 statistics input - display description	751
Table 147:	show mvr6 statistics output - display description	752
Table 148:	show mvr6 statistics query - display description	753
Table 149:	IGMP Commands (Layer 3)	753
Table 150:	show ip igmp groups - display description	761
Table 151:	show ip igmp groups detail - display description	761
Table 152:	IGMP Proxy Commands	763
Table 153:	MLD Commands (Layer 3)	765
Table 154:	show ipv6 mld groups - display description	772
Table 155:	IGMP Proxy Commands	774
Table 156:	LLDP Commands	777
Table 157:	LLDP MED Location CA Types	791
Table 158:	CFM Commands	803
Table 159:	show ethernet cfm configuration traps - display description	817
Table 160:	show ethernet cfm maintenance-points local detail mep - display	821
Table 161:	show ethernet cfm maintenance-points remote detail - display	822
Table 162:	show ethernet cfm errors - display description	828
Table 163:	show ethernet cfm linktrace-cache - display description	836
Table 164:	Remote MEP Priority Levels	840
Table 165:	MEP Defect Descriptions	840
Table 166:	show fault-notify-generator - display description	841
Table 167:	OAM Commands	845
Table 168:	Address Table Commands	857
Table 160.	show dos cache - display description	863

Table 170:	show hosts - display description	864
Table 171:	DHCP Commands	865
Table 172:	DHCP Client Commands	865
Table 173:	Options 60, 66 and 67 Statements	866
Table 174:	Options 55 and 124 Statements	867
Table 175:	DHCP Relay Option 82 Commands	870
Table 176:	DHCP Server Commands	874
Table 177:	IP Interface Commands	889
Table 178:	IPv4 Interface Commands	889
Table 179:	Basic IP Configuration Commands	890
Table 180:	Address Resolution Protocol Commands	897
Table 181:	UDP Helper Commands	901
Table 182:	IPv6 Configuration Commands	904
Table 183:	show ipv6 interface - display description	915
Table 184:	show ipv6 mtu - display description	916
Table 185:	show ipv6 traffic - display description	918
Table 186:	show ipv6 neighbors - display description	937
Table 187:	ND Snooping Commands	938
Table 188:	VRRP Commands	947
Table 189:	show vrrp - display description	953
Table 190:	show vrrp brief - display description	953
Table 191:	show vrrp interface counters - display description	955
Table 1:	IP Routing Commands	957
Table 2:	Global Routing Configuration Commands	957
Table 3:	show ip host-route - display description	960
Table 4:	Routing Information Protocol Commands	966
Table 5:	Open Shortest Path First Commands	984
Table 6:	show ip ospf - display description	1013
Table 7:	show ip ospf database - display description	1016
Table 8:	show ip ospf database summary - display description	1017
Table 9:	show ip ospf database external - display description	1018
Table 10:	show ip ospf database network - display description	1019
Table 11:	show ip ospf database router - display description	1020
Table 12:	show ip ospf database summary - display description	1021
Table 13:	show ip ospf interface - display description	1022

Table 14:	show ip ospf neighbor - display description	1023
Table 15:	show ip ospf virtual-links - display description	1025
Table 16:	show ip protocols ospf - display description	1025
Table 17:	Open Shortest Path First Commands (Version 3)	1026
Table 18:	show ip ospf - display description	1047
Table 19:	show ip ospf database - display description	1049
Table 20:	show ip ospf interface - display description	1050
Table 21:	show ipv6 ospf neighbor - display description	1051
Table 22:	show ipv6 ospf virtual-links - display description	1052
Table 23:	Border Gateway Protocol Commands – Version 4	1064
Table 24:	show ip bgp - display description	1122
Table 25:	show ip bgp community-info - display description	1125
Table 26:	show ip bgp dampening parameters- display description	1127
Table 27:	show ip bgp - display description	1128
Table 28:	show ip bgp paths - display description	1130
Table 29:	Policy-based Routing Configuration Commands	1135
Table 30:	Multicast Routing Commands	1157
Table 31:	General Multicast Routing Commands	1157
Table 32:	show ip mroute - display description	1159
Table 33:	show ip mroute - display description	1162
Table 34:	Static Multicast Routing Commands	1163
Table 35:	IPv4 and IPv6 PIM Commands	1165
Table 36:	PIM-DM and PIM-SM Multicast Routing Commands	1165
Table 37:	show ip pim neighbor - display description	1174
Table 38:	show ip pim bsr-router - display description	1186
Table 39:	show ip pim rp mapping - display description	1187
Table 40:	show ip pim rp-hash - display description	1188
Table 41:	PIM-DM and PIM-SM Multicast Routing Commands	1188
Table 42:	show ipv6 pim neighbor - display description	1197
Table 43:	show ip pim bsr-router - display description	1209
Table 44:	show ip pim rp mapping - display description	1210
Table 45:	show ip pim rp-hash - display description	1211
Table 46:	Troubleshooting Chart	1215

Section I

Getting Started

This section describes how to configure the switch for management access through the web interface or SNMP.

This section includes these chapters:

◆ "Initial Switch Configuration" on page 65

Initial Switch Configuration

This chapter includes information on connecting to the switch and basic configuration procedures.

Connecting to the Switch

The switch includes a built-in network management agent. The agent offers a variety of management options, including SNMP, RMON and a web-based interface. A PC may also be connected directly to the switch for configuration and monitoring via a command line interface (CLI).

Note: An IPv4 address for this switch is obtained via DHCP by default. To change this address, see "Setting an IP Address" on page 72.

Configuration Options The switch's HTTP web agent allows you to configure switch parameters, monitor port connections, and display statistics using a standard web browser such as Internet Explorer 6, Mozilla Firefox 4, or Google Chrome 29, or more recent versions. The switch's web management interface can be accessed from any computer attached to the network.

> The CLI program can be accessed by a direct connection to the RS-232 serial console port on the switch, or remotely by a Telnet connection over the network.

> The switch's management agent also supports SNMP (Simple Network Management Protocol). This SNMP agent permits the switch to be managed from any system in the network using network management software.

The switch's web interface, console interface, and SNMP agent allow you to perform the following management functions:

- Set user names and passwords
- Set an IP interface for any VLAN
- Configure SNMP parameters
- Enable/disable any port
- Set the speed/duplex mode for any port
- Configure the bandwidth of any port by limiting input or output rates
- Control port access through IEEE 802.1X security or static address filtering

Connecting to the Switch

- Filter packets using Access Control Lists (ACLs)
- Configure up to 4094 IEEE 802.1Q VLANs
- ◆ Enable GVRP automatic VLAN registration
- Configure IP routing for unicast or multicast traffic
- Configure router redundancy
- Configure IGMP multicast filtering
- Upload and download system firmware or configuration files via HTTP (using the web interface) or FTP/TFTP (using the command line or web interface)
- Configure Spanning Tree parameters
- Configure Class of Service (CoS) priority queuing
- Configure static or LACP trunks (up to 16)
- Enable port mirroring
- Set storm control on any port for excessive broadcast, multicast, or unknown unicast traffic
- Display system information and statistics
- ◆ Configure any stack unit through the same IP address

Connecting to the The switch provides an RS-232 serial port that enables a connection to a PC or **Console Port** terminal for monitoring and configuring the switch. A null-modem console cable is provided with the switch.

Note: When configuring a stack, connect to the console port on the Master unit.

Attach a VT100-compatible terminal, or a PC running a terminal emulation program to the switch. You can use the console cable provided with this package, or use a null-modem cable that complies with the wiring assignments shown in the Installation Guide.

To connect a terminal to the console port, complete the following steps:

- 1. Connect the console cable to the serial port on a terminal, or a PC running terminal emulation software, and tighten the captive retaining screws on the DB-9 connector.
- **2.** Connect the other end of the cable to the RS-45 serial port on the switch.
- **3.** Make sure the terminal emulation software is set as follows:
 - Select the appropriate serial port (COM port 1 or COM port 2).
 - Set the baud rate to 115200 bps.
 - Set the data format to 8 data bits, 1 stop bit, and no parity.

- Set flow control to none.
- Set the emulation mode to VT100.
- When using HyperTerminal, select Terminal keys, not Windows keys.
- **4.** Power on the switch.

After the system completes the boot cycle, the logon screen appears.

Logging Onto the The CLI program provides two different command levels — normal access level Command Line (Normal Exec) and privileged access level (Privileged Exec). The commands Interface available at the Normal Exec level are a limited subset of those available at the Privileged Exec level and allow you to only display information and use basic utilities. To fully configure the switch parameters, you must access the CLI at the Privileged Exec level.

> Access to both CLI levels are controlled by user names and passwords. The switch has a default user name and password for each level. To log into the CLI at the Privileged Exec level using the default user name and password, perform these steps:

- 1. To initiate your console connection, press <Enter>. The "User Access Verification" procedure starts.
- **2.** At the User Name prompt, enter "admin."
- 3. At the Password prompt, also enter "admin." (The password characters are not displayed on the console screen.)
- 4. The session is opened and the CLI displays the "Console#" prompt indicating you have access at the Privileged Exec level.

Setting Passwords If this is your first time to log into the CLI program, you should define new passwords for both default user names using the "username" command, record them and put them in a safe place.

> Passwords can consist of up to 32 alphanumeric characters and are case sensitive. To prevent unauthorized access to the switch, set the passwords as follows:

- 1. Open the console interface with the default user name and password "admin" to access the Privileged Exec level.
- **2.** Type "configure" and press <Enter>.
- **3.** Type "username guest password 0 password," for the Normal Exec level, where password is your new password. Press < Enter>.

Connecting to the Switch

4. Type "username admin password 0 password," for the Privileged Exec level, where password is your new password. Press <Enter>.

```
Username: admin
Password:
CLI session with the ECS4620-28T* is opened.
To end the CLI session, enter [Exit].
Console#configure
Console(config) #username guest password 0 [password]
Console(config) #username admin password 0 [password]
Console(config)#
```

This manual covers the ECS4620-28T/52T Gigabit Ethernet switches, the ECS4620-28F and ECS4620-28F-DC Gigabit Ethernet fiber switch, the ECS4620-28T-DC Gigabit Ethernet switch, and the ECS4620-28P/52P Gigabit Ethernet PoE switches. Other than the difference in port types, and support for PoE (ECS4620-28P/52P), there are no other significant differences. Therefore nearly all of the screen display examples are based on the ECS4620-28T.

Remote Connections Prior to accessing the switch's onboard agent via a network connection, you must first configure it with a valid IPv4 or IPv6 address, subnet mask, and default gateway using a console connection, or DHCP protocol.

> An IPv4 address for the switch is obtained via DHCP by default. To manually configure this address or enable dynamic address assignment via DHCP, see "Setting an IP Address" on page 72.

After configuring the switch's IP parameters, you can access the onboard configuration program from anywhere within the attached network. The onboard configuration program can be accessed using Telnet or SSH from any computer attached to the network. The switch can also be managed by any computer using a web browser (Internet Explorer 6, Mozilla Firefox 4, or Google Chrome 29, or more recent versions), or from a network computer using SNMP network management software.

Note: This switch supports eight Telnet sessions or SSH sessions.

Note: Any VLAN group can be assigned an IP interface address (page 72) for managing the switch. Also, note that the Master unit does not have to include an active port member in the VLAN interface used for management access.

The onboard program only provides access to basic configuration functions. To access the full range of SNMP management functions, you must use SNMP-based network management software.

Stack Operations

Up to eight switches can be stacked together as described in the Installation Guide. One unit in the stack acts as the Master for configuration tasks and firmware upgrade. All of the other units function in Slave mode, but can automatically take over management of the stack if the Master unit fails.

To configure any unit in the stack, first verify the unit number from the front panel indicator on the switch, and then select the appropriate unit number from the web or console management interface.

Stack Master

Selecting the Note the following points about unit numbering:

- When the stack is initially powered on, the Master unit is selected based on the following rules:
 - If the stack master button has been enabled with the switch master button command on only one unit in the stack, that unit will serve as the stack Master.
 - If the stack master button has been enabled on more than one unit, the system will select the unit with the lowest MAC address as the stack Master from those with the stack master button enabled.
 - If the stack master button is not enabled on any unit, the system will select the unit with the lowest MAC address as the stack Master.
- When the stack is initially powered on, the Master unit is designated as unit 1 for a ring topology. For a line topology, the stack is simply numbered from top to bottom, with the first unit in the stack designated at unit 1. This unit identification number appears on the Stack Unit ID LED on the front panel of the switch. Any unit in the stack can be selected on the front panel graphic of the web interface (from the Unit scroll-down list), or from the CLI (as specified by the "unit" parameter for applicable commands).
- If the Master unit fails and another unit takes over control of the stack, the unit numbering will not change.
- If a unit in the stack fails or is removed from the stack, the unit numbers will not change. This means that when you replace a unit in the stack, the original configuration for the failed unit will be restored to the replacement unit.
- If a unit is removed from the stack and later reattached to the stack, it will retain the original unit number obtained during stacking.
- If a unit is removed from the stack, and powered up as a stand-alone unit, it will also retain the original unit number obtained during stacking.

Selecting the Once the Master unit finishes booting up, it continues to synchronize configuration Backup Unit information to all of the Slave units in the stack. If the Master unit fails or is powered off, a new master unit will be selected based on the election rules described in the preceding section. The backup unit elected to serve as the new stack Master will take control of the stack without any loss of configuration settings. To ensure a logical fail over to the next unit down in the stack, place the Slave unit with the lowest MAC address directly beneath the Master unit in the stack.

Stack Failure or **Topology Change**

Recovering from When a link or unit in the stack fails, a trap message is sent and a failure event is logged. The stack will be rebooted after any system failure or topology change. It takes two to three minutes to for the stack to reboot. If the Master unit fails, the backup unit will take over operations as the new Master unit, reboot the stack, and then select another backup unit after the stack finishes rebooting. Also note that powering down a unit or inserting a new unit in the stack will cause the stack to reboot. If a unit is removed from the stack (due to a power down or failure) or a new unit added to the stack, the original unit IDs are not affected after rebooting, and a new unit is assigned the lowest available unit ID.

Broken Link for Line and Wrap-around Topologies

All units in the stack must be connected via stacking cable. You can connect the units in a simple cascade configuration from the top to the bottom unit. Using this kind of line topology, if any link or unit in the stack fails, the stack will be broken in two.

When the stack fails, a Master unit is selected from the two stack segments, either the unit with the Master button enabled, or the unit with the lowest MAC address if the Master button is not enabled on any unit. The stack reboots and resumes operations. However, note that the IP address will be the same for any common VLANs (with active port connections) that appear in both of the new stack segments. To resolve the conflicting IP addresses, you should manually replace the failed link or unit as soon as possible. If you are using a wrap-around stack topology, a single point of failure in the stack will not cause the stack to fail. It would take two or more points of failure to break the stack apart.

Note: If a stack breaks apart, the IP address will be the same for any common VLANs (with active port connections) that appear in both stack segments.

Resilient IP Interface for Management Access

The stack functions as one integral system for management and configuration purposes. You can therefore manage the stack through any IP interface configured on the stack. The Master unit does not even have to include an active port member in the VLAN interface used for management access. However, if the unit to which you normally connect for management access fails, and there are no active port members on the other units within this VLAN interface, then this IP address will no longer be available. To retain a constant IP address for management access across

failover events, you should include port members on several units within the primary VLAN used for stack management.

Resilient Configuration

If a unit in the stack fails, the unit numbers will not change. This means that when you replace a unit in the stack, the original configuration for the failed unit will be restored to the replacement unit. This applies to both the Master and Slave units.

Renumbering The startup configuration file maps configuration settings to each switch in the the Stack stack based on the unit identification number. If the units are no longer numbered sequentially after several topology changes or failures, you can reset the unit numbers using the System > Stacking (Renumber) menu in the web interface or the switch all renumber command in the CLI. Just remember to save the new configuration settings to a startup configuration file prior to powering off the stack Master.

Ensuring Consistent Consistent Runtime Code in Each Switch – The main board runtime firmware Code is Used Across version for each unit in the stack must be the same as the Master unit's runtime the Stack firmware. After Auto-ID assignment is completed, the Master unit checks the image versions for consistency. If the firmware versions (i.e., runtime code) configured for bootup on any slave units are not the same as those on the Master unit, the stack will operate in Special Stacking Mode in which all backup units are disabled as described below:

- The master unit starts normal operation mode in standalone mode.
- The master unit can see all units in the stack and maintain stack topology.
- None of the other units can function (all ports will be disabled).
- All user-initiated commands to configure the non-functioning units are dropped. The master unit, however, will be able to communicate the following information to the non-functioning units:
 - Image downloads
 - Stack topology information
 - System configuration information already stored on the master.

In Special Stacking mode, the master unit displays warning messages whenever you log into the system through the CLI that inform you that an image download is required.

You can use the CLI, web or SNMP to download the runtime image from an FTP or TFTP server to the master unit. The master unit stores the image as its "Next boot

Configuring the Switch for Remote Management

image" and downloads the image to those backup units that are running a different image version.

Configuring the Switch for Remote Management

Using the Network The switch can be managed through the operational network, known as in-band Interface management. Because in-band management traffic is mixed in with operational network traffic, it is subject to all of the filtering rules usually applied to a standard network ports such as ACLs and VLAN tagging. In-band network management can be accessed via a connection to any network port (1-28/52).

Setting an IP Address You must establish IP address information for a stand-alone switch or a stack to obtain management access through the network. This can be done in either of the following ways:

- **Manual** You have to input the information, including IP address and subnet mask. If your management station is not in the same IP subnet as the switch, you will also need to specify the default gateway router.
- **Dynamic** The switch can send IPv4 configuration requests to BOOTP or DHCP address allocation servers on the network, or can automatically generate a unique IPv6 host address based on the local subnet address prefix received in router advertisement messages. An IPv6 link local address for use in a local network can also be dynamically generated as described in "Obtaining an IPv6 Address" on page 77.

This switch is designed as a router, and therefore does not support DHCP for IPv6, so an IPv6 global unicast address for use in a network containing more than one subnet can only be manually configured as described in "Assigning an IPv6 Address" on page 73.

Manual Configuration

You can manually assign an IP address to the switch. You may also need to specify a default gateway that resides between this device and management stations that exist on another network segment. Valid IPv4 addresses consist of four decimal numbers, 0 to 255, separated by periods. Anything outside this format will not be accepted by the CLI program.

Note: The IPv4 address for VLAN 1 is obtained via DHCP by default.

Assigning an IPv4 Address

Before you can assign an IP address to the switch, you must obtain the following information from your network administrator:

- IP address for the switch
- Network mask for this network
- Default gateway for the network

To assign an IPv4 address to the switch, complete the following steps

- **1.** From the Global Configuration mode prompt, type "interface vlan 1" to access the interface-configuration mode. Press <Enter>.
- **2.** Type "ip address *ip-address netmask*," where "ip-address" is the switch IP address and "netmask" is the network mask for the network. Press <Enter>.
- **3.** Type "exit" to return to the global configuration mode prompt. Press <Enter>.
- **4.** To set the IP address of the default gateway for the network to which the switch belongs, type "ip default-gateway *gateway*," where "gateway" is the IP address of the default gateway. Press <Enter>.

```
Console(config) #interface vlan 1
Console(config-if) #ip address 192.168.1.5 255.255.255.0
Console(config-if) #exit
Console(config) #ip default-gateway 192.168.1.254
```

Assigning an IPv6 Address

This section describes how to configure a "link local" address for connectivity within the local subnet only, and also how to configure a "global unicast" address, including a network prefix for use on a multi-segment network and the host portion of the address.

An IPv6 prefix or address must be formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used to indicate the appropriate number of zeros required to fill the undefined fields. For detailed information on the other ways to assign IPv6 addresses, see "IPv6 Interface" on page 904.

Link Local Address — All link-local addresses must be configured with a prefix in the range of FE80~FEBF. Remember that this address type makes the switch accessible over IPv6 for all devices attached to the same local subnet only. Also, if the switch detects that the address you configured conflicts with that in use by another device on the subnet, it will stop using the address in question, and automatically generate a link local address that does not conflict with any other devices on the local subnet.

Configuring the Switch for Remote Management

To configure an IPv6 link local address for the switch, complete the following steps:

- **1.** From the Global Configuration mode prompt, type "interface vlan 1" to access the interface-configuration mode. Press <Enter>.
- **2.** Type "ipv6 address" followed by up to 8 colon-separated 16-bit hexadecimal values for the *ipv6-address* similar to that shown in the example, followed by the "link-local" command parameter. Then press <Enter>.

```
Console(config)#interface vlan 1
Console(config-if)#ipv6 address FE80::260:3EFF:FE11:6700 link-local
Console(config-if) #ipv6 enable
Console(config-if)#end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled.
Link-local address:
  fe80::260:3eff:fe11:6700%1/64
Global unicast address(es):
(None)
Joined group address(es):
ff02::1:ff11:6700
ff02::1
IPv6 link MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Address for Multi-segment Network — Before you can assign an IPv6 address to the switch that will be used to connect to a multi-segment network, you must obtain the following information from your network administrator:

- Prefix for this network
- IP address for the switch
- Default gateway for the network

For networks that encompass several different subnets, you must define the full address, including a network prefix and the host address for the switch. You can specify either the full IPv6 address, or the IPv6 address and prefix length. The prefix length for an IPv6 network is the number of bits (from the left) of the prefix that form the network address, and is expressed as a decimal number. For example, all IPv6 addresses that start with the first byte of 73 (hexadecimal) could be expressed as 73:0:0:0:0:0:0:0:0:0:0/8 or 73::/8.

To generate an IPv6 global unicast address for the switch, complete the following steps:

- **1.** From the global configuration mode prompt, type "interface vlan 1" to access the interface-configuration mode. Press <Enter>.
- **2.** From the interface prompt, type "ipv6 address *ipv6-address*" or "ipv6 address *ipv6-address/prefix-length,*" where "prefix-length" indicates the address bits used to form the network portion of the address. (The network address starts from the left of the prefix and should encompass some of the ipv6-address bits.) The remaining bits are assigned to the host interface. Press <Enter>.
- **3.** Type "exit" to return to the global configuration mode prompt. Press < Enter>.
- **4.** To set the IP address of the IPv6 default gateway for the network to which the switch belongs, type "ipv6 default-gateway *gateway*," where "gateway" is the IPv6 address of the default gateway. Press <Enter>.

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 address 2001:DB8:2222:7272::/64
Console(config-if)#exit
Console(config)#ipv6 default-gateway 2001:DB8:2222:7272::254
Console(config)end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled.
Link-local address:
 fe80::200:e8ff:fe94:4000%1/64
Global unicast address(es):
 2001:db8:2222:7272::/64, subnet is 2001:db8:2222:7272::/64
Joined group address(es):
ff02::1:ff00:0
ff02::1:ff94:4000
ff02::1
IPv6 link MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#show ipv6 route
Codes: C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default
S*
       ::/0 [1/0] via 2001:db8:2222:7272::254, VLAN1
       2001:db8:2222:7272::/64, VLAN1
C
       fe80::/64, VLAN1
Console#
```

Dynamic Configuration

Obtaining an IPv4 Address

If you select the "bootp" or "dhcp" option, the system will immediately start broadcasting service requests. IP will be enabled but will not function until a BOOTP or DHCP reply has been received. Requests are broadcast every few minutes using exponential backoff until IP configuration information is obtained from a BOOTP or DHCP server. BOOTP and DHCP values can include the IP address, subnet mask, and default gateway. If the DHCP/BOOTP server is slow to respond, you may need to use the "ip dhcp restart client" command to re-start broadcasting service requests.

Note that the "ip dhcp restart client" command can also be used to start broadcasting service requests for all VLANs configured to obtain address assignments through BOOTP or DHCP. It may be necessary to use this command when DHCP is configured on a VLAN, and the member ports which were previously shut down are now enabled.

If the "bootp" or "dhcp" option is saved to the startup-config file (step 6), then the switch will start broadcasting service requests as soon as it is powered on.

To automatically configure the switch by communicating with BOOTP or DHCP address allocation servers on the network, complete the following steps:

- **1.** From the Global Configuration mode prompt, type "interface vlan 1" to access the interface-configuration mode. Press <Enter>.
- **2.** At the interface-configuration mode prompt, use one of the following commands:
 - To obtain IP settings via DHCP, type "ip address dhcp" and press <Enter>.
 - To obtain IP settings via BOOTP, type "ip address bootp" and press <Enter>.
- **3.** Type "end" to return to the Privileged Exec mode. Press <Enter>.
- **4.** Wait a few minutes, and then check the IP configuration settings by typing the "show ip interface" command. Press <Enter>.
- **5.** Then save your configuration changes by typing "copy running-config startup-config." Enter the startup file name and press <Enter>.

```
Console(config) #interface vlan 1
Console(config-if) #ip address dhcp
Console(config-if)#end
Console#show ip interface
VLAN 1 is Administrative Up - Link Up
  Address is 00-E0-0C-00-00-FB
  Index: 1001, MTU: 1500
  Address Mode is DHCP
 IP Address: 192.168.0.2 Mask: 255.255.255.0
  Proxy ARP is disabled
  DHCP Inform is disabled
  DHCP relay server: 0.0.0.0
Console#copy running-config startup-config
Startup configuration file name []: startup
\Write to FLASH Programming.
\Write to FLASH finish.
Success.
```

Obtaining an IPv6 Address

Link Local Address — There are several ways to configure IPv6 addresses. The simplest method is to automatically generate a "link local" address (identified by an address prefix in the range of FE80~FEBF). This address type makes the switch accessible over IPv6 for all devices attached to the same local subnet.

To generate an IPv6 link local address for the switch, complete the following steps:

- **1.** From the Global Configuration mode prompt, type "interface vlan 1" to access the interface-configuration mode. Press <Enter>.
- 2. Type "ipv6 enable" and press <Enter>.

```
Console(config) #interface vlan 1
Console(config-if) #ipv6 enable
Console(config-if)#end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled.
Link-local address:
 fe80::7272:cfff:fe83:3466%1/64
Global unicast address(es):
  (None)
Joined group address(es):
ff02::1:ff94:4000
ff02::1:ff00:0
ff02::1
IPv6 link MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Enabling SNMP Management Access

The switch can be configured to accept management commands from Simple Network Management Protocol (SNMP) applications such as Edge-Core ECView Pro. You can configure the switch to respond to SNMP requests or generate SNMP traps.

When SNMP management stations send requests to the switch (either to return information or to set a parameter), the switch provides the requested data or sets the specified parameter. The switch can also be configured to send information to SNMP managers (without being requested by the managers) through trap messages, which inform the manager that certain events have occurred.

The switch includes an SNMP agent that supports SNMP version 1, 2c, and 3 clients. To provide management access for version 1 or 2c clients, you must specify a community string. The switch provides a default MIB View (i.e., an SNMPv3 construct) for the default "public" community string that provides read access to the entire MIB tree, and a default view for the "private" community string that provides read/write access to the entire MIB tree. However, you may assign new views to version 1 or 2c community strings that suit your specific security requirements (see snmp-server view command).

Community Strings (for SNMP version 1 and 2c clients)

Community strings are used to control management access to SNMP version 1 and 2c stations, as well as to authorize SNMP stations to receive trap messages from the switch. You therefore need to assign community strings to specified users, and set the access level.

The default strings are:

- **public** with read-only access. Authorized management stations are only able to retrieve MIB objects.
- **private** with read/write access. Authorized management stations are able to both retrieve and modify MIB objects.

To prevent unauthorized access to the switch from SNMP version 1 or 2c clients, it is recommended that you change the default community strings.

To configure a community string, complete the following steps:

- 1. From the Privileged Exec level global configuration mode prompt, type "snmp-server community *string mode*," where "string" is the community access string and "mode" is **rw** (read/write) or **ro** (read only). Press <Enter>. (Note that the default mode is read only.)
- **2.** To remove an existing string, simply type "no snmp-server community *string*," where "string" is the community access string to remove. Press <Enter>.

```
Console(config) #snmp-server community admin rw
Console(config) #snmp-server community private
Console(config) #
```


Note: If you do not intend to support access to SNMP version 1 and 2c clients, we recommend that you delete both of the default community strings. If there are no community strings, then SNMP management access from SNMP v1 and v2c clients is disabled.

Trap Receivers

You can also specify SNMP stations that are to receive traps from the switch. To configure a trap receiver, use the "snmp-server host" command. From the Privileged Exec level global configuration mode prompt, type:

"snmp-server host host-address community-string [version {1 | 2c | 3 {auth | noauth | priv}}]"

where "host-address" is the IP address for the trap receiver, "community-string" specifies access rights for a version 1/2c host, or is the user name of a version 3 host, "version" indicates the SNMP client version, and "auth | noauth | priv" means that authentication, no authentication, or authentication and privacy is used for v3 clients. Then press <Enter>. For a more detailed description of these parameters, see the snmp-server host command. The following example creates a trap host for each type of SNMP client.

```
Console(config) #snmp-server host 10.1.19.23 batman
Console(config) #snmp-server host 10.1.19.98 robin version 2c
Console(config) #snmp-server host 10.1.19.34 barbie version 3 auth
Console(config) #
```

Configuring Access for SNMP Version 3 Clients

To configure management access for SNMPv3 clients, you need to first create a view that defines the portions of MIB that the client can read or write, assign the view to a group, and then assign the user to a group. The following example creates one view called "mib-2" that includes the entire MIB-2 tree branch, and then another view that includes the IEEE 802.1d bridge MIB. It assigns these respective read and read/write views to a group call "r&d" and specifies group authentication via MD5 or SHA. In the last step, it assigns a v3 user to this group, indicating that MD5 will be used for authentication, provides the password "greenpeace" for authentication, and the password "einstien" for encryption.

```
Console(config) #snmp-server view mib-2 1.3.6.1.2.1 included
Console(config) #snmp-server view 802.1d 1.3.6.1.2.1.17 included
Console(config) #snmp-server group r&d v3 auth read mib-2 write 802.1d
Console(config) #snmp-server user steve group r&d v3 auth md5 greenpeace priv des56 einstien
Console(config) #
```

For a more detailed explanation on how to configure the switch for access from SNMP v3 clients, refer to the *CLI Reference Guide* or *Web Management Guide*.

Managing System Files

The switch's flash memory supports three types of system files that can be managed by the CLI program, the web interface, or SNMP. The switch's file system allows files to be uploaded and downloaded, copied, deleted, and set as a start-up file.

The types of files are:

- ◆ Configuration This file type stores system configuration information and is created when configuration settings are saved. Saved configuration files can be selected as a system start-up file or can be uploaded via FTP/TFTP to a server for backup. The file named "Factory_Default_Config.cfg" contains all the system default settings and cannot be deleted from the system. If the system is booted with the factory default settings, the switch will also create a file named "startup1.cfg" that contains system settings for switch initialization, including information about the unit identifier, and MAC address for the switch. The configuration settings from the factory defaults configuration file are copied to this file, which is then used to boot the switch. See "Saving or Restoring Configuration Settings" on page 81 for more information.
- Operation Code System software that is executed after boot-up, also known as run-time code. This code runs the switch operations and provides the CLI and web management interfaces.
- Diagnostic Code Software that is run during system boot-up, also known as POST (Power On Self-Test).

Note: The Boot ROM and Loader cannot be uploaded or downloaded from the FTP/TFTP server. You must follow the instructions in the release notes for new firmware, or contact your distributor for help.

Due to the size limit of the flash memory, the switch supports only two operation code files. However, you can have as many diagnostic code files and configuration files as available flash memory space allows. The switch has a total of 128 Mbytes of flash memory for system files.

In the system flash memory, one file of each type must be set as the start-up file. During a system boot, the diagnostic and operation code files set as the start-up file are run, and then the start-up configuration file is loaded.

Note that configuration files should be downloaded using a file name that reflects the contents or usage of the file settings. If you download directly to the running-config, the system will reboot, and the settings will have to be copied from the running-config to a permanent file.

Upgrading the The following example shows how to download new firmware to the switch and Operation Code activate it. The TFTP server could be any standards-compliant server running on Windows or Linux. When downloading from an FTP server, the logon interface will prompt for a user name and password configured on the remote server. Note that "anonymous" is set as the default user name.

> File names on the switch are case-sensitive. The destination file name should not contain slashes (\ or /), and the maximum length for file names is 32 characters for files on the switch or 128 characters for files on the server. (Valid characters: A-Z, a-z, 0-9, "", "-")

```
Console#copy tftp file
TFTP server ip address: 10.1.0.19
Choose file type:
1. config: 2. opcode: 2
Source file name: m360.bix
Destination file name: m360.bix
\Write to FLASH Programming.
-Write to FLASH finish.
Success.
Console#config
Console(config) #boot system opcode: m360.bix
Console(config)#exit
Console#dir
     File Name
                            Type Startup Modify Time
Unit 1:
                          OpCode Y 2013-02-25 15:41:04 25812529
OpCode N 2012-12-04 13:23:59 25783857
m360.bix
m355.bix
#355.blx Opcode # 2012-12-04 13:18:37 455
startup1.cfg Config Y 2013-03-21 05:39:15 3463
 _____
                   Free space for compressed user config files:1593241600
Console#
```

Settings

Saving or Restoring Configuration commands only modify the running configuration file and are not **Configuration** saved when the switch is rebooted. To save all your configuration changes in nonvolatile storage, you must copy the running configuration file to the start-up configuration file using the "copy" command.

> New startup configuration files must have a name specified. File names on the switch are case-sensitive, can be from 1 to 31 characters, must not contain slashes (\ or /), and the leading letter of the file name must not be a period (.). (Valid characters: A-Z, a-z, 0-9, "", "-", "_")

> There can be more than one user-defined configuration file saved in the switch's flash memory, but only one is designated as the "startup" file that is loaded when the switch boots. The copy running-config startup-config command always sets the new file as the startup file. To select a previously saved configuration file, use the **boot system config:**<*filename*> command.

Automatic Installation of Operation Code and Configuration Settings

The maximum number of saved configuration files depends on available flash memory. The amount of available flash memory can be checked by using the dir command.

To save the current configuration settings, enter the following command:

- 1. From the Privileged Exec mode prompt, type "copy running-config startupconfig" and press < Enter>.
- **2.** Enter the name of the start-up file. Press <Enter>.

```
Console#copy running-config startup-config
Startup configuration file name []: startup
\Write to FLASH Programming.
\Write to FLASH finish.
Success.
Console#
```

To restore configuration settings from a backup server, enter the following command:

- 1. From the Privileged Exec mode prompt, type "copy tftp startup-config" and press <Enter>.
- **2.** Enter the address of the TFTP server. Press < Enter>.
- **3.** Enter the name of the startup file stored on the server. Press <Enter>.
- **4.** Enter the name for the startup file on the switch. Press <Enter>.

```
Console#copy tftp startup-config
TFTP server IP address: 192.168.0.4
Source configuration file name: startup-rd.cfg
Startup configuration file name [startup1.cfg]:
Success.
Console#
```

Automatic Installation of Operation Code and Configuration Settings

Downloading Automatic Operation Code Upgrade can automatically download an operation Operation Code from code file when a file newer than the currently installed one is discovered on the file a File Server server. After the file is transferred from the server and successfully written to the file system, it is automatically set as the startup file, and the switch is rebooted.

Usage Guidelines

- If this feature is enabled, the switch searches the defined URL once during the bootup sequence.
- ◆ FTP (port 21) and TFTP (port 69) are both supported. Note that the TCP/UDP port bindings cannot be modified to support servers listening on non-standard ports.
- ◆ The host portion of the upgrade file location URL must be a valid IPv4 IP address. DNS host names are not recognized. Valid IP addresses consist of four numbers, 0 to 255, separated by periods.
- ◆ The path to the directory must also be defined. If the file is stored in the root directory for the FTP/TFTP service, then use the "/" to indicate this (e.g., ftp://192.168.0.1/).
- ◆ The file name must not be included in the upgrade file location URL. The file name of the code stored on the remote server must be ECS4620-28T.bix (using lower case letters as indicated).
- The FTP connection is made with PASV mode enabled. PASV mode is needed to traverse some fire walls, even if FTP traffic is not blocked. PASV mode cannot be disabled.
- ◆ The switch-based search function is case-insensitive in that it will accept a file name in upper or lower case (i.e., the switch will accept ECS4620-28T.BIX from the server even though ECS4620-28T.bix was requested). However, keep in mind that the file systems of many operating systems such as Unix and most Unix-like systems (FreeBSD, NetBSD, OpenBSD, and most Linux distributions, etc.) are case-sensitive, meaning that two files in the same directory, ecs4620-28t.bix and ECS4620-28T.BIX are considered to be unique files. Thus, if the upgrade file is stored as ECS4620-28T.BIX (or even Ecs4620-28t.bix) on a case-sensitive server, then the switch (requesting ECS4620-28T.bix) will not be upgraded because the server does not recognize the requested file name and the stored file name as being equal. A notable exception in the list of case-sensitive Unix-like operating systems is Mac OS X, which by default is case-insensitive. Please check the documentation for your server's operating system if you are unsure of its file system's behavior.
- Note that the switch itself does not distinguish between upper and lower-case file names, and only checks to see if the file stored on the server is more recent than the current runtime image.
- If two operation code image files are already stored on the switch's file system, then the non-startup image is deleted before the upgrade image is transferred.
- ◆ The automatic upgrade process will take place in the background without impeding normal operations (data switching, etc.) of the switch.

Automatic Installation of Operation Code and Configuration Settings

- During the automatic search and transfer process, the administrator cannot transfer or update another operation code image, configuration file, public key, or HTTPS certificate (i.e., no other concurrent file management operations are possible).
- ◆ The upgrade operation code image is set as the startup image after it has been successfully written to the file system.
- The switch will send an SNMP trap and make a log entry upon all upgrade successes and failures.
- The switch will immediately restart after the upgrade file is successfully written to the file system and set as the startup image.

To enable automatic upgrade, enter the following commands:

- 1. Specify the TFTP or FTP server to check for new operation code.
 - When specifying a TFTP server, the following syntax must be used, where filedir indicates the path to the directory containing the new image:

```
tftp://192.168.0.1[/filedir]/
```

When specifying an FTP server, the following syntax must be used, where filedir indicates the path to the directory containing the new image:

```
ftp://[username[:password@]]192.168.0.1[/filedir]/
```

If the user name is omitted, "anonymous" will be used for the connection. If the password is omitted a null string ("") will be used for the connection.

This shows how to specify a TFTP server where new code is stored.

```
Console(config) #upgrade opcode path tftp://192.168.0.1/sm24/
Console(config)#
```

This shows how to specify an FTP server where new code is stored.

```
Console(config) #upgrade opcode path ftp://admin:billy@192.168.0.1/sm24/Console(config)#
```

2. Set the switch to automatically reboot and load the new code after the opcode upgrade is completed.

```
Console(config)#upgrade opcode reload
Console(config)#
```

3. Set the switch to automatically upgrade the current operational code when a new version is detected on the server. When the switch starts up and automatic

image upgrade is enabled by this command, the switch will follow these steps when it boots up:

- **a.** It will search for a new version of the image at the location specified by **upgrade opcode path** command. The name for the new image stored on the TFTP server must be ECS4620-28T.bix. If the switch detects a code version newer than the one currently in use, it will download the new image. If two code images are already stored in the switch, the image not set to start up the system will be overwritten by the new version.
- **b.** After the image has been downloaded, the switch will send a trap message to log whether or not the upgrade operation was successful.
- **c.** It sets the new version as the startup image.
- **d.** It then restarts the system to start using the new image.

```
Console(config) #upgrade opcode auto
Console(config)#
```

4. Display the automatic upgrade settings.

```
Console#show upgrade
Auto Image Upgrade Global Settings:
Status : Enabled
Reload Status : Enabled
Path :
File Name : ECS4620-28T.bix
Console#
```

Specifying a DHCP Client Identifier

DHCP servers index their database of address bindings using the client's Media Access Control (MAC) Address or a unique client identifier. The client identifier is used to identify the vendor class and configuration of the switch to the DHCP server, which then uses this information to decide on how to service the client or the type of information to return.

DHCP client Identifier (Option 60) is used by DHCP clients to specify their unique identifier. The client identifier is optional and can be specified while configuring DHCP on the primary network interface. DHCP Option 60 is disabled by default.

The general framework for this DHCP option is set out in RFC 2132 (Option 60). This information is used to convey configuration settings or other identification information about a client, but the specific string to use should be supplied by your service provider or network administrator. Options 60 (vendor-class-identifier), 66 (tftp-server-name) and 67 (bootfile-name) statements can be added to the server daemon's configuration file as described in the following section.

If the DHCP server has an index entry for a switch requesting service, it should reply with the TFTP server name and boot file name. Note that the vendor class identifier

Chapter 1 | Initial Switch Configuration

Automatic Installation of Operation Code and Configuration Settings

can be formatted in either text or hexadecimal, but the format used by both the client and server must be the same.

```
Console(config)#interface vlan 2
Console(config-if) #ip dhcp client class-id hex 0000e8666572
Console(config-if)#
```

Referenced by a DHCP Server

Downloading a Information passed on to the switch from a DHCP server may also include a **Configuration File** configuration file to be downloaded and the TFTP servers where that file can be accessed. If the Factory Default Configuration file is used to provision the switch at startup, in addition to requesting IP configuration settings from the DHCP server, it will also ask for the name of a bootup configuration file and TFTP servers where that file is stored.

> If the switch receives information that allows it to download the remote bootup file, it will save this file to a local buffer, and then restart the provision process.

Note the following DHCP client behavior:

- The bootup configuration file received from a TFTP server is stored on the switch with the original file name. If this file name already exists in the switch, the file is overwritten.
- If the name of the bootup configuration file is the same as the Factory Default Configuration file, the download procedure will be terminated, and the switch will not send any further DHCP client requests.
- If the switch fails to download the bootup configuration file based on information passed by the DHCP server, it will not send any further DHCP client requests.
- If the switch does not receive a DHCP response prior to completing the bootup process, it will continue to send a DHCP client request once a minute. These requests will only be terminated if the switch's address is manually configured, but will resume if the address mode is set back to DHCP.

To successfully transmit a bootup configuration file to the switch, the DHCP daemon (using a Linux based system for this example) must be configured with the following information:

 Options 60, 66 and 67 statements can be added to the daemon's configuration file.

Table 1: Options 60, 66 and 67 Statements

Option	Statement		
	Keyword	Parameter	
60	vendor-class-identifier	a string indicating the vendor class identifier	
66	tftp-server-name	a string indicating the tftp server name	
67	bootfile-name	a string indicating the bootfile name	

▶ By default, DHCP option 66/67 parameters are not carried in a DHCP server reply. To ask for a DHCP reply with option 66/67 information, the DHCP client request sent by this switch includes a "parameter request list" asking for this information. Besides these items, the client request also includes a "vendor class identifier" that allows the DHCP server to identify the device, and select the appropriate configuration file for download. This information is included in Option 55 and 124.

Table 2: Options 55 and 124 Statements

Option	Statement		
	Keyword	Parameter	
55	dhcp-parameter-request-list	a list of parameters, separated by a comma ', '	
124	vendor-class-identifier	a string indicating the vendor class identifier	

The following configuration example is provided for a Linux-based DHCP daemon (dhcpd.conf file). In the "Vendor class" section, the server will always send Option 66 and 67 to tell the switch to download the "test" configuration file from server 192.168.255.101.

```
ddns-update-style ad-hoc;
default-lease-time 600;
max-lease-time 7200;
log-facility local7;
server-name "Server1";
Server-identifier 192.168.255.250;
#option 66, 67
  option space dynamicProvision code width 1 length 1 hash size 2;
  option dynamicProvision.tftp-server-name code 66 = text;
  option dynamicProvision.bootfile-name code 67 = text;
```

Setting the System Clock

```
subnet 192.168.255.0 netmask 255.255.255.0 {
  range 192.168.255.160 192.168.255.200;
  option routers 192.168.255.101;
  option tftp-server-name "192.168.255.100"; #Default Option 66
  option bootfile-name "bootfile"; #Default Option 67
}

class "Option66,67_1" { #DHCP Option 60 Vendor class
two
  match if option vendor-class-identifier = "ecs4620-28t.cfg";
  option tftp-server-name "192.168.255.101";
  option bootfile-name "test";
}
```


Note: Use "ecs4620-28t.cfg" for the vendor-class-identifier in the dhcpd.conf file.

Setting the System Clock

Simple Network Time Protocol (SNTP) or Network Time Protocol (NTP) can be used to set the switch's internal clock based on periodic updates from a time server. Maintaining an accurate time on the switch enables the system log to record meaningful dates and times for event entries. You can also manually set the clock. If the clock is not set manually or via SNTP or NTP, the switch will only record the time from the factory default set at the last bootup.

When the SNTP client is enabled, the switch periodically sends a request for a time update to a configured time server. You can configure up to three time server IP addresses. The switch will attempt to poll each server in the configured sequence.

The switch also supports the following time settings:

- ◆ Time Zone You can specify the offset from Coordinated Universal Time (UTC), also known as Greenwich Mean Time (GMT).
- Summer Time/Daylight Saving Time (DST) In some regions, the time shifts by one hour in the fall and spring. The switch supports manual entry for one-time or recurring clock shifts.

Setting the Time Manually

Setting the Time To manually set the clock to 14:11:36, April 1st, 2013, enter this command.

```
Console#calendar set 14 11 36 1 April 2013
Console#
```

To set the time zone, enter a command similar to the following.

```
Console(config)#clock timezone Japan hours 8 after-UTC Console(config)#
```

To set the time shift for summer time, enter a command similar to the following.

```
Console(config) #clock summer-time SUMMER date 2 april 2013 0 0 30 june 2013 0 0 Console(config) #
```

To display the clock configuration settings, enter the following command.

```
Console#show calendar
Current Time : Apr 2 15:56:12 2013
Time Zone : UTC, 08:00
Summer Time : SUMMER, offset 60 minutes
Apr 2 2013 00:00 to Jun 30 2013 00:00
Summer Time in Effect : Yes
Console#
```

Configuring SNTP

Setting the clock based on an SNTP server can provide more accurate clock synchronization across network switches than manually-configured time. To configure SNTP, set the switch as an SNTP client, and then set the polling interval, and specify a time server as shown in the following example.

```
Console(config) #sntp client
Console(config) #sntp poll 60
Console(config) #sntp server 10.1.0.19
Console(config) #exit
Console#show sntp
Current Time : Apr 2 16:06:07 2013
Poll Interval : 60 seconds
Current Mode : Unicast
SNTP Status : Enabled
SNTP Server : 10.1.0.19
Current Server : 10.1.0.19
Console#
```

Configuring NTP

Requesting the time from a an NTP server is the most secure method. You can enable NTP authentication to ensure that reliable updates are received from only authorized NTP servers. The authentication keys and their associated key number must be centrally managed and manually distributed to NTP servers and clients. The key numbers and key values must match on both the server and client.

When more than one time server is configured, the client will poll all of the time servers, and compare the responses to determine the most reliable and accurate time update for the switch.

To configure NTP time synchronization, enter commands similar to the following.

```
Console(config) #ntp client
Console(config) #ntp authentication-key 45 md5 thisiskey45
Console(config) #ntp authenticate
Console(config) #ntp server 192.168.3.20
```

Chapter 1 | Initial Switch Configuration

Setting the System Clock

Console(config) #ntp server 192.168.3.21 Console(config) #ntp server 192.168.5.23 key 19 Console(config)#exit Console#show ntp Current Time : Apr 29 13:57:32 2011 Polling : 1024 seconds Polling
Current Mode : unicast : Enabled NTP Status NTP Authenticate Status : Enabled
Last Update NTP Server : 192.168.0.88 Port: 123
Last Update Time : Mar 12 02:41:01 2013 UTC NTP Server 192.168.0.88 version 3 NTP Server 192.168.3.21 version 3 NTP Server 192.168.4.22 version 3 key 19 NTP Authentication Key 19 md5 42V68751663T6K11P2J307210R885 Current Time : Apr 2 16:28:34 2013 : 1024 seconds Polling Current Mode : unicast NTP Status : Enabled NTP Authenticate Status : Enabled Last Update NTP Server : 192.168.5.23 Last Update Time : Apr 2 16:00:00 2013 UTC NTP Server 192.168.3.20 version 3 NTP Server 192.168.3.21 version 3 NTP Server 192.168.5.23 version 3 key 19 NTP Authentication Key 45 md5 2662T75S5658RU5424180034777 Console#

Section II

Command Line Interface

This section provides a detailed description of the Command Line Interface, along with examples for all of the commands.

This section includes these chapters:

- "Using the Command Line Interface" on page 93
- ◆ "General Commands" on page 107
- ◆ "System Management Commands" on page 115
- ◆ "SNMP Commands" on page 199
- "Remote Monitoring Commands" on page 223
- ◆ "Flow Sampling Commands" on page 231
- "Authentication Commands" on page 237
- ◆ "General Security Measures" on page 303
- ◆ "Access Control Lists" on page 385
- ◆ "Interface Commands" on page 413
- "Link Aggregation Commands" on page 443
- ◆ "Power over Ethernet Commands" on page 457
- ◆ "Port Mirroring Commands" on page 463
- "Congestion Control Commands" on page 473
- ◆ "Loopback Detection Commands" on page 491
- ◆ "UniDirectional Link Detection Commands" on page 497

- ◆ "Address Table Commands" on page 505
- ◆ "Spanning Tree Commands" on page 513
- ◆ "ERPS Commands" on page 543
- ◆ "VLAN Commands" on page 575
- ◆ "Class of Service Commands" on page 621
- ◆ "Quality of Service Commands" on page 635
- "Multicast Filtering Commands" on page 655
- ◆ "LLDP Commands" on page 777
- ◆ "CFM Commands" on page 803
- ◆ "OAM Commands" on page 845
- ◆ "Domain Name Service Commands" on page 857
- ◆ "DHCP Commands" on page 865
- ◆ "IP Interface Commands" on page 889
- ◆ "VRRP Commands" on page 947
- ◆ "IP Routing Commands" on page 957
- ◆ "Multicast Routing Commands" on page 1157

Using the Command Line Interface

This chapter describes how to use the Command Line Interface (CLI).

Note: You can only access the console interface through the Master unit in the stack.

Accessing the CLI

When accessing the management interface for the switch over a direct connection to the server's console port, or via a Telnet or Secure Shell connection (SSH), the switch can be managed by entering command keywords and parameters at the prompt. Using the switch's command-line interface (CLI) is very similar to entering commands on a UNIX system.

Console Connection To access the switch through the console port, perform these steps:

- 1. At the console prompt, enter the user name and password. (The default user names are "admin" and "guest" with corresponding passwords of "admin" and "guest.") When the administrator user name and password is entered, the CLI displays the "Console#" prompt and enters privileged access mode (i.e., Privileged Exec). But when the guest user name and password is entered, the CLI displays the "Console>" prompt and enters normal access mode (i.e., Normal Exec).
- **2.** Enter the necessary commands to complete your desired tasks.
- **3.** When finished, exit the session with the "quit" or "exit" command.

After connecting to the system through the console port, the login screen displays:

```
User Access Verification
Username: admin
Password:
  CLI session with the ECS4620-28T is opened.
  To end the CLI session, enter [Exit].
Console#
```

Telnet Connection Telnet operates over the IP transport protocol. In this environment, your management station and any network device you want to manage over the network must have a valid IP address. Valid IP addresses consist of four numbers, 0 to 255, separated by periods. Each address consists of a network portion and host portion. For example, the IP address assigned to this switch, 10.1.0.1, consists of a network portion (10.1.0) and a host portion (1).

Note: The IP address for this switch is obtained via DHCP by default.

To access the switch through a Telnet session, you must first set the IP address for the Master unit, and set the default gateway if you are managing the switch from a different IP subnet. For example,

```
Console(config)#interface vlan 1
Console(config-if) #ip address 10.1.0.254 255.255.255.0
Console(config-if)#exit
Console(config) #ip default-gateway 10.1.0.254
Console(config)#
```

If your corporate network is connected to another network outside your office or to the Internet, you need to apply for a registered IP address. However, if you are attached to an isolated network, then you can use any IP address that matches the network segment to which you are attached.

After you configure the switch with an IP address, you can open a Telnet session by performing these steps:

- 1. From the remote host, enter the Telnet command and the IP address of the device you want to access.
- 2. At the prompt, enter the user name and system password. The CLI will display the "Vty-n#" prompt for the administrator to show that you are using privileged access mode (i.e., Privileged Exec), or "Vty-n>" for the guest to show that you are using normal access mode (i.e., Normal Exec), where n indicates the number of the current Telnet session.
- **3.** Enter the necessary commands to complete your desired tasks.
- **4.** When finished, exit the session with the "quit" or "exit" command.

After entering the Telnet command, the login screen displays:

```
Username: admin
Password:
  CLI session with the ECS4620-28T is opened.
  To end the CLI session, enter [Exit].
Vty-0#
```


Note: You can open up to eight sessions to the device via Telnet or SSH.

Entering Commands

This section describes how to enter CLI commands.

Keywords and A CLI command is a series of keywords and arguments. Keywords identify a Arguments command, and arguments specify configuration parameters. For example, in the command "show interfaces status ethernet 1/5," show interfaces and status are keywords, ethernet is an argument that specifies the interface type, and 1/5 specifies the unit/port.

You can enter commands as follows:

- To enter a simple command, enter the command keyword.
- To enter multiple commands, enter each command in the required order. For example, to enable Privileged Exec command mode, and display the startup configuration, enter:

```
Console>enable
Console#show startup-config
```

To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:

Console(config) #username admin password 0 smith

Minimum The CLI will accept a minimum number of characters that uniquely identify a **Abbreviation** command. For example, the command "configure" can be entered as **con**. If an entry is ambiguous, the system will prompt for further input.

Completion

Command If you terminate input with a Tab key, the CLI will print the remaining characters of a partial keyword up to the point of ambiguity. In the "logging history" example, typing log followed by a tab will result in printing the command up to "logging."

Getting Help You can display a brief description of the help system by entering the **help** on Commands command. You can also display command syntax by using the "?" character to list keywords or parameters.

Showing Commands

If you enter a "?" at the command prompt, the system will display the first level of keywords or command groups. You can also display a list of valid keywords for a specific command. For example, the command "show system?" displays a list of possible show commands:

```
Console#show ?
 access-group
                             Access groups
 access-list
                             Access lists
 accounting
                             Uses the specified accounting list
                             Information of ARP cache
 authorization
                            Enables EXEC accounting
 auto-traffic-control
                           Auto traffic control information
 banner
                            Banner info
 bridge-ext
                            Bridge extension information
 cable-diagnostics
                           Shows the information of cable diagnostics
 calendar
                             Date and time information
 class-map
                             Displays class maps
 cluster
                             Display cluster
 collision-mac-address-table Show collision mac address
 debua
                              State of each debugging option
 discard
                             Discard packet
 dns
                             DNS information
 dos-protection
                             Shows the system dos-protection summary
                             information
                             dot1q-tunnel
 dot1q-tunnel
                              802.1X content
 dot1x
 efm
                             Ethernet First Mile feature
                             Displays ERPS configuration
 erps
 ethernet
                             Shows Metro Ethernet information
                             GARP properties
 garp
                            GVRP interface information
 gvrp
 history
                            Shows history information
 hosts
                            Host information
 interfaces
                            Shows interface information
                             IP information
 ip
 ipv6
                             IPv6 information
 12protocol-tunnel
                             Layer 2 protocol tunneling configuration
 lacp
                             LACP statistics
                             TTY line information
 line
 11dp
                             LILDP
 log
                             Log records
 logging
                             Logging setting
                             Shows the information of loopback
 100p
 loopback-detection
                           Shows loopback detection information
                             MAC access list
 mac
 mac-address-table
                             Configuration of the address table
 mac-vlan
                             MAC-based VLAN information
 management
                             Shows management information
                             Memory utilization
 memory
 mvr
                             multicast vlan registration
                             IPv6 Multicast VLAN registration
                             Shows the entries of the secure port.
 network-access
 nlm
                             Show notification log
                             Network Time Protocol configuration
 ntp
 policy-map
                             Displays policy maps
```

Chapter 2 | Using the Command Line Interface Entering Commands

port Port characteristics
port-channel Port channel information

power Shows power

power-save Shows the power saving information pppoe Displays PPPoE configuration privilege Shows current privilege level

process Device process

protocol-vlan Protocol-VLAN information
public-key Public key information
qos Quality of Service

queue Priority queue information radius-server RADIUS server information reload Shows the reload settings rmon Remote monitoring information

route-map Shows route-map

rspan Display status of the current RSPAN

configuration

running-config Information on the running configuration

sflow Shows the sflow information snmp Simple Network Management Protocol

snmp Simple Network Management Protocol configuration and statistics

snmp-server Displays SNMP server configuration

sntp Simple Network Time Protocol configuration

spanning-tree Spanning-tree configuration
ssh Secure shell server connections
startup-config Startup system configuration
subnet-vlan IP subnet-based VLAN information

switch stacking switch
system System information
tacacs-server TACACS server information
tech-support Technical information

time-range Time range

traffic-segmentation Traffic segmentation information udld Displays UDLD information upgrade Shows upgrade information

users Information about users logged in version System hardware and software versions

vlan Shows virtual LAN settings
vlan-translation VLAN translation information
voice Shows the voice VLAN information

vrrp Shows VRRP

watchdog Displays watchdog status

web-auth Shows web authentication configuration

Console#show

The command "**show interfaces?**" will display the following information:

Console#show interfaces ?

brief Shows brief interface description counters Interface counters information protocol-vlan Protocol-VLAN information status Shows interface status

switchport Shows interface switchport information transceiver Interface of transceiver information

transceiver-threshold Interface of transceiver-threshold information

Console#

Show commands which display more than one page of information (e.g., **show running-config**) pause and require you to press the [Space] bar to continue displaying one more page, the [Enter] key to display one more line, or the [a] key to

display the rest of the information without stopping. You can press any other key to terminate the display.

Lookup

Partial Keyword If you terminate a partial keyword with a question mark, alternatives that match the initial letters are provided. (Remember not to leave a space between the command and question mark.) For example "s?" shows all the keywords starting with "s."

```
Console#show s?
sflow
        snmp ---- startup-config subnet-vlan
                                                sntp
                                                                spanning-tree
                                                system
Console#show s
```

Negating the Effect of For many configuration commands you can enter the prefix keyword "no" to cancel Commands the effect of a command or reset the configuration to the default value. For example, the **logging** command will log system messages to a host server. To disable logging, specify the **no logging** command. This guide describes the negation effect for all applicable commands.

History

Using Command The CLI maintains a history of commands that have been entered. You can scroll back through the history of commands by pressing the up arrow key. Any command displayed in the history list can be executed again, or first modified and then executed.

> Using the **show history** command displays a longer list of recently executed commands.

Understanding The command set is divided into Exec and Configuration classes. Exec commands Command Modes generally display information on system status or clear statistical counters. Configuration commands, on the other hand, modify interface parameters or enable certain switching functions. These classes are further divided into different modes. Available commands depend on the selected mode. You can always enter a question mark "?" at the prompt to display a list of the commands available for the current mode. The command classes and associated modes are displayed in the following table:

Table 3: General Command Modes

Class	Mode	
Exec	Normal Privileged	
Configuration	Global*	Access Control List CFM Class Map DHCP ERPS IGMP Profile Interface Line Multiple Spanning Tree Policy Map Route Map Router Time Range VLAN Database

You must be in Privileged Exec mode to access the Global configuration mode. You must be in Global Configuration mode to access any of the other configuration modes.

Exec Commands When you open a new console session on the switch with the user name and password "guest," the system enters the Normal Exec command mode (or guest mode), displaying the "Console>" command prompt. Only a limited number of the commands are available in this mode. You can access all commands only from the Privileged Exec command mode (or administrator mode). To access Privilege Exec mode, open a new console session with the user name and password "admin." The system will now display the "Console#" command prompt. You can also enter Privileged Exec mode from within Normal Exec mode, by entering the enable command, followed by the privileged level password "super."

To enter Privileged Exec mode, enter the following user names and passwords:

```
Username: admin
Password: [admin login password]
  CLI session with the ECS4620-28T is opened.
  To end the CLI session, enter [Exit].
Console#
Username: guest
Password: [guest login password]
  CLI session with the ECS4620-28T is opened.
  To end the CLI session, enter [Exit].
Console>enable
Password: [privileged level password]
Console#
```

Configuration Configuration commands are privileged level commands used to modify switch **Commands** settings. These commands modify the running configuration only and are not saved when the switch is rebooted. To store the running configuration in nonvolatile storage, use the copy running-config startup-config command.

The configuration commands are organized into different modes:

- Global Configuration These commands modify the system level configuration, and include commands such as hostname and snmp-server community.
- Access Control List Configuration These commands are used for packet filtering.
- CFM Configuration Configures connectivity monitoring using continuity check messages, fault verification through loopback messages, and fault isolation by examining end-to-end connections between Provider Edge devices or between Customer Edge devices.
- Class Map Configuration Creates a DiffServ class map for a specified traffic type.
- DHCP Configuration These commands are used to configure the DHCP server.
- ERPS Configuration These commands configure Ethernet Ring Protection Switching for increased availability of Ethernet rings commonly used in service provider networks.
- IGMP Profile Sets a profile group and enters IGMP filter profile configuration mode.
- Interface Configuration These commands modify the port configuration such as speed-duplex and negotiation.
- Line Configuration These commands modify the console port and Telnet configuration, and include command such as parity and databits.
- Multiple Spanning Tree Configuration These commands configure settings for the selected multiple spanning tree instance.
- Policy Map Configuration Creates a DiffServ policy map for multiple interfaces.
- Route Map Configuration These commands specify the action (next hop or silently drop) to take when a match is found.
- Router Configuration These commands configure global settings for unicast and multicast routing protocols.
- Time Range Sets a time range for use by other functions, such as Access Control Lists.

◆ VLAN Configuration - Includes the command to create VLAN groups.

To enter the Global Configuration mode, enter the command **configure** in Privileged Exec mode. The system prompt will change to "Console(config)#" which gives you access privilege to all Global Configuration commands.

```
Console#configure
Console(config)#
```

To enter the other modes, at the configuration prompt type one of the following commands. Use the **exit** or **end** command to return to the Privileged Exec mode.

Table 4: Configuration Command Modes

Mode	Command	Prompt	Page
Access Control	access-list arp	Console(config-arp-acl)	407
List	access-list ip standard	Console(config-std-acl)	386
	access-list ip extended	Console(config-ext-acl)	386
	access-list ipv6 standard	Console(config-std-ipv6-acl)	393
	access-list ipv6 extended	Console(config-ext-ipv6-acl)	393
	access-list mac	Console(config-mac-acl)	400
CFM	ethernet cfm domain	Console(config-ether-cfm)	809
Class Map	class-map	Console(config-cmap)	636
ERPS	erps domain	Console(config-erps)	546
DHCP	ip dhcp pool	Console(config-dhcp)	875
Interface	interface {ethernet $port \mid port$ -channel $id \mid vlan id$ }	Console(config-if)	414
Line	line {console vty}	Console(config-line)	152
MSTP	spanning-tree mst-configuration	Console(config-mstp)	520
Policy Map	policy-map	Console(config-pmap)	640
Router	router {bgp ipv6 ospf ospf pim pim6	Console(config-router)	1067
	rip}		1028
			985
			1166
			1189
			967
Time Range	time-range	Console(config-time-range)	186
VLAN	vlan database	Console(config-vlan)	581

For example, you can use the following commands to enter interface configuration mode, and then return to Privileged Exec mode

```
Console(config)#interface ethernet 1/5
Console(config-if)#exit
Console(config)#
```

Command Line Commands are not case sensitive. You can abbreviate commands and parameters **Processing** as long as they contain enough letters to differentiate them from any other currently available commands or parameters. You can use the Tab key to complete partial commands, or enter a partial command followed by the "?" character to display a list of possible matches. You can also use the following editing keystrokes for command-line processing:

Table 5: Keystroke Commands

Keystroke	Function
Ctrl-A	Shifts cursor to start of command line.
Ctrl-B	Shifts cursor to the left one character.
Ctrl-C	Terminates the current task and displays the command prompt.
Ctrl-E	Shifts cursor to end of command line.
Ctrl-F	Shifts cursor to the right one character.
Ctrl-K	Deletes all characters from the cursor to the end of the line.
Ctrl-L	Repeats current command line on a new line.
Ctrl-N	Enters the next command line in the history buffer.
Ctrl-P	Enters the last command.
Ctrl-R	Repeats current command line on a new line.
Ctrl-U	Deletes from the cursor to the beginning of the line.
Ctrl-W	Deletes the last word typed.
Esc-B	Moves the cursor back one word.
Esc-D	Deletes from the cursor to the end of the word.
Esc-F	Moves the cursor forward one word.
Delete key or backspace key	Erases a mistake when entering a command.

Showing Status There are various "show" commands which display configuration settings or the **Information** status of specified processes. Many of these commands will not display any information unless the switch is properly configured, and in some cases the interface to which a command applies is up.

> For example, if a static router port is configured, the corresponding show command will not display any information unless IGMP snooping is enabled, and the link for the static router port is up.

```
Console#configure
Console(config) #ip igmp snooping vlan 1 mrouter ethernet 1/11
Console(config)#end
Console#show ip igmp snooping mrouter
VLAN M'cast Router Ports Type
 ____ _____
Console#configure
Console(config) #ip igmp snooping
Console(config)#end
Console#show ip igmp snooping mrouter
VLAN M'cast Router Ports Type
____ _______
1 Eth 1/11
                      Static
Console#
```

CLI Command Groups

The system commands can be broken down into the functional groups shown below.

Table 6: Command Group Index

Command Group	Description	Page
General	Basic commands for entering privileged access mode, restarting the system, or quitting the CLI	107
System Management	Display and setting of system information, basic modes of operation, maximum frame size, file management, console port and telnet settings, system logs, SMTP alerts, the system clock, and switch clustering	115
Simple Network Management Protocol	Activates authentication failure traps; configures community access strings, and trap receivers	199
Remote Monitoring	Supports statistics, history, alarm and event groups	223
Flow Sampling	Used with a remote sFlow Collector to provide an accurate, detailed and real-time overview of the types and levels of traffic present on the network	231
User Authentication	Configures user names and passwords, command privilege levels, logon access using local or remote authentication, management access through the web server, Telnet server and Secure Shell; as well as port security, IEEE 802.1X port access control, and restricted access based on specified IP addresses, and PPPoE Intermediate Agent	237

Table 6: Command Group Index (Continued)

Command Group	Description	Page
General Security Measures	Segregates traffic for clients attached to common data ports; and prevents unauthorized access by configuring valid static or dynamic addresses, web authentication, MAC address authentication, filtering DHCP requests and replies, and discarding invalid ARP responses	303
Access Control List	Provides filtering for IPv4 frames (based on address, protocol, TCP/UDP port number or TCP control code), IPv6 frames (based on address, DSCP traffic class, or next header), or non-IP frames (based on MAC address or Ethernet type)	385
Interface	Configures the connection parameters for all Ethernet ports, aggregated links, and VLANs	413
Link Aggregation	Statically groups multiple ports into a single logical trunk; configures Link Aggregation Control Protocol for port trunks	443
Power over Ethernet*	Configures power output for connected devices	457
Mirror Port	Mirrors data to another port for analysis without affecting the data passing through or the performance of the monitored port	463
Congestion C ontrol	Sets the input/output rate limits, traffic storm thresholds, and thresholds for broadcast and multicast storms which can be used to trigger configured rate limits or to shut down a port.	473
Loopback Detection	Detects general loopback conditions caused by hardware problems or faulty protocol settings	491
UniDirectional Link Detection	Detect and disables unidirectional links	497
Address Table	Configures the address table for filtering specified addresses, displays current entries, clears the table, or sets the aging time	505
Spanning Tree	Configures Spanning Tree settings for the switch	513
ERPS	Configures Ethernet Ring Protection Switching for increased availability of Ethernet rings commonly used in service provider networks	543
VLANs	Configures VLAN settings, and defines port membership for VLAN groups; also enables or configures private VLANs, protocol VLANs, voice VLANs, and QinQ tunneling	575
Class of Service	Sets port priority for untagged frames, selects strict priority or weighted round robin, relative weight for each priority queue, also sets priority for DSCP	621
Quality of Service	Configures Differentiated Services	635
Multicast Filtering	Configures IGMP multicast filtering, query, profile, and proxy parameters; specifies ports attached to a multicast router; also configures multicast VLAN registration, and IPv6 MLD snooping	655
Link Layer Discovery Protocol	Configures LLDP settings to enable information discovery about neighbor devices	777
Connectivity Fault Management	Configures connectivity monitoring using continuity check messages, fault verification through loopback messages, and fault isolation by examining end-to-end connections between Provider Edge devices or between Customer Edge devices	803

Table 6: Command Group Index (Continued)

Command Group	Description	Page
OAM	Configures Operations, Administration and Maintenance remote management tools required to monitor and maintain the links to subscriber CPEs	845
Domain Name Service	Configures DNS services.	857
Dynamic Host Configuration Protocol	Configures DHCP client, relay and server functions	865
Router Redundancy	Configures router redundancy to create primary and backup routers	947
IP Interface	Configures IP address for the switch interfaces; also configures ARP parameters	889
IP Routing	Configures static and dynamic unicast routing	957
Multicast Routing	Configures multicast routing protocols PIM-DM/SM and PIM6-DM/SM	1157
Debug	Displays debugging information for all key functions	
	These commands are not described in this manual. Please refer to the prompt messages included in the CLI interf	ace.

^{*} ECS4620-28P/52P

The access mode shown in the following tables is indicated by these abbreviations:

ACL (Access Control List Configuration)

CFM (Connectivity Fault Management Configuration)

CM (Class Map Configuration)

ERPS (Ethernet Ring Protection Switching Configuration)

GC (Global Configuration)

IC (Interface Configuration)

IPC (IGMP Profile Configuration)

LC (Line Configuration)

MST (Multiple Spanning Tree)

NE (Normal Exec)

PE (Privileged Exec)

PM (Policy Map Configuration)

RC (Router Configuration)

RM (Route Map Configuration)

VC (VLAN Database Configuration)

Chapter 2 | Using the Command Line Interface CLI Command Groups

General Commands

The general commands are used to control the command access mode, configuration mode, and other basic functions.

Table 7: General Commands

Command	Function	Mode
prompt	Customizes the CLI prompt	GC
reload	Restarts the system at a specified time, after a specified delay, or at a periodic interval	GC
enable	Activates privileged mode	NE
quit	Exits a CLI session	NE, PE
show history	Shows the command history buffer	NE, PE
configure	Activates global configuration mode	PE
disable	Returns to normal mode from privileged mode	PE
reload	Restarts the system immediately	PE
show reload	Displays the current reload settings, and the time at which next scheduled reload will take place	PE
end	Returns to Privileged Exec mode	any config. mode
exit	Returns to the previous configuration mode, or exits the CLI	any mode
help	Shows how to use help	any mode
?	Shows options for command completion (context sensitive)	any mode

prompt This command customizes the CLI prompt. Use the **no** form to restore the default prompt.

Syntax

prompt string

no prompt

string - Any alphanumeric string to use for the CLI prompt. (Maximum length: 255 characters)

Default Setting

Console

Command Mode

Global Configuration

Example

Console(config) #prompt RD2
RD2(config) #

reload (Global Configuration)

reload This command restarts the system at a specified time, after a specified delay, or at a **uration**) periodic interval. You can reboot the system immediately, or you can configure the switch to reset after a specified amount of time. Use the **cancel** option to remove a configured setting.

Syntax

```
reload {at hour minute [{month day | day month} [year]] |
    in {hour hours | minute minutes | hour hours minute minutes} |
    regularity hour minute [period {daily | weekly day-of-week | monthly day}] |
    cancel [at | in | regularity]}
```

reload at - A specified time at which to reload the switch.

hour - The hour at which to reload. (Range: 0-23)

minute - The minute at which to reload. (Range: 0-59)

month - The month at which to reload. (january ... december)

day - The day of the month at which to reload. (Range: 1-31)

year - The year at which to reload. (Range: 1970-2037)

reload in - An interval after which to reload the switch.

hours - The number of hours, combined with the minutes, before the switch resets. (Range: 0-576)

minutes - The number of minutes, combined with the hours, before the switch resets. (Range: 0-59)

reload regularity - A periodic interval at which to reload the switch.

hour - The hour at which to reload. (Range: 0-23)

minute - The minute at which to reload. (Range: 0-59)

day-of-week - Day of the week at which to reload.

(Range: monday ... saturday)

day - Day of the month at which to reload. (Range: 1-31)

reload cancel - Cancels the specified reload option.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- This command resets the entire system.
- Any combination of reload options may be specified. If the same option is respecified, the previous setting will be overwritten.
- ♦ When the system is restarted, it will always run the Power-On Self-Test. It will also retain all configuration information stored in non-volatile memory by the copy running-config startup-config command (See "copy" on page 140).

Example

This example shows how to reset the switch after 30 minutes:

```
Console(config) #reload in minute 30
*** --- Rebooting at January 1 02:10:43 2007 ---
Are you sure to reboot the system at the specified time? <y/n>
```

enable This command activates Privileged Exec mode. In privileged mode, additional commands are available, and certain commands display additional information. See "Understanding Command Modes" on page 98.

Syntax

enable [level]

level - Privilege level to log into the device.

The device has two predefined privilege levels: 0: Normal Exec, 15: Privileged Exec. Enter level 15 to access Privileged Exec mode.

Default Setting

Level 15

Command Mode

Normal Exec

Command Usage

- "super" is the default password required to change the command mode from Normal Exec to Privileged Exec. (To set this password, see the enable password command.)
- The "#" character is appended to the end of the prompt to indicate that the system is in privileged access mode.

Example

```
Console>enable
Password: [privileged level password]
Console#
```

Related Commands

disable (112) enable password (238)

quit This command exits the configuration program.

Default Setting

None

Command Mode

Normal Exec, Privileged Exec

Command Usage

The **quit** and **exit** commands can both exit the configuration program.

Example

This example shows how to quit a CLI session:

```
Console#quit

Press ENTER to start session

User Access Verification

Username:
```

show history This command shows the contents of the command history buffer.

Default Setting

None

Command Mode

Normal Exec, Privileged Exec

Command Usage

The history buffer size is fixed at 10 Execution commands and 10 Configuration commands.

Example

In this example, the show history command lists the contents of the command history buffer:

```
Console#show history
Execution command history:
2 config
1 show history

Configuration command history:
4 interface vlan 1
3 exit
2 interface vlan 1
1 end

Console#
```

The ! command repeats commands from the Execution command history buffer when you are in Normal Exec or Privileged Exec Mode, and commands from the Configuration command history buffer when you are in any of the configuration modes. In this example, the !2 command repeats the second command in the Execution history buffer (config).

```
Console#!2
Console#config
Console(config)#
```

configure

This command activates Global Configuration mode. You must enter this mode to modify any settings on the switch. You must also enter Global Configuration mode prior to enabling some of the other configuration modes, such as Interface Configuration, Line Configuration, and VLAN Database Configuration. See "Understanding Command Modes" on page 98.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#configure
Console(config)#
```

Related Commands

end (113)

disable This command returns to Normal Exec mode from privileged mode. In normal access mode, you can only display basic information on the switch's configuration or Ethernet statistics. To gain access to all commands, you must use the privileged mode. See "Understanding Command Modes" on page 98.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

The ">" character is appended to the end of the prompt to indicate that the system is in normal access mode.

Example

Console#disable Console>

Related Commands

enable (109)

reload (Privileged Exec) This command restarts the system.

Note: When the system is restarted, it will always run the Power-On Self-Test. It will also retain all configuration information stored in non-volatile memory by the copy running-config startup-config command.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

This command resets the entire system.

Example

This example shows how to reset the switch:

```
Console#reload
System will be restarted, continue <y/n>? y
```

show reload This command displays the current reload settings, and the time at which next scheduled reload will take place.

Command Mode

Privileged Exec

Example

```
Console#show reload
Reloading switch in time:
                                                0 hours 29 minutes.
The switch will be rebooted at January 1 02:11:50 2001.
Remaining Time: 0 days, 0 hours, 29 minutes, 52 seconds.
Console#
```

end This command returns to Privileged Exec mode.

Default Setting

None

Command Mode

Global Configuration, Interface Configuration, Line Configuration, VLAN Database Configuration, and Multiple Spanning Tree Configuration.

Example

This example shows how to return to the Privileged Exec mode from the Interface Configuration mode:

```
Console(config-if)#end
Console#
```

exit This command returns to the previous configuration mode or exits the configuration program.

Default Setting

None

Command Mode

Any

Example

This example shows how to return to the Privileged Exec mode from the Global Configuration mode, and then quit the CLI session:

Console(config)#exit
Console#exit

Press ENTER to start session

User Access Verification

Username:

4

System Management Commands

The system management commands are used to control system logs, passwords, user names, management options, and display or configure a variety of other system information.

Table 8: System Management Commands

Command Group	Function
Device Designation	Configures information that uniquely identifies this switch
Banner Information	Configures administrative contact, device identification and location
System Status	Displays system configuration, active managers, and version information
Fan Control	Forces fans to full speed
Frame Size	Enables support for jumbo frames
File Management	Manages code image or switch configuration files
Line	Sets communication parameters for the serial port, including baud rate and console time-out \ensuremath{N}
Event Logging	Controls logging of error messages
SMTP Alerts	Configures SMTP email alerts
Time (System Clock)	Sets the system clock automatically via NTP/SNTP server or manually
Time Range	Sets a time range for use by other functions, such as Access Control Lists
Switch Clustering	Configures management of multiple devices via a single IP address
Stacking	Includes commands which configure a unit as the stack master, set the 10G ports to stacking mode, or renumber all units in the stack

Device Designation

This section describes commands used to configure information that uniquely identifies the switch.

Table 9: Device Designation Commands

Command	Function	Mode
hostname	Specifies the host name for the switch	GC
snmp-server contact	Sets the system contact string	GC
snmp-server location	Sets the system location string	GC

hostname This command specifies or modifies the host name for this device. Use the **no** form to restore the default host name.

Syntax

hostname name

no hostname

name - The name of this host. (Maximum length: 255 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Console(config) #hostname RD#1
Console(config)#
```

Banner Information

These commands are used to configure and manage administrative information about the switch, its exact data center location, details of the electrical and network circuits that supply the switch, as well as contact information for the network administrator and system manager. This information is only available via the CLI and is automatically displayed before login as soon as a console or telnet connection has been established.

Table 10: Banner Commands

Command	Function	Mode
banner configure	Configures the banner information that is displayed before login	GC
banner configure company	Configures the Company information that is displayed by banner	GC
banner configure dc-power-info	Configures the DC Power information that is displayed by banner	GC
banner configure department	Configures the Department information that is displayed by banner	GC
banner configure equipment-info	Configures the Equipment information that is displayed by banner	GC
banner configure equipment-location	Configures the Equipment Location information that is displayed by banner	GC
banner configure ip-lan	Configures the IP and LAN information that is displayed by banner	GC

Table 10: Banner Commands (Continued)

Command	Function	Mode
banner configure lp-number	Configures the LP Number information that is displayed by banner	GC
banner configure managerinfo	Configures the Manager contact information that is displayed by banner	GC
banner configure mux	Configures the MUX information that is displayed by banner	GC
banner configure note	Configures miscellaneous information that is displayed by banner under the Notes heading	GC
show banner	Displays all banner information	NE, PE

banner configure This command is used to interactively specify administrative information for this device.

Syntax

banner configure

Default Setting

None

Command Mode

Global Configuration

Command Usage

The administrator can batch-input all details for the switch with one command. When the administrator finishes typing the company name and presses the enter key, the script prompts for the next piece of information, and so on, until all information has been entered. Pressing enter without inputting information at any prompt during the script's operation will leave the field empty. Spaces can be used during script mode because pressing the enter key signifies the end of data input. The delete and left-arrow keys terminate the script. The use of the backspace key during script mode is not supported. If, for example, a mistake is made in the company name, it can be corrected with the banner configure company command.

Example

Console(config) #banner configure Company: Edge-Core Networks Responsible department: R&D Dept Name and telephone to Contact the management people Manager1 name: Sr. Network Admin phone number: 123-555-1212 Manager2 name: Jr. Network Admin phone number: 123-555-1213 Manager3 name: Night-shift Net Admin / Janitor phone number: 123-555-1214

Chapter 4 | System Management Commands

Banner Information

```
The physical location of the equipment.
City and street address: 12 Straight St. Motown, Zimbabwe
Information about this equipment:
Manufacturer: Edge-Core Networks
ID: 123_unique_id_number
Floor: 2
Row: 7
Rack: 29
Shelf in this rack: 8
Information about DC power supply.
Floor: 2
Row: 7
Rack: 25
Electrical circuit: : ec-177743209-xb
Number of LP:12
Position of the equipment in the MUX:1/23
IP LAN:192.168.1.1
Note: This is a random note about this managed switch and can contain
 miscellaneous information.
Console(config)#
```

banner configure This command is used to configure company information displayed in the banner. company Use the **no** form to remove the company name from the banner display.

Syntax

banner configure company name

no banner configure company

name - The name of the company. (Maximum length: 32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The banner configure company command interprets spaces as data input boundaries. The use of underscores () or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure company Big-Ben
Console(config)#
```

banner configure This command is use to configure DC power information displayed in the banner. **dc-power-info** Use the **no** form to restore the default setting.

Syntax

banner configure dc-power-info floor floor-id **row** row-id **rack** rack-id electrical-circuit ec-id

no banner configure dc-power-info [floor | row | rack | electrical-circuit]

floor-id - The floor number.

row-id - The row number.

rack-id - The rack number.

ec-id - The electrical circuit ID.

Maximum length of each parameter: 32 characters

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The **banner configure dc-power-info** command interprets spaces as data input boundaries. The use of underscores () or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure dc-power-info floor 3 row 15 rack 24
 electrical-circuit 48v-id_3.15.24.2
Console(config)#
```

banner configure This command is used to configure the department information displayed in the **department** banner. Use the **no** form to restore the default setting.

Syntax

banner configure department *dept-name*

no banner configure department

dept-name - The name of the department. (Maximum length: 32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The **banner configure department** command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure department R&D
Console(config)#
```

banner configure This command is used to configure the equipment information displayed in the equipment-info banner. Use the no form to restore the default setting.

Syntax

banner configure equipment-info manufacturer-id mfr-id floor floor-id row row-id rack rack-id shelf-rack sr-id manufacturer mfr-name

no banner configure equipment-info [floor | manufacturer | manufacturerid | rack | row | shelf-rack]

mfr-id - The name of the device model number.

floor-id - The floor number.

row-id - The row number.

rack-id - The rack number.

sr-id - The shelf number in the rack.

mfr-name - The name of the device manufacturer.

Maximum length of each parameter: 32 characters

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The banner configure equipment-info command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure equipment-info manufacturer-id ECS4620-28T
 floor 3 row 10 rack 15 shelf-rack 12 manufacturer Edge-Core
Console(config)#
```

banner configure This command is used to configure the equipment location information displayed equipment-location in the banner. Use the no form to restore the default setting.

Syntax

banner configure equipment-location location

no banner configure equipment-location

location - The address location of the device. (Maximum length: 32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The banner configure equipment-location command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure equipment-location
 710_Network_Path,_Indianapolis
Console(config)#
```

banner configure This command is used to configure the device IP address and subnet mask ip-lan information displayed in the banner. Use the **no** form to restore the default setting.

Syntax

banner configure ip-lan ip-mask

no banner configure ip-lan

ip-mask - The IP address and subnet mask of the device. (Maximum length: 32 characters)

Default Setting

None

Banner Information

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The **banner configure ip-lan** command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure ip-lan 192.168.1.1/255.255.255.0
Console(config)#
```

banner configure This command is used to configure the LP number information displayed in the **Ip-number** banner. Use the **no** form to restore the default setting.

Syntax

banner configure lp-number lp-num

no banner configure lp-number

Ip-num - The LP number. (Maximum length: 32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The **banner configure lp-number** command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure lp-number 12
Console(config)#
```

banner configure This command is used to configure the manager contact information displayed in manager-info the banner. Use the no form to restore the default setting.

Syntax

banner configure manager-info

name mgr1-name phone-number mgr1-number [name2 mgr2-name phone-number mgr2-number] **name3** *mgr3-name* **phone-number** *mgr3-number*]

no banner configure manager-info [name1 | name2 | name3]

mgr1-name - The name of the first manager.

mgr1-number - The phone number of the first manager.

mgr2-name - The name of the second manager.

mgr2-number - The phone number of the second manager.

mgr3-name - The name of the third manager.

mgr3-number - The phone number of the third manager.

Maximum length of each parameter: 32 characters

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The **banner configure manager-info** command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure manager-info name Albert_Einstein phone-
 number 123-555-1212 name2 Lamar phone-number 123-555-1219
Console(config)#
```

banner configure mux This command is used to configure the mux information displayed in the banner. Use the **no** form to restore the default setting.

Syntax

banner configure mux muxinfo

no banner configure mux

muxinfo - The circuit and PVC to which the switch is connected. (Maximum length: 32 characters)

Chapter 4 | System Management Commands

Banner Information

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The **banner configure mux** command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure mux telco-8734212kx_PVC-1/23
Console(config)#
```

banner configure note This command is used to configure the note displayed in the banner. Use the no form to restore the default setting.

Syntax

banner configure note note-info

no banner configure note

note-info - Miscellaneous information that does not fit the other banner categories, or any other information of importance to users of the switch CLI. (Maximum length: 150 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

Input strings cannot contain spaces. The banner configure note command interprets spaces as data input boundaries. The use of underscores (_) or other unobtrusive non-letter characters is suggested for situations where white space is necessary for clarity.

Example

```
Console(config) #banner configure note !!!!!ROUTINE_MAINTENANCE_firmware-
 upgrade_0100-0500_GMT-0500_20071022!!!!!_20min_network_impact_expected
Console(config)#
```

show banner This command displays all banner information.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show banner
Edge-Core
WARNING - MONITORED ACTIONS AND ACCESSES
Albert_Einstein - 123-555-1212
Lamar - 123-555-1219
Station's information:
710_Network_Path,_Indianapolis
ECS4620-28T
Floor / Row / Rack / Sub-Rack
3/ 10 / 15 / 12
DC power supply:
Power Source A: Floor / Row / Rack / Electrical circuit
3/ 15 / 24 / 48v-id_3.15.24.2
Number of LP: 12
Position MUX: telco-8734212kx_PVC-1/23
IP LAN: 192.168.1.1/255.255.255.0
Note: !!!!!ROUTINE_MAINTENANCE_firmware-upgrade_0100-0500_GMT-
 0500_20071022!!!!!_20min_network_
Console#
```

System Status

This section describes commands used to display system information.

Table 11: System Status Commands

-		
Command	Function	Mode
show access-list tcam-utilization	Shows utilization parameters for TCAM	PE
show memory	Shows memory utilization parameters	PE
show process cpu	Shows CPU utilization parameters	PE
show process cpu task	Shows CPU utilization per process	PE
show running-config	Displays the configuration data currently in use	PE
show startup-config	Displays the contents of the configuration file (stored in flash memory) that is used to start up the system	PE
show system	Displays system information	NE, PE
show tech-support	Displays a detailed list of system settings designed to help technical support resolve configuration or functional problems	PE

Table 11: System Status Commands (Continued)

Command	Function	Mode
show users	Shows all active console and Telnet sessions, including user name, idle time, and IP address of Telnet clients	NE, PE
show version	Displays version information for the system	NE, PE
show watchdog	Shows if watchdog debugging is enabled	PE
watchdog software	Monitors key processes, and automatically reboots the system if any of these processes are not responding correctly	PE

show access-list This command shows utilization parameters for TCAM (Ternary Content tcam-utilization Addressable Memory), including the number policy control entries in use, the number of free entries, and the overall percentage of TCAM in use.

Command Mode

Privileged Exec

Command Usage

Policy control entries (PCEs) are used by various system functions which rely on rule-based searches, including Access Control Lists (ACLs), IP Source Guard filter rules, Quality of Service (QoS) processes, or traps.

For example, when binding an ACL to a port, each rule in an ACL will use two PCEs; and when setting an IP Source Guard filter rule for a port, the system will also use two PCEs.

Example

```
Console#show access-list tcam-utilization
 Total Policy Control Entries : 6144
 Free Policy Control Entries : 6128
 Entries Used by System : 16
 Entries Used by User
 TCAM Utilization
                             : 0.26%
Console#
```

show memory This command shows memory utilization parameters, and alarm thresholds.

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command shows the amount of memory currently free for use, the amount of memory allocated to active processes, and the total amount of system memory.

Example

```
Console#show memory
Status Bytes %
 _____
Free 111706112 41
Used 156729344 59
Total 268435456
Alarm Configuration
 Rising Threshold
                    : 90%
                 : 70%
 Falling Threshold
Console#
```

Related Commands

memory (220)

show process cpu This command shows the CPU utilization parameters, alarm status, and alarm configuration.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show process cpu
 CPU Utilization in the past 5 seconds : 24%
 CPU Utilization in the past 60 seconds
 Average Utilization : 24%
  Maximum Utilization
 Alarm Status
 Current Alarm Status : Off
Last Alarm Start Time : Dec 31 00:00:19 2000
 Last Alarm Duration Time : 15 seconds
 Alarm Configuration
  Rising Threshold : 90% Falling Threshold : 70%
 Rising Threshold
Console#
```

Related Commands

process cpu (220)

show process cpu task This command shows the CPU utilization per process.

Command Mode Privileged Exec

Example

<u> </u>						
Console#show pr	ocess	сри	task	:		
Task	Util			(왕)	Max	(왕)
AMTR_ADDRESS	(0.00		0.00		0.00
AMTRL3	(0.00		0.00		0.00
AMTRL3_GROUP	(0.00		0.00		0.00
APP_PROTOCOL_PR	(0.00		0.00		0.00
AUTH_GROUP	(0.00		0.00		0.00
AUTH_PROC	(0.00		0.00		0.00
BGP_TD	(0.00		0.00		0.00
CFGDB_TD	(0.00		0.00		0.00
CFM_GROUP	(0.00		0.00		0.00
CLITASK0	(0.00		0.00		0.00
CORE_UTIL_PROC	(0.00		0.00		0.00
DHCPSNP_GROUP	(0.00		0.00		0.00
DOT1X_SUP_GROUP	(0.00		0.00		0.00
DRIVER_GROUP	1	L.00		0.75		2.00
DRIVER_GROUP_FR		0.00		0.00		0.00
DRIVER_GROUP_TX		0.00		0.00		0.00
FS		0.00		0.00		0.00
GVRP_GROUP		0.00		0.00		0.00
HTTP_TD		0.00		0.00		5.00
HW_WTDOG_TD		0.00		0.00		0.00
IML_TX		0.00		0.00		0.00
IP_SERVICE_GROU		0.00		0.00		0.00
KEYGEN_TD		0.00		0.00		0.00
L2_L4_PROCESS		0.00		0.00		4.00
L2MCAST_GROUP		0.00		0.00		0.00
L2MUX_GROUP		0.00		0.00		0.00
L4_GROUP LACP_GROUP		0.00		0.00		0.00
MSL_TD		0.00		0.00		0.00
NETACCESS_GROUP		0.00		0.00		0.00
NETACCESS_NMTR		0.00		0.25		2.00
NETCFG_GROUP		0.00		0.00		0.00
NETCFG_PROC		0.00		0.08		1.00
NIC		0.00		0.00		0.00
NMTRDRV		1.00		1.66		4.00
NSM_GROUP		0.00		0.00		0.00
NSM_PROC		0.00		0.00		0.00
NSM_TD	(0.00		0.00		0.00
OSPF6_TD	(0.00		0.00		0.00
OSPF_TD	(0.00		0.00		0.00
PIM_GROUP	(0.00		0.00		0.00
PIM_PROC	(0.00		0.00		0.00
PIM_SM_TD	(0.00		0.00		0.00
POE_PROC	(0.00		0.00		0.00
RIP_TD	(0.00		0.00		0.00
SNMP_GROUP	(0.00		0.00		0.00
SNMP_TD	(0.00		0.00		0.00
SSH_GROUP	(0.00		0.00		0.00
SSH_TD	(0.00		0.00		0.00
STA_GROUP	(0.00		0.00		0.00
STKCTRL_GROUP	(0.00		0.00		0.00
STKTPLG_GROUP	(0.00		0.00		0.00
SWCTRL_GROUP	(0.00		0.00		0.00

SWCTRL_TD	0.00	0.00	0.00
SWDRV_MONITOR	21.00	19.25	21.00
SYS_MGMT_PROC	0.00	0.00	0.00
SYSDRV	0.00	0.00	0.00
SYSLOG_TD	0.00	0.00	0.00
SYSMGMT_GROUP	0.00	0.00	0.00
SYSTEM	0.00	0.00	0.00
UDLD_GROUP	0.00	0.00	0.00
WTDOG_PROC	0.00	0.00	0.00
XFER_GROUP	0.00	0.00	0.00
XFER_TD	0.00	0.00	0.00
Congolo#			

Console#

show running-config This command displays the configuration information currently in use.

Syntax

```
show running-config [interface interface]
```

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

vlan vlan-id (Range: 1-4094)

Command Mode

Privileged Exec

Command Usage

- Use the interface keyword to display configuration data for the specified interface.
- Use this command in conjunction with the **show startup-config** command to compare the information in running memory to the information stored in nonvolatile memory.
- ◆ This command displays settings for key command modes. Each mode group is separated by "!" symbols, and includes the configuration mode command, and corresponding commands. This command displays the following information:
 - MAC address for each switch in the stack
 - SNMP community strings
 - Users (names, access levels, and encrypted passwords)
 - VLAN database (VLAN ID, name and state)
 - VLAN configuration settings for each interface
 - Multiple spanning tree instances (name and interfaces)
 - IP address configured for VLANs
 - Interface settings

Any configured settings for the console port and Telnet

Example

```
Console#show running-config
Building running configuration. Please wait...
!<stackingDB>00000000000000</stackingDB>
!<stackingMac>01_70-72-cf-83-34-66_03</stackingMac>
!<stackingMac>00_00-00-00-00-00_00</stackingMac>
!<stackingMac>00_00-00-00-00-00_00</stackingMac>
!<stackingMac>00_00-00-00-00-00_00</stackingMac>
!<stackingMac>00_00-00-00-00-00_00</stackingMac>
!<stackingMac>00_00-00-00-00-00_00</stackingMac>
!<stackingMac>00_00-00-00-00-00_00</stackingMac>
!<stackingMac>00_00-00-00-00-00_00</stackingMac>
!---<InitPhaseConfig>
!---</InitPhaseConfig>
snmp-server community public ro
snmp-server community private rw
snmp-server enable traps authentication
username admin access-level 15
username admin password 7 21232f297a57a5a743894a0e4a801fc3
username guest access-level 0
username guest password 7 084e0343a0486ff05530df6c705c8bb4
enable password 7 1b3231655cebb7a1f783eddf27d254ca
vlan database
VLAN 1 name DefaultVlan media ethernet state active
spanning-tree mst configuration
interface ethernet 1/1
interface ethernet 1/52
no negotiation
interface vlan 1
ip address dhcp
1
interface vlan 1
line console
line vty
end
Console#
```

Related Commands

show startup-config (131)

show startup-config This command displays the configuration file stored in non-volatile memory that is used to start up the system.

Command Mode

Privileged Exec

Command Usage

- Use this command in conjunction with the show running-config command to compare the information in running memory to the information stored in nonvolatile memory.
- This command displays settings for key command modes. Each mode group is separated by "!" symbols, and includes the configuration mode command, and corresponding commands. This command displays the following information:
 - MAC address for each switch in the stack
 - SNMP community strings
 - SNMP trap authentication
 - Users (names and access levels)
 - VLAN database (VLAN ID, name and state)
 - Multiple spanning tree instances (name and interfaces)
 - Interface settings and VLAN configuration settings for each interface
 - IP address for VLANs
 - Any configured settings for the console port and Telnet

Example

Refer to the example for the running configuration file.

Related Commands

show running-config (129)

show system This command displays system information.

Default Setting

None

Command Mode

Normal Exec, Privileged Exec

Command Usage

No information will be displayed under POST Result, unless there is a problem with the unit. If any POST test indicates "FAIL," contact your distributor for assistance.

Example

```
Console#show system
System Description : ECS4620-28T
System OID String : 1.3.6.1.4.1.259.10.1.41.104
```

Chapter 4 | System Management Commands

System Status

```
System Information
System Up Time : 0 days, 0 hours, 15 minutes, and 38.27 seconds
System Name
System Location
 System Contact
MAC Address (Unit 1) : 70-72-CF-83-34-66
Web Server : Enabled
Web Server Port : 80
Web Secure Server : Enabled
Web Secure Server Port : 443
Telnet Server : Enabled
Telnet Server Port : 23
Jumbo Frame : Disabled
Jumbo Frame
System Fan:
Force Fan Speed Full : Disabled
Unit 1
Fan 1: Ok
                              Fan 2: Ok
System Temperature:
Unit 1
Temperature 1: 42 degrees
Main Power Status
                       : Up
Redundant Power Status : Not present
Console#
```

Table 12: show system – display description

Parameter	Description
System Description	Brief description of device type.
System OID String	MIB II object ID for switch's network management subsystem.
System Up Time	Length of time the management agent has been up.
System Name	Name assigned to the switch system.
System Location	Specifies the system location.
System Contact	Administrator responsible for the system.
MAC Address	MAC address assigned to this switch.
Web Server/Port	Shows administrative status of web server and UDP port number.
Web Secure Server/Port	Shows administrative status of secure web server and UDP port number.
Telnet Server/Port	Shows administrative status of Telnet server and TCP port number.
Jumbo Frame	Shows if jumbo frames are enabled or disabled.
System Fan	Shows if forced full-speed mode is enabled.
System Temperature	Temperature at specified thermal detection point.
Main Power Status	Displays the status of the internal power supply.
Redundant Power Status	Displays the status of the redundant power supply.

show tech-support This command displays a detailed list of system settings designed to help technical support resolve configuration or functional problems.

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command generates a long list of information including detailed system and interface settings. It is therefore advisable to direct the output to a file using any suitable output capture function provided with your terminal emulation program.

Example

· ·						
Console#show to	ech-support					
dir:						
File Nar	me	Type	Startu	-	me S	ize(bytes)
Unit 1:						
ECS4620-28T_V1	.2.1.6.bix	OpCode	Y	2013-07	-02 08:18:42	2 17601308
Factory_Default	t_Config.cfg	Config	N	2000-12	-31 00:00:3	2 455
startup1.cfg						3 2924
	Free sr	ace for	compre	 ssed liser (ronfia files	65220608
	1100 5	,400 101 .	COMPIC	bbed uber (coning inter	7. 03220000
show apr:						
ARP Cache Time	out: 1200 (secon	ds)				
TP Address	MAC Address	Type		Interface		
					=	
192.168.0.2	70-72-CF-83-34	-66 other	<u>.</u>	VLAN1		
192.168.0.99	00-60-6E-00-5F	-A1 dynar	nic '	VLAN1		
Total entry : 2)					
rocar chery						
show interfaces	s brief:					
Interface Name	Sta	tus PV	ID Pr	Speed/Dup	lex Type	Trunk
Eth 1/ 1	Up		1	0 Auto-1001	ull 1000BA	ASE-T None
Eth 1/ 2	Dov	m	1	0 Auto	1000BA	ASE-T None
Eth 1/ 3	Dov	m	1	0 Auto	1000BA	ASE-T None
Eth 1/ 4	Dov	m	1	0 Auto	1000BA	ASE-T None
Eth 1/ 5	Dov	m	1	0 Auto	1000BA	ASE-T None
:						_

show users Shows all active console and Telnet sessions, including user name, idle time, and IP address of Telnet client.

Default Setting

None


Command Mode

Normal Exec, Privileged Exec

Command Usage

The session used to execute this command is indicated by a "*" symbol next to the Line (i.e., session) index number.

Example

show version This command displays hardware and software version information for the system.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show version
Unit 1
Serial Number : EC1237000040
Hardware Version : R01
EPLD Version : R00 V0.0B
Number of Ports : 52
Main Power Status : Up
Redundant Power Status : Not present
Role : Master
Loader Version : 0.0.1.4
Linux Kernel Version : 2.6.22.18
Boot ROM Version : 0.0.0.1
Operation Code Version : 1.2.1.6

Console#
```

Table 13: show version – display description

Parameter	Description	
Serial Number	The serial number of the switch.	
Hardware Version	Hardware version of the main board.	

Table 13: show version – display description (Continued)

Parameter	Description
EPLD Version	Version number of Erasable Programmable Logic Device.
Number of Ports	Number of built-in ports.
Main Power Status	Displays the status of the internal power supply.
Redundant Power Status	Displays the status of the redundant power supply.
Role	Shows that this switch is operating as Master or Slave.
Loader Version	Version number of loader code.
Linux Kernel Version	Version number of Linux kernel.
Boot ROM Version	Version of Power-On Self-Test (POST) and boot code.
Operation Code Version	Version number of runtime code.

show watchdog This command shows if watchdog debugging is enabled.

Command Mode

Privileged Exec

Example

Console#show watchdog Software Watchdog Information Status: Enabled Console#

watchdog software This command monitors key processes, and automatically reboots the system if any of these processes are not responding correctly.

Syntax

watchdog software {disable | enable}

Default Setting

Disabled

Command Mode

Privileged Exec

Example

Console#watchdog Console#

Fan Control

This section describes the command used to force fan speed.

Table 14: Fan Control Commands

Command	Function	Mode
fan-speed force-full	Forces fans to full speed	GC
show system	Shows if full fan speed is enabled	NE, PE

fan-speed force-full This command sets all fans to full speed. Use the no form to reset the fans to normal operating speed.

Syntax

[no] fan-speed force-full

Default Setting

Normal speed

Command Mode

Global Configuration

Example

Console(config) #fan-speed force-full Console(config)#

Frame Size

This section describes commands used to configure the Ethernet frame size on the switch.

Table 15: Frame Size Commands

Command	Function	Mode
jumbo frame	Enables support for jumbo frames	GC

jumbo frame This command enables support for layer 2 jumbo frames for Gigabit and 10 Gigabit Ethernet ports. Use the **no** form to disable it.

Syntax

[no] jumbo frame

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- ◆ This switch provides more efficient throughput for large sequential data transfers by supporting layer 2 jumbo frames on Gigabit and 10 Gigabit Ethernet ports or trunks up to 10240 bytes. Compared to standard Ethernet frames that run only up to 1.5 KB, using jumbo frames significantly reduces the per-packet overhead required to process protocol encapsulation fields.
- ◆ To use jumbo frames, both the source and destination end nodes (such as a computer or server) must support this feature. Also, when the connection is operating at full duplex, all switches in the network between the two end nodes must be able to accept the extended frame size. And for half-duplex connections, all devices in the collision domain would need to support jumbo frames.
- The current setting for jumbo frames can be displayed with the show system command.

Example

Console(config)#jumbo frame
Console(config)#

Related Commands

show system (131) show ipv6 mtu (916)

File Management

Managing Firmware

Firmware can be uploaded and downloaded to or from an FTP/TFTP server. By saving runtime code to a file on an FTP/TFTP server, that file can later be downloaded to the switch to restore operation. The switch can also be set to use new firmware without overwriting the previous version.

When downloading runtime code, the destination file name can be specified to replace the current image, or the file can be first downloaded using a different name from the current runtime code file, and then the new file set as the startup file.

Saving or Restoring Configuration Settings

Configuration settings can be uploaded and downloaded to and from an FTP/TFTP server. The configuration file can be later downloaded to restore switch settings.

The configuration file can be downloaded under a new file name and then set as the startup file, or the current startup configuration file can be specified as the destination file to directly replace it. Note that the file "Factory_Default_Config.cfg" can be copied to the FTP/TFTP server, but cannot be used as the destination on the switch.

Table 16: Flash/File Commands

Command	Function	Mode		
General Commands				
boot system	Specifies the file or image used to start up the system	GC		
сору	Copies a code image or a switch configuration to or from flash memory or an FTP/TFTP server	PE		
delete	Deletes a file or code image	PE		
dir	Displays a list of files in flash memory	PE		
whichboot	Displays the files booted	PE		
Automatic Code Upgrade Commands				
upgrade opcode auto	Automatically upgrades the current image when a new version is detected on the indicated server	GC		
upgrade opcode path	Specifies an FTP/TFTP server and directory in which the new opcode is stored	GC		
upgrade opcode reload	Reloads the switch automatically after the opcode upgrade is completed	GC		
show upgrade	Shows the opcode upgrade configuration settings.	PE		
TFTP Configuration Commands				
ip tftp retry	Specifies the number of times the switch can retry transmitting a request to a TFTP server	GC		
ip tftp timeout	Specifies the time the switch can wait for a response from a TFTP server before retransmitting a request or timing out for the last retry	GC		
show ip tftp	Displays information about TFTP settings	PE		

General Commands

boot system This command specifies the file or image used to start up the system.

Syntax

```
boot system [unit:] {boot-rom | config | opcode}: filename
    unit* - Unit identifier. (Range: 1-8)
    boot-rom* - Boot ROM.
    config* - Configuration file.
    opcode* - Run-time operation code.
    filename - Name of configuration file or code image.
    * The colon (:) is required.
```

Default Setting

None

Command Mode

Global Configuration

Command Usage

- A colon (:) is required after the specified unit number and file type.
- If the file contains an error, it cannot be set as the default file.

Example

```
Console(config) #boot system config: startup
Console(config) #
```

Related Commands

dir (144) whichboot (145) File Management

copy This command moves (upload/download) a code image or configuration file between the switch's flash memory and an FTP/TFTP server. When you save the system code or configuration settings to a file on an FTP/TFTP server, that file can later be downloaded to the switch to restore system operation. The success of the file transfer depends on the accessibility of the FTP/TFTP server and the quality of the network connection.

Syntax

```
copy file {file | ftp | running-config | startup-config | tftp | unit}
copy ftp {add-to-running-config | file | https-certificate | public-key |
    running-config | startup-config}
copy file unit
copy running-config {file | ftp | startup-config | tftp}
copy startup-config {file | ftp | running-config | tftp}
copy tftp {add-to-running-config | file | https-certificate | public-key |
    running-config | startup-config}
copy unit file
copy usbdisk file
```

add-to-running-config - Keyword that adds the settings listed in the specified file to the running configuration.

file - Keyword that allows you to copy to/from a file.

ftp - Keyword that allows you to copy to/from an FTP server.

https-certificate - Keyword that allows you to copy the HTTPS secure site certificate.

public-key - Keyword that allows you to copy a SSH key from a TFTP server. (See "Secure Shell" on page 267.)

running-config - Keyword that allows you to copy to/from the current running configuration.

startup-config - The configuration used for system initialization.

tftp - Keyword that allows you to copy to/from a TFTP server.

unit - Keyword that allows you to copy to/from a specific unit in the stack.

usbdisk - Keyword that allows you to copy to/from a USB memory stick. (USB slot only supports simple data storage devices using a FAT16/32 file system with or without a partition table.)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- The system prompts for data required to complete the copy command.
- ◆ The destination file name should not contain slashes (\ or /), and the maximum length for file names is 32 characters for files on the switch or 127 characters for files on the server. (Valid characters: A-Z, a-z, 0-9, "", "-")
- ◆ The switch supports only two operation code files, but the maximum number of user-defined configuration files is 16.
- ◆ You can use "Factory_Default_Config.cfg" as the source to copy from the factory default configuration file, but you cannot use it as the destination.
- ◆ To replace the startup configuration, you must use **startup-config** as the destination.
- Use the copy file unit command to copy a local file to another switch in the stack. Use the copy unit file command to copy a file from another switch in the stack.
- The Boot ROM and Loader cannot be uploaded or downloaded from the FTP/ TFTP server. You must follow the instructions in the release notes for new firmware, or contact your distributor for help.
- For information on specifying an https-certificate, see "Replacing the Default Secure-site Certificate" in the Web Management Guide. For information on configuring the switch to use HTTPS for a secure connection, see the ip http secure-server command.
- When logging into an FTP server, the interface prompts for a user name and password configured on the remote server. Note that "anonymous" is set as the default user name.

Example

The following example shows how to download new firmware from a TFTP server:

```
Console#copy tftp file
TFTP server ip address: 10.1.0.19
Choose file type:
1. config: 2. opcode: 2
Source file name: m360.bix
Destination file name: m360.bix
\Write to FLASH Programming.
-Write to FLASH finish.
Success.
Console#
```

File Management

The following example shows how to upload the configuration settings to a file on the TFTP server:

```
Console#copy file tftp
Choose file type:
1. config: 2. opcode: 1
Source file name: startup
TFTP server ip address: 10.1.0.99
Destination file name: startup.01
TFTP completed.
Success.
Console#
```

The following example shows how to copy the running configuration to a startup file

```
Console#copy running-config file
destination file name: startup
Write to FLASH Programming.
\Write to FLASH finish.
Success.

Console#
```

The following example shows how to download a configuration file:

```
Console#copy tftp startup-config
TFTP server ip address: 10.1.0.99
Source configuration file name: startup.01
Startup configuration file name [startup]:
Write to FLASH Programming.

\Write to FLASH finish.
Success.

Console#
```

This example shows how to copy a secure-site certificate from an TFTP server. It then reboots the switch to activate the certificate:

```
Console#copy tftp https-certificate
TFTP server ip address: 10.1.0.19
Source certificate file name: SS-certificate
Source private file name: SS-private
Private password: *******

Success.
Console#reload
System will be restarted, continue <y/n>? y
```

This example shows how to copy a public-key used by SSH from an TFTP server. Note that public key authentication via SSH is only supported for users configured locally on the switch.

```
Console#copy tftp public-key
TFTP server IP address: 192.168.1.19
Choose public key type:

1. RSA: 2. DSA: <1-2>: 1
Source file name: steve.pub
Username: steve
TFTP Download
Success.
Write to FLASH Programming.
Success.
Console#
```

This example shows how to copy a file to an FTP server.

```
Console#copy ftp file
FTP server IP address: 169.254.1.11
User[anonymous]: admin
Password[]: *****
Choose file type:
1. config: 2. opcode: 2
Source file name: BLANC.BIX
Destination file name: BLANC.BIX
Console#
```

delete This command deletes a file or image.

Syntax

```
delete {file name [unit:] filename | public-key username [dsa | rsa]}

file - Keyword that allows you to delete a file.

name - Keyword indicating a file.

unit - Unit identifier. (Range: 1-8)

filename - Name of configuration file or code image.

public-key - Keyword that allows you to delete a SSH key on the switch. (See "Secure Shell" on page 267.)

username - Name of an SSH user. (Range: 1-8 characters)

dsa - DSA public key type.

rsa - RSA public key type.
```

Default Setting

None

File Management

Command Mode

Privileged Exec

Command Usage

- If the file type is used for system startup, then this file cannot be deleted.
- "Factory_Default_Config.cfg" cannot be deleted.
- ◆ A colon (:) is required after the specified unit number.
- If the public key type is not specified, then both DSA and RSA keys will be deleted.

Example

This example shows how to delete the test2.cfg configuration file from flash memory.

```
Console#delete test2.cfg
Console#
```

Related Commands

dir (144) delete public-key (272)

dir This command displays a list of files in flash memory.

Syntax

```
    dir [unit:] {boot-rom | config | opcode}: [filename]}
    unit - Unit identifier. (Range: 1-8)
    boot-rom - Boot ROM (or diagnostic) image file.
    config - Switch configuration file.
    opcode - Run-time operation code image file.
```

filename - Name of configuration file or code image. If this file exists but contains errors, information on this file cannot be shown.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

 If you enter the command dir without any parameters, the system displays all files. • A colon (:) is required after the specified unit number.

File information is shown below:

Table 17: File Directory Information

Column Heading	Description
File Name	The name of the file.
File Type	File types: Boot-Rom, Operation Code, and Config file.
Startup	Shows if this file is used when the system is started.
Modify Time	The date and time the file was last modified.
Size	The length of the file in bytes.

Example

The following example shows how to display all file information:

File Name	Туре	Startup	Modify Time	Size(bytes
Unit 1:				
ECS4620-28T_V1.2.1.6.bix	OpCode	Y	2013-07-02 08:18:4	2 17601308
Factory_Default_Config.cfg	Config	N	2000-12-31 00:00:3	2 455
startup1.cfg	Config	Y	2000-01-01 02:31:2	3 2924
Free	space for	compress	ed user config file	s: 65220608

whichboot This command displays which files were booted when the system powered up.

Syntax

whichboot [unit]

unit - Unit identifier. (Range: 1-8)

Default Setting

None

Command Mode

Privileged Exec

File Management

Example

This example shows the information displayed by the **whichboot** command. See the table under the dir command for a description of the file information displayed by this command.

Console#whichboot File Name	Type	Startup	Modify Time	Size(bytes)
Unit 1:				
ECS4620-28T_V1.2.1.6.bix	OpCode	Y	2013-07-02 08:18:42	17601308
startup1.cfg	Config	Y	2000-01-01 02:31:23	3 2924
Console#				

Automatic Code Upgrade Commands

upgrade opcode auto This command automatically upgrades the current operational code when a new version is detected on the server indicated by the upgrade opcode path command. Use the **no** form of this command to restore the default setting.

Syntax

[no] upgrade opcode auto

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- This command is used to enable or disable automatic upgrade of the operational code. When the switch starts up and automatic image upgrade is enabled by this command, the switch will follow these steps when it boots up:
 - 1. It will search for a new version of the image at the location specified by upgrade opcode path command. The name for the new image stored on the TFTP server must be ECS4620-28T.bix. If the switch detects a code version newer than the one currently in use, it will download the new image. If two code images are already stored in the switch, the image not set to start up the system will be overwritten by the new version.
 - 2. After the image has been downloaded, the switch will send a trap message to log whether or not the upgrade operation was successful.
 - **3.** It sets the new version as the startup image.
 - **4.** It then restarts the system to start using the new image.

 Any changes made to the default setting can be displayed with the show running-config or show startup-config commands.

Example

```
Console(config) #upgrade opcode auto
Console(config) #upgrade opcode path tftp://192.168.0.1/sm24/
Console(config)#
```

If a new image is found at the specified location, the following type of messages will be displayed during bootup.

```
Automatic Upgrade is looking for a new image
New image detected: current version 1.1.1.0; new version 1.1.1.2
Image upgrade in progress
The switch will restart after upgrade succeeds
Downloading new image
Flash programming started
Flash programming completed
The switch will now restart
```

upgrade opcode path This command specifies an TFTP server and directory in which the new opcode is stored. Use the **no** form of this command to clear the current setting.

Syntax

upgrade opcode path opcode-dir-url no upgrade opcode path

opcode-dir-url - The location of the new code.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- This command is used in conjunction with the upgrade opcode auto command to facilitate automatic upgrade of new operational code stored at the location indicated by this command.
- The name for the new image stored on the TFTP server must be ECS4620-28T.bix. However, note that file name is not to be included in this command.

File Management

◆ When specifying a TFTP server, the following syntax must be used, where filedir indicates the path to the directory containing the new image:

```
tftp://192.168.0.1[/filedir]/
```

When specifying an FTP server, the following syntax must be used, where filedir indicates the path to the directory containing the new image:

```
ftp://[username[:password@]]192.168.0.1[/filedir]/
```

If the user name is omitted, "anonymous" will be used for the connection. If the password is omitted a null string ("") will be used for the connection.

Example

This shows how to specify a TFTP server where new code is stored.

```
Console(config) #upgrade opcode path tftp://192.168.0.1/sm24/
Console(config)#
```

This shows how to specify an FTP server where new code is stored.

```
Console(config) #upgrade opcode path ftp://admin:billy@192.168.0.1/sm24/
Console(config)#
```

upgrade opcode This command reloads the switch automatically after the opcode upgrade is reload completed. Use the **no** form to disable this feature.

Syntax

[no] upgrade opcode reload

Default Setting

Disabled

Command Mode

Global Configuration

Example

This shows how to specify a TFTP server where new code is stored.

```
Console(config) #upgrade opcode reload
Console(config)#
```

show upgrade This command shows the opcode upgrade configuration settings.

Command Mode

Privileged Exec

Example

```
Console#show upgrade
Auto Image Upgrade Global Settings:
 Status : Disabled
 Reload Status : Disabled
 Path
       :
 File Name : ECS4620-28T.bix
Console#
```

TFTP Configuration Commands

ip tftp retry This command specifies the number of times the switch can retry transmitting a request to a TFTP server after waiting for the configured timeout period and receiving no response. Use the **no** form to restore the default setting.

Syntax

```
ip tftp retry retries
```

no ip tftp retry

retries - The number of times the switch can resend a request to a TFTP server before it aborts the connection. (Range: 1-16)

Default Setting

15

Command Mode

Global Configuration

Example

```
Console(config) #ip tftp retry 10
Console(config)#
```

File Management

ip tftp timeout This command specifies the time the switch can wait for a response from a TFTP server before retransmitting a request or timing out for the last retry. Use the **no** form to restore the default setting.

Syntax

ip tftp timeout seconds

no ip tftp timeout

seconds - The the time the switch can wait for a response from a TFTP server before retransmitting a request or timing out. (Range: 1-65535 seconds)

Default Setting

5 seconds

Command Mode

Global Configuration

Example

```
Console(config) #ip tftp timeout 10
Console(config)#
```

show ip tftp This command displays information about the TFTP settings configured on this switch.

Syntax

show ip tftp

Command Mode

Privileged Exec

Example

```
Console#show ip tftp
TFTP Settings:
 Retries : 15
 Timeout : 5 seconds
Console#
```

Line

You can access the onboard configuration program by attaching a VT100 compatible device to the server's serial port. These commands are used to set communication parameters for the serial port or Telnet (i.e., a virtual terminal).

Table 18: Line Commands

Command	Function	Mode
line	Identifies a specific line for configuration and starts the line configuration mode	GC
accounting commands	Applies an accounting method to commands entered at specific CLI privilege levels	LC
accounting exec	Applies an accounting method to local console, Telnet or SSH connections	LC
authorization exec	Applies an authorization method to local console, Telnet or SSH connections	LC
databits*	Sets the number of data bits per character that are interpreted and generated by hardware	LC
exec-timeout	Sets the interval that the command interpreter waits until user input is detected	LC
login	Enables password checking at login	LC
parity*	Defines the generation of a parity bit	LC
password	Specifies a password on a line	LC
password-thresh	Sets the password intrusion threshold, which limits the number of failed logon attempts	LC
silent-time*	Sets the amount of time the management console is inaccessible after the number of unsuccessful logon attempts exceeds the threshold set by the password-thresh command	LC
speed*	Sets the terminal baud rate	LC
stopbits*	Sets the number of the stop bits transmitted per byte	LC
timeout login response	Sets the interval that the system waits for a login attempt	LC
disconnect	Terminates a line connection	PE
terminal	Configures terminal settings, including escape-character, line length, terminal type, and width	PE
show line	Displays a terminal line's parameters	NE, PE

^{*} These commands only apply to the serial port.

line This command identifies a specific line for configuration, and to process subsequent line configuration commands.

Syntax

```
line {console | vty}
```

console - Console terminal line.

vty - Virtual terminal for remote console access (i.e., Telnet).

Default Setting

There is no default line.

Command Mode

Global Configuration

Command Usage

Telnet is considered a virtual terminal connection and will be shown as "VTY" in screen displays such as show users. However, the serial communication parameters (e.g., databits) do not affect Telnet connections.

Example

To enter console line mode, enter the following command:

```
Console(config) #line console
Console(config-line)#
```

Related Commands

show line (161) show users (133)

databits This command sets the number of data bits per character that are interpreted and generated by the console port. Use the **no** form to restore the default value.

Syntax

databits {7 | 8}

no databits

- 7 Seven data bits per character.
- 8 Eight data bits per character.

Default Setting

8 data bits per character

Command Mode

Line Configuration

Command Usage

The databits command can be used to mask the high bit on input from devices that generate 7 data bits with parity. If parity is being generated, specify 7 data bits per character. If no parity is required, specify 8 data bits per character.

Example

To specify 7 data bits, enter this command:

```
Console(config-line) #databits 7
Console(config-line)#
```

Related Commands

parity (155)

exec-timeout This command sets the interval that the system waits until user input is detected. Use the **no** form to restore the default.

Syntax

exec-timeout [seconds]

no exec-timeout

seconds - Integer that specifies the timeout interval. (Range: 60 - 65535 seconds; 0: no timeout)

Default Setting

10 minutes

Command Mode

Line Configuration

Command Usage

- If user input is detected within the timeout interval, the session is kept open; otherwise the session is terminated.
- This command applies to both the local console and Telnet connections.
- The timeout for Telnet cannot be disabled.
- Using the command without specifying a timeout restores the default setting.

Example

To set the timeout to two minutes, enter this command:

```
Console(config-line) #exec-timeout 120
Console(config-line)#
```

login This command enables password checking at login. Use the **no** form to disable password checking and allow connections without a password.

Syntax

login [local]

no login

local - Selects local password checking. Authentication is based on the user name specified with the <u>username</u> command.

Default Setting

login local

Command Mode

Line Configuration

Command Usage

- ◆ There are three authentication modes provided by the switch itself at login:
 - login selects authentication by a single global password as specified by the password line configuration command. When using this method, the management interface starts in Normal Exec (NE) mode.
 - login local selects authentication via the user name and password specified by the username command (i.e., default setting). When using this method, the management interface starts in Normal Exec (NE) or Privileged Exec (PE) mode, depending on the user's privilege level (0 or 15 respectively).
 - no login selects no authentication. When using this method, the management interface starts in Normal Exec (NE) mode.
- This command controls login authentication via the switch itself. To configure user names and passwords for remote authentication servers, you must use the RADIUS or TACACS software installed on those servers.

Example

```
Console(config-line)#login local
Console(config-line)#
```

Related Commands

username (239) password (155)

parity This command defines the generation of a parity bit. Use the **no** form to restore the default setting.

Syntax

```
parity {none | even | odd}
no parity
   none - No parity
   even - Even parity
   odd - Odd parity
```

Default Setting

No parity

Command Mode

Line Configuration

Command Usage

Communication protocols provided by devices such as terminals and modems often require a specific parity bit setting.

Example

To specify no parity, enter this command:

```
Console(config-line) #parity none
Console(config-line)#
```

password This command specifies the password for a line. Use the **no** form to remove the password.

Syntax

```
password {0 | 7} password
no password
```

{0 | 7} - 0 means plain password, 7 means encrypted password password - Character string that specifies the line password. (Maximum length: 32 characters plain text or encrypted, case sensitive)

Default Setting

No password is specified.

Command Mode

Line Configuration

Command Usage

- When a connection is started on a line with password protection, the system prompts for the password. If you enter the correct password, the system shows a prompt. You can use the password-thresh command to set the number of times a user can enter an incorrect password before the system terminates the line connection and returns the terminal to the idle state.
- The encrypted password is required for compatibility with legacy password settings (i.e., plain text or encrypted) when reading the configuration file during system bootup or when downloading the configuration file from an FTP server. There is no need for you to manually configure encrypted passwords.

Example

```
Console(config-line) #password 0 secret
Console(config-line)#
```

Related Commands

login (154) password-thresh (156)

password-thresh This command sets the password intrusion threshold which limits the number of failed logon attempts. Use the **no** form to remove the threshold value.

Syntax

password-thresh [threshold]

no password-thresh

threshold - The number of allowed password attempts. (Range: 1-120; 0: no threshold)

Default Setting

The default value is three attempts.

Command Mode

Line Configuration

Command Usage

When the logon attempt threshold is reached, the system interface becomes silent for a specified amount of time before allowing the next logon attempt. (Use the silent-time command to set this interval.) When this threshold is reached for Telnet, the Telnet logon interface shuts down.

Example

To set the password threshold to five attempts, enter this command:

```
Console(config-line) #password-thresh 5
Console(config-line)#
```

Related Commands

silent-time (157)

silent-time This command sets the amount of time the management console is inaccessible after the number of unsuccessful logon attempts exceeds the threshold set by the password-thresh command. Use the **no** form to remove the silent time value.

Syntax

silent-time [seconds]

no silent-time

seconds - The number of seconds to disable console response. (Range: 0-65535; where 0 means disabled)

Default Setting

Disabled

Command Mode

Line Configuration

Example

To set the silent time to 60 seconds, enter this command:

```
Console(config-line) #silent-time 60
Console(config-line)#
```

Related Commands

password-thresh (156)

Line

speed This command sets the terminal line's baud rate. This command sets both the transmit (to terminal) and receive (from terminal) speeds. Use the **no** form to restore the default setting.

Syntax

speed bps

no speed

bps - Baud rate in bits per second. (Options: 9600, 19200, 38400, 57600, 115200 bps)

Default Setting

115200 bps

Command Mode

Line Configuration

Command Usage

Set the speed to match the baud rate of the device connected to the serial port. Some baud rates available on devices connected to the port might not be supported. The system indicates if the speed you selected is not supported.

Example

To specify 57600 bps, enter this command:

```
Console(config-line) #speed 57600
Console(config-line)#
```

stopbits This command sets the number of the stop bits transmitted per byte. Use the **no** form to restore the default setting.

Syntax

stopbits {1 | 2}

no stopbits

- 1 One stop bit
- 2 Two stop bits

Default Setting

1 stop bit

Command Mode

Line Configuration

Example

To specify 2 stop bits, enter this command:

```
Console(config-line) #stopbits 2
Console(config-line)#
```

timeout login This command sets the interval that the system waits for a user to log into the CLI. **response** Use the **no** form to restore the default setting.

Syntax

timeout login response [seconds]

no timeout login response

```
seconds - Integer that specifies the timeout interval.
(Range: 10 - 300 seconds)
```

Default Setting

300 seconds

Command Mode

Line Configuration

Command Usage

- If a login attempt is not detected within the timeout interval, the connection is terminated for the session.
- This command applies to both the local console and Telnet connections.
- ◆ The timeout for Telnet cannot be disabled.
- Using the command without specifying a timeout restores the default setting.

Example

To set the timeout to two minutes, enter this command:

```
Console(config-line) #timeout login response 120
Console(config-line)#
```

disconnect This command terminates an SSH, Telnet, or console connection.

Syntax

disconnect session-id

session-id – The session identifier for an SSH, Telnet or console connection. (Range: 0-8)

Command Mode

Privileged Exec

Command Usage

Specifying session identifier "0" will disconnect the console connection. Specifying any other identifiers for an active session will disconnect an SSH or Telnet connection.

Example

```
Console#disconnect 1
Console#
```

Related Commands

show ssh (276) show users (133)

terminal This command configures terminal settings, including escape-character, lines displayed, terminal type, width, and command history. Use the **no** form with the appropriate keyword to restore the default setting.

Syntax

terminal {escape-character {ASCII-number | character} | history [size size] | length length | terminal-type {ansi-bbs | vt-100 | vt-102} | width width}

escape-character - The keyboard character used to escape from current line input.

ASCII-number - ASCII decimal equivalent. (Range: 0-255)

character - Any valid keyboard character.

history - The number of lines stored in the command buffer, and recalled using the arrow keys. (Range: 0-256)

length - The number of lines displayed on the screen. (Range: 0-512, where 0 means not to pause)

terminal-type - The type of terminal emulation used.

```
ansi-bbs - ANSI-BBS
vt-100 - VT-100
vt-102 - VT-102
```

width - The number of character columns displayed on the terminal. (Range: 0-80)

Default Setting

Escape Character: 27 (ASCII-number)

History: 10 Length: 24

Terminal Type: VT100

Width: 80

Command Mode

Privileged Exec

Example

This example sets the number of lines displayed by commands with lengthy output such as show running-config to 48 lines.

```
Console#terminal length 48
Console#
```

show line This command displays the terminal line's parameters.

Syntax

show line [console | vty]

console - Console terminal line.

vty - Virtual terminal for remote console access (i.e., Telnet).

Default Setting

Shows all lines

Command Mode

Normal Exec, Privileged Exec

Example

To show all lines, enter this command:

```
Console#show line
Terminal Configuration for this session:
 Length
                           : 24
                             : 80
 Width
 History Size
                            : 10
 Escape Character (ASCII-number) : 27
 Terminal Type
                            : VT100
Console Configuration:
 Password Threshold: 3 times
 EXEC Timeout : 600 seconds
                  : 300 seconds
 Login Timeout
                 : Disabled
 Silent Time
                 : 115200
 Baud Rate
 Data Bits
                 : 8
 Stop Bits
                 : None
                 : 1
VTY Configuration:
 Password Threshold: 3 times
 EXEC Timeout
                  : 600 seconds
```

Login Timeout : 300 sec. Silent Time Console#

: Disabled

Event Logging

This section describes commands used to configure event logging on the switch.

Table 19: Event Logging Commands

Command	Function	Mode
logging facility	Sets the facility type for remote logging of syslog messages	GC
logging history	Limits syslog messages saved to switch memory based on severity	GC
logging host	Adds a syslog server host IP address that will receive logging messages	GC
logging on	Controls logging of error messages	GC
logging trap	Limits syslog messages saved to a remote server based on severity	GC
clear log	Clears messages from the logging buffer	PE
show log	Displays log messages	PE
show logging	Displays the state of logging	PE

logging facility This command sets the facility type for remote logging of syslog messages. Use the **no** form to return the type to the default.

Syntax

logging facility type

no logging facility

type - A number that indicates the facility used by the syslog server to dispatch log messages to an appropriate service. (Range: 16-23)

Default Setting

23

Command Mode

Global Configuration

Command Usage

The command specifies the facility type tag sent in syslog messages. (See RFC 3164.) This type has no effect on the kind of messages reported by the switch. However, it may be used by the syslog server to sort messages or to store messages in the corresponding database.

Example

```
Console(config) #logging facility 19
Console(config)#
```

logging history This command limits syslog messages saved to switch memory based on severity. The **no** form returns the logging of syslog messages to the default level.

Syntax

logging history {flash | ram} level no logging history {flash | ram}

flash - Event history stored in flash memory (i.e., permanent memory).

ram - Event history stored in temporary RAM (i.e., memory flushed on power reset).

level - One of the levels listed below. Messages sent include the selected level down to level 0. (Range: 0-7)

Table 20: Logging Levels

Level	Severity Name	Description
7	debugging	Debugging messages
6	informational	Informational messages only
5	notifications	Normal but significant condition, such as cold start
4	warnings	Warning conditions (e.g., return false, unexpected return)
3	errors	Error conditions (e.g., invalid input, default used)
2	critical	Critical conditions (e.g., memory allocation, or free memory error - resource exhausted)
1	alerts	Immediate action needed
0	emergencies	System unusable

Default Setting

Flash: errors (level 3 - 0) RAM: debugging (level 7 - 0)

Command Mode

Global Configuration

Command Usage

The message level specified for flash memory must be a higher priority (i.e., numerically lower) than that specified for RAM.

Event Logging

Example

```
Console(config) #logging history ram 0
Console(config)#
```

logging host This command adds a syslog server host IP address that will receive logging messages. Use the **no** form to remove a syslog server host.

Syntax

logging host host-ip-address [port udp-port]

no logging host host-ip-address

host-ip-address - The IPv4 or IPv6 address of a syslog server.

udp-port - UDP port number used by the remote server. (Range: 1-65535)

Default Setting

UPD Port: 514

Command Mode

Global Configuration

Command Usage

- Use this command more than once to build up a list of host IP addresses.
- The maximum number of host IP addresses allowed is five.

Example

```
Console(config) #logging host 10.1.0.3
Console(config)#
```

logging on This command controls logging of error messages, sending debug or error messages to a logging process. The **no** form disables the logging process.

Syntax

[no] logging on

Default Setting

None

Command Mode

Global Configuration

Command Usage

The logging process controls error messages saved to switch memory or sent to remote syslog servers. You can use the logging history command to control the type of error messages that are stored in memory. You can use the logging trap command to control the type of error messages that are sent to specified syslog servers.

Example

```
Console(config) #logging on
Console(config) #
```

Related Commands

logging history (163) logging trap (165) clear log (166)

logging trap

This command enables the logging of system messages to a remote server, or limits the syslog messages saved to a remote server based on severity. Use this command without a specified level to enable remote logging. Use the **no** form to disable remote logging.

Syntax

logging trap [level level]

no logging trap [level]

level - One of the syslog severity levels listed in the table on page 163. Messages sent include the selected level through level 0.

Default Setting

Disabled Level 7

Command Mode

Global Configuration

Command Usage

- Using this command with a specified level enables remote logging and sets the minimum severity level to be saved.
- Using this command without a specified level also enables remote logging, but restores the minimum severity level to the default.

Example

```
Console(config)#logging trap 4
Console(config)#
```

clear log This command clears messages from the log buffer.

Syntax

clear log [flash | ram]

flash - Event history stored in flash memory (i.e., permanent memory).

ram - Event history stored in temporary RAM (i.e., memory flushed on power reset).

Default Setting

Flash and RAM

Command Mode

Privileged Exec

Example

Console#clear log Console#

Related Commands

show log (166)

show log This command displays the log messages stored in local memory.

Syntax

show log {flash | ram}

flash - Event history stored in flash memory (i.e., permanent memory).

ram - Event history stored in temporary RAM (i.e., memory flushed on power reset).

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- All log messages are retained in RAM and Flash after a warm restart (i.e., power is reset through the command interface).
- ◆ All log messages are retained in Flash and purged from RAM after a cold restart (i.e., power is turned off and then on through the power source).

Example

The following example shows the event message stored in RAM.

```
Console#show log ram
[1] 00:01:30 2001-01-01

"VLAN 1 link-up notification."

level: 6, module: 5, function: 1, and event no.: 1
[0] 00:01:30 2001-01-01

"Unit 1, Port 1 link-up notification."

level: 6, module: 5, function: 1, and event no.: 1
Console#
```

show logging

This command displays the configuration settings for logging messages to local switch memory, to an SMTP event handler, or to a remote syslog server.

Syntax

show logging {flash | ram | sendmail | trap}

flash - Displays settings for storing event messages in flash memory (i.e., permanent memory).

ram - Displays settings for storing event messages in temporary RAM (i.e., memory flushed on power reset).

sendmail - Displays settings for the SMTP event handler (page 172).

trap - Displays settings for the trap function.

Default Setting

None

Command Mode

Privileged Exec

Example

The following example shows that system logging is enabled, the message level for flash memory is "errors" (i.e., default level 3 - 0), and the message level for RAM is "debugging" (i.e., default level 7 - 0).

```
Console#show logging flash
Syslog logging: Enabled
History logging in FLASH: level errors
Console#show logging ram
Syslog logging: Enabled
History logging in RAM: level debugging
Console#
```

Table 21: show logging flash/ram - display description

Field	Description
Syslog logging	Shows if system logging has been enabled via the logging on command.
History logging in FLASH	The message level(s) reported based on the logging history command.
History logging in RAM	The message level(s) reported based on the logging history command.

The following example displays settings for the trap function.

```
Console#show logging trap
Remote Log Status : Disabled
Remote Log Facility Type : Local use 7
Remote Log Level Type : Debugging messages
Remote Log Server IP Address : 0.0.0.0
Console#
```

Table 22: show logging trap - display description

Field	Description
Syslog logging	Shows if system logging has been enabled via the logging on command.
REMOTELOG status	Shows if remote logging has been enabled via the logging trap command.
REMOTELOG facility type	The facility type for remote logging of syslog messages as specified in the logging facility command.
REMOTELOG level type	The severity threshold for syslog messages sent to a remote server as specified in the logging trap command.
REMOTELOG server IP address	The address of syslog servers as specified in the logging host command.

Related Commands

show logging sendmail (172)

SMTP Alerts

These commands configure SMTP event handling, and forwarding of alert messages to the specified SMTP servers and email recipients.

Table 23: Event Logging Commands

Command	Function	Mode
logging sendmail	Enables SMTP event handling	GC
logging sendmail host	SMTP servers to receive alert messages	GC
logging sendmail level	Severity threshold used to trigger alert messages	GC
logging sendmail destination-email	Email recipients of alert messages	GC
logging sendmail source- email	Email address used for "From" field of alert messages	GC
show logging sendmail	Displays SMTP event handler settings	NE, PE

logging sendmail This command enables SMTP event handling. Use the **no** form to disable this function.

Syntax

[no] logging sendmail

Default Setting

Enabled

Command Mode

Global Configuration

Example

Console(config) #logging sendmail Console(config)#

logging sendmail host This command specifies SMTP servers that will be sent alert messages. Use the **no** form to remove an SMTP server.

Syntax

[no] logging sendmail host ip-address

ip-address - IPv4 or IPv6 address of an SMTP server that will be sent alert messages for event handling.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- You can specify up to three SMTP servers for event handing. However, you must enter a separate command to specify each server.
- To send email alerts, the switch first opens a connection, sends all the email alerts waiting in the gueue one by one, and finally closes the connection.
- To open a connection, the switch first selects the server that successfully sent mail during the last connection, or the first server configured by this command. If it fails to send mail, the switch selects the next server in the list and tries to send mail again. If it still fails, the system will repeat the process at a periodic interval. (A trap will be triggered if the switch cannot successfully open a connection.)

Example

```
Console(config) #logging sendmail host 192.168.1.19
Console(config)#
```

logging sendmail level This command sets the severity threshold used to trigger alert messages. Use the **no** form to restore the default setting.

Syntax

logging sendmail level level

no logging sendmail level

level - One of the system message levels (page 163). Messages sent include the selected level down to level 0. (Range: 0-7; Default: 7)

Default Setting

Level 7

Command Mode

Global Configuration

Command Usage

The specified level indicates an event threshold. All events at this level or higher will be sent to the configured email recipients. (For example, using Level 7 will report all events from level 7 to level 0.)

Example

This example will send email alerts for system errors from level 3 through 0.

```
Console(config) #logging sendmail level 3
Console(config)#
```

destination-email remove a recipient.

logging sendmail This command specifies the email recipients of alert messages. Use the **no** form to

Syntax

[no] logging sendmail destination-email email-address

email-address - The source email address used in alert messages. (Range: 1-41 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

You can specify up to five recipients for alert messages. However, you must enter a separate command to specify each recipient.

Example

```
Console(config) #logging sendmail destination-email ted@this-company.com
Console(config)#
```

logging sendmail This command sets the email address used for the "From" field in alert messages. **source-email** Use the **no** form to restore the default value.

Syntax

logging sendmail source-email email-address

no logging sendmail source-email

email-address - The source email address used in alert messages. (Range: 1-41 characters)

Default Setting

None

Command Mode

Global Configuration

Time

Command Usage

You may use an symbolic email address that identifies the switch, or the address of an administrator responsible for the switch.

Example

```
\label{local_console} \begin{tabular}{ll} Console(config) \# logging sendmail source-email bill@this-company.com Console(config) \# \end{tabular}
```

show logging sendmail

show logging This command displays the settings for the SMTP event handler.

Command Mode

Normal Exec, Privileged Exec

Example

Time

The system clock can be dynamically set by polling a set of specified time servers (NTP or SNTP). Maintaining an accurate time on the switch enables the system log to record meaningful dates and times for event entries. If the clock is not set, the switch will only record the time from the factory default set at the last bootup.

Table 24: Time Commands

Command	Function	Mode
SNTP Commands		
sntp client	Accepts time from specified time servers	GC
sntp poll	Sets the interval at which the client polls for time	GC
sntp server	Specifies one or more time servers	GC
show sntp	Shows current SNTP configuration settings	NE, PE

Table 24: Time Commands (Continued)

Command	Function	Mode	
NTP Commands			
ntp authenticate	Enables authentication for NTP traffic	GC	
ntp authentication-key	Configures authentication keys	GC	
ntp client	Enables the NTP client for time updates from specified servers	GC	
ntp server	Specifies NTP servers to poll for time updates	GC	
show ntp	Shows current NTP configuration settings	NE, PE	
Manual Configuration Commands			
clock summer-time (date)	Configures summer time* for the switch's internal clock	GC	
clock summer-time (predefined)	Configures summer time* for the switch's internal clock	GC	
clock summer-time (recurring)	Configures summer time* for the switch's internal clock	GC	
clock timezone	Sets the time zone for the switch's internal clock	GC	
calendar set	Sets the system date and time	PE	
show calendar	Displays the current date and time setting	NE, PE	

^{*} Daylight savings time.

SNTP Commands

sntp client This command enables SNTP client requests for time synchronization from NTP or SNTP time servers specified with the sntp server command. Use the **no** form to disable SNTP client requests.

Syntax

[no] sntp client

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- The time acquired from time servers is used to record accurate dates and times for log events. Without SNTP, the switch only records the time starting from the factory default set at the last bootup (i.e., 00:00:00, Jan. 1, 2001).
- ◆ This command enables client time requests to time servers specified via the sntp server command. It issues time synchronization requests based on the interval set via the sntp poll command.

Time

Example

```
Console(config) #sntp server 10.1.0.19
Console(config) #sntp poll 60
Console(config) #sntp client
Console(config) #end
Console#show sntp
Current Time: Dec 23 02:52:44 2002
Poll Interval: 60
Current Mode: unicast
SNTP Status: Enabled
SNTP Server 137.92.140.80 0.0.0.0 0.0.0
Current Server: 137.92.140.80
Console#
```

Related Commands

sntp server (175) sntp poll (174) show sntp (175)

sntp poll This command sets the interval between sending time requests when the switch is set to SNTP client mode. Use the **no** form to restore to the default.

Syntax

sntp poll seconds

no sntp poll

seconds - Interval between time requests. (Range: 16-16384 seconds)

Default Setting

16 seconds

Command Mode

Global Configuration

Example

```
Console(config)#sntp poll 60
Console#
```

Related Commands

sntp client (173)

sntp server This command sets the IP address of the servers to which SNTP time requests are issued. Use the this command with no arguments to clear all time servers from the current list. Use the **no** form to clear all time servers from the current list, or to clear a specific server.

Syntax

```
sntp server [ip1 [ip2 [ip3]]]
no sntp server [ip1 [ip2 [ip3]]]
    ip - IPv4 or IPv6 address of a time server (NTP or SNTP).
    (Range: 1 - 3 addresses)
```

Default Setting

None

Command Mode

Global Configuration

Command Usage

This command specifies time servers from which the switch will poll for time updates when set to SNTP client mode. The client will poll the time servers in the order specified until a response is received. It issues time synchronization requests based on the interval set via the sntp poll command.

Example

```
Console(config) #sntp server 10.1.0.19
Console#
```

Related Commands

```
sntp client (173)
sntp poll (174)
show sntp (175)
```

show sntp This command displays the current time and configuration settings for the SNTP client, and indicates whether or not the local time has been properly updated.

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command displays the current time, the poll interval used for sending time synchronization requests, and the current SNTP mode (i.e., unicast).

Time

Example

```
Console#show sntp
Current Time : Nov 5 18:51:22 2006
Poll Interval : 16 seconds
```

Current Mode : Unicast SNTP Status : Enabled

SNTP Server : 137.92.140.80 0.0.0.0 0.0.0.0

Current Server : 137.92.140.80

Console#

NTP Commands

ntp authenticate This command enables authentication for NTP client-server communications. Use the **no** form to disable authentication.

Syntax

[no] ntp authenticate

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

You can enable NTP authentication to ensure that reliable updates are received from only authorized NTP servers. The authentication keys and their associated key number must be centrally managed and manually distributed to NTP servers and clients. The key numbers and key values must match on both the server and client.

Example

```
Console(config) #ntp authenticate
Console(config)#
```

Related Commands

ntp authentication-key (177)

ntp This command configures authentication keys and key numbers to use when NTP authentication-key authentication is enabled. Use the no form of the command to clear a specific authentication key or all keys from the current list.

Syntax

ntp authentication-key number md5 key

no ntp authentication-key [number]

number - The NTP authentication key ID number. (Range: 1-65535)

md5 - Specifies that authentication is provided by using the message digest algorithm 5.

key - An MD5 authentication key string. The key string can be up to 32 casesensitive printable ASCII characters (no spaces).

Default Setting

None

Command Mode

Global Configuration

Command Usage

- The key number specifies a key value in the NTP authentication key list. Up to 255 keys can be configured on the switch. Re-enter this command for each server you want to configure.
- Note that NTP authentication key numbers and values must match on both the server and client.
- NTP authentication is optional. When enabled with the ntp authenticate command, you must also configure at least one key number using this command.
- Use the **no** form of this command without an argument to clear all authentication keys in the list.

Example

Console(config) #ntp authentication-key 45 md5 thisiskey45 Console(config)#

Related Commands

ntp authenticate (176)

Time

ntp client This command enables NTP client requests for time synchronization from NTP time servers specified with the ntp servers command. Use the no form to disable NTP client requests.

Syntax

[no] ntp client

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- The SNTP and NTP clients cannot be enabled at the same time. First disable the SNTP client before using this command.
- The time acquired from time servers is used to record accurate dates and times for log events. Without NTP, the switch only records the time starting from the factory default set at the last bootup (i.e., 00:00:00, Jan. 1, 2001).
- This command enables client time requests to time servers specified via the ntp servers command. It issues time synchronization requests based on the interval set via the **ntp poll** command.

Example

```
Console(config) #ntp client
Console(config)#
```

Related Commands

sntp client (173) ntp server (178)

ntp server This command sets the IP addresses of the servers to which NTP time requests are issued. Use the **no** form of the command to clear a specific time server or all servers from the current list.

Syntax

```
ntp server ip-address [key key-number]
```

no ntp server [ip-address]

ip-address - IP address of an NTP time server.

key-number - The number of an authentication key to use in communications with the server. (Range: 1-65535)

Default Setting

Version number: 3

Command Mode

Global Configuration

Command Usage

- This command specifies time servers that the switch will poll for time updates when set to NTP client mode. It issues time synchronization requests based on the interval set with the **ntp poll** command. The client will poll all the time servers configured, the responses received are filtered and compared to determine the most reliable and accurate time update for the switch.
- ◆ You can configure up to 50 NTP servers on the switch. Re-enter this command for each server you want to configure.
- NTP authentication is optional. If enabled with the **ntp authenticate** command, you must also configure at least one key number using the **ntp** authentication-key command.
- Use the no form of this command without an argument to clear all configured servers in the list.

Example

```
Console(config) #ntp server 192.168.3.20
Console(config) #ntp server 192.168.3.21
Console(config) #ntp server 192.168.5.23 key 19
Console(config)#
```

Related Commands

ntp client (178) show ntp (179)

show ntp This command displays the current time and configuration settings for the NTP client, and indicates whether or not the local time has been properly updated.

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command displays the current time, the poll interval used for sending time synchronization requests, and the current NTP mode (i.e., unicast).

Example

```
Console#show ntp
Current Time
                     : Apr 29 13:57:32 2011
Polling
                     : 1024 seconds
Current Mode
                      : unicast
```

Chapter 4 | System Management Commands

Time

```
NTP Status
                        : Disabled
NTP Authenticate Status : Enabled
Last Update NTP Server : 0.0.0.0
                                        Port: 0
Last Update Time : Jan 1 00:00:00 1970 UTC
NTP Server 192.168.3.20 version 3
NTP Server 192.168.3.21 version 3
NTP Server 192.168.4.22 version 3 key 19
NTP Authentication Key 19 md5 42V68751663T6K11P2J307210R885
Console#
```

Manual Configuration Commands

clock summer-time This command sets the start, end, and offset times of summer time (daylight (date) savings time) for the switch on a one-time basis. Use the **no** form to disable summer time.

Syntax

clock summer-time name date b-date b-month b-year b-hour b-minute e-date e-month e-year e-hour e-minute [offset]

no clock summer-time

name - Name of the time zone while summer time is in effect, usually an acronym. (Range: 1-30 characters)

b-date - Day of the month when summer time will begin. (Range: 1-31)

b-month - The month when summer time will begin. (Options: january | february | march | april | may | june | july | august | september | october | november | december)

b-year- The year summer time will begin.

b-hour - The hour summer time will begin. (Range: 0-23 hours)

b-minute - The minute summer time will begin. (Range: 0-59 minutes)

e-date - Day of the month when summer time will end. (Range: 1-31)

e-month - The month when summer time will end. (Options: january | february | march | april | may | june | july | august | september | october | november | december)

e-year - The year summer time will end.

e-hour - The hour summer time will end. (Range: 0-23 hours)

e-minute - The minute summer time will end. (Range: 0-59 minutes)

offset - Summer time offset from the regular time zone, in minutes. (Range: 0-99 minutes)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- In some countries or regions, clocks are adjusted through the summer months so that afternoons have more daylight and mornings have less. This is known as Summer Time, or Daylight Savings Time (DST). Typically, clocks are adjusted forward one hour at the start of spring and then adjusted backward in autumn.
- This command sets the summer-time time zone relative to the currently configured time zone. To specify a time corresponding to your local time when summer time is in effect, you must indicate the number of minutes your summer-time time zone deviates from your regular time zone (that is, the offset).

Example

The following example sets the 2014 Summer Time ahead by 60 minutes on March 9th and returns to normal time on November 2nd.

```
Console(config)#clock summer-time DEST date march 9 2014 01 59 november 2
 2014 01 59 60
Console(config)#
```

Related Commands

show sntp (175)

clock summer-time This command configures the summer time (daylight savings time) status and (predefined) settings for the switch using predefined configurations for several major regions in the world. Use the **no** form to disable summer time.

Syntax

clock summer-time name predefined [australia | europe | new-zealand | usa

no clock summer-time

name - Name of the timezone while summer time is in effect, usually an acronym. (Range: 1-30 characters)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

 In some countries or regions, clocks are adjusted through the summer months so that afternoons have more daylight and mornings have less. This is known as Time

Summer Time, or Daylight Savings Time (DST). Typically, clocks are adjusted forward one hour at the start of spring and then adjusted backward in autumn.

This command sets the summer-time time relative to the configured time zone. To specify the time corresponding to your local time when summer time is in effect, select the predefined summer-time time zone appropriate for your location, or manually configure summer time if these predefined configurations do not apply to your location (see clock summer-time (date) or clock summer-time (recurring).

Table 25: Predefined Summer-Time Parameters

Region	Start Time, Day, Week, & Month	End Time, Day, Week, & Month	Rel. Offset
Australia	00:00:00, Sunday, Week 5 of October	23:59:59, Sunday, Week 5 of March	60 min
Europe	00:00:00, Sunday, Week 5 of March	23:59:59, Sunday, Week 5 of October	60 min
New Zealand	00:00:00, Sunday, Week 1 of October	23:59:59, Sunday, Week 3 of March	60 min
USA	00:00:00, Sunday, Week 2 of March	23:59:59, Sunday, Week 1 of November	60 min

Example

The following example sets the Summer Time setting to use the predefined settings for the European region.

```
Console(config) #clock summer-time MESZ predefined europe
Console(config)#
```

Related Commands

show sntp (175)

clock summer-time This command allows the user to manually configure the start, end, and offset (recurring) times of summer time (daylight savings time) for the switch on a recurring basis. Use the **no** form to disable summer-time.

Syntax

clock summer-time *name* **recurring** *b-week b-day b-month b-hour b-minute e*week e-day e-month e-hour e-minute [offset]

no clock summer-time

name - Name of the timezone while summer time is in effect, usually an acronym. (Range: 1-30 characters)

b-week - The week of the month when summer time will begin. (Range: 1-5)

b-day - The day of the week when summer time will begin. (Options: sunday | monday | tuesday | wednesday | thursday | friday | saturday)

b-month - The month when summer time will begin. (Options: **january** | **february** | **march** | **april** | **may** | **june** | **july** | **august** | **september** | **october** | **november** | **december**)

b-hour - The hour when summer time will begin. (Range: 0-23 hours)

b-minute - The minute when summer time will begin. (Range: 0-59 minutes)

e-week - The week of the month when summer time will end. (Range: 1-5)

e-day - The day of the week summer time will end. (Options: **sunday** | **monday** | **tuesday** | **wednesday** | **thursday** | **friday** | **saturday**)

e-month - The month when summer time will end. (Options: **january** | **february** | **march** | **april** | **may** | **june** | **july** | **august** | **september** | **october** | **november** | **december**)

e-hour - The hour when summer time will end. (Range: 0-23 hours)

e-minute - The minute when summer time will end. (Range: 0-59 minutes)

offset - Summer-time offset from the regular time zone, in minutes. (Range: 0-99 minutes)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- ◆ In some countries or regions, clocks are adjusted through the summer months so that afternoons have more daylight and mornings have less. This is known as Summer Time, or Daylight Savings Time (DST). Typically, clocks are adjusted forward one hour at the start of spring and then adjusted backward in autumn.
- This command sets the summer-time time zone relative to the currently configured time zone. To display a time corresponding to your local time when summer time is in effect, you must indicate the number of minutes your summer-time time zone deviates from your regular time zone (that is, the offset).

Example

The following example sets a recurring 60 minute offset summer-time to begin on the Friday of the 1st week of March at 01:59 hours and summer time to end on the Saturday of the 2nd week of November at 01:59 hours.

```
Console(config)#clock summer-time MESZ recurring 1 friday march 01 59 3
  saturday november 1 59 60
Console(config)#
```

Related Commands

show sntp (175)

clock timezone This command sets the time zone for the switch's internal clock.

Syntax

clock timezone name hour hours minute minutes {before-utc | after-utc}

name - Name of timezone, usually an acronym. (Range: 1-30 characters)

hours - Number of hours before/after UTC. (Range: 0-12 hours before UTC, 0-13 hours after UTC)

minutes - Number of minutes before/after UTC. (Range: 0-59 minutes)

before-utc - Sets the local time zone before (east) of UTC.

after-utc - Sets the local time zone after (west) of UTC.

Default Setting

None

Command Mode

Global Configuration

Command Usage

This command sets the local time zone relative to the Coordinated Universal Time (UTC, formerly Greenwich Mean Time or GMT), based on the earth's prime meridian, zero degrees longitude. To display a time corresponding to your local time, you must indicate the number of hours and minutes your time zone is east (before) or west (after) of UTC.

Example

```
Console(config)#clock timezone Japan hours 8 minute 0 after-UTC
Console(config)#
```

Related Commands

show sntp (175)

calendar set This command sets the system clock. It may be used if there is no time server on your network, or if you have not configured the switch to receive signals from a time server.

Syntax

```
calendar set hour min sec {day month year | month day year}
```

```
hour - Hour in 24-hour format. (Range: 0 - 23)
min - Minute. (Range: 0 - 59)
sec - Second. (Range: 0 - 59)
day - Day of month. (Range: 1 - 31)
month - january | february | march | april | may | june | july | august |
september | october | november | december
year - Year (4-digit). (Range: 1970 - 2037)
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Note that when SNTP is enabled, the system clock cannot be manually configured.

Example

This example shows how to set the system clock to 15:12:34, February 1st, 2011.

```
Console#calendar set 15:12:34 1 February 2011
Console#
```

show calendar This command displays the system clock.

Default Setting

None

Command Mode

Normal Exec, Privileged Exec

```
Console#show calendar
Current Time : May 13 14:08:18 2014
                : UTC, 08:00
: Not configured
Time Zone
Summer Time
```

Time Range

Summer Time in Effect : No Console#

Time Range

This section describes the commands used to sets a time range for use by other functions, such as Access Control Lists.

Table 26: Time Range Commands

Command	Function	Mode
time-range	Specifies the name of a time range, and enters time range configuration mode	GC
absolute	Sets the time range for the execution of a command	TR
periodic	Sets the time range for the periodic execution of a command	TR
show time-range	Shows configured time ranges.	PE

time-range This command specifies the name of a time range, and enters time range configuration mode. Use the **no** form to remove a previously specified time range.

Syntax

[no] time-range name

name - Name of the time range. (Range: 1-16 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

This command sets a time range for use by other functions, such as Access Control Lists.

Example

Console(config) #time-range r&d Console(config-time-range)#

Related Commands

Access Control Lists (385)

absolute This command sets the time range for the execution of a command. Use the **no** form to remove a previously specified time.

year - Year (4-digit). (Range: 2009-2037)

Syntax

```
absolute start hour minute day month year
[end hour minutes day month year]

absolute end hour minutes day month year

no absolute

hour - Hour in 24-hour format. (Range: 0-23)

minute - Minute. (Range: 0-59)

day - Day of month. (Range: 1-31)

month - january | february | march | april | may | june | july | august |
september | october | november | december
```

Default Setting

None

Command Mode

Time Range Configuration

Command Usage

- ◆ If a time range is already configured, you must use the **no** form of this command to remove the current entry prior to configuring a new time range.
- ◆ If both an absolute rule and one or more periodic rules are configured for the same time range (i.e., named entry), that entry will only take effect if the current time is within the absolute time range and one of the periodic time ranges.

Example

This example configures the time for the single occurrence of an event.

```
Console(config)#time-range r&d
Console(config-time-range)#absolute start 1 1 1 april 2009 end 2 1 1 april
2009
Console(config-time-range)#
```

periodic This command sets the time range for the periodic execution of a command. Use the **no** form to remove a previously specified time range.

Syntax

```
tuesday | wednesday | weekdays | weekend} hour minute to {daily | friday | monday | saturday | sunday | thursday | tuesday | wednesday | weekdays | weekend | hour minute}

daily - Daily
friday - Friday
monday - Monday
saturday - Saturday
sunday - Sunday
thursday - Thursday
tuesday - Tuesday
wednesday - Wednesday
weekend - Weekends
hour - Hour in 24-hour format. (Range: 0-23)
minute - Minute. (Range: 0-59)
```

[no] periodic {daily | friday | monday | saturday | sunday | thursday |

Default Setting

None

Command Mode

Time Range Configuration

Command Usage

- ◆ If a time range is already configured, you must use the **no** form of this command to remove the current entry prior to configuring a new time range.
- ◆ If both an absolute rule and one or more periodic rules are configured for the same time range (i.e., named entry), that entry will only take effect if the current time is within the absolute time range and one of the periodic time ranges.

Example

This example configures a time range for the periodic occurrence of an event.

```
Console(config)#time-range sales
Console(config-time-range)#periodic daily 1 1 to 2 1
Console(config-time-range)#
```

show time-range This command shows configured time ranges.

Syntax

show time-range [name]

name - Name of the time range. (Range: 1-30 characters)

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show time-range r&d
Time-range r&d:
  absolute start 01:01 01 April 2009
  periodic Daily 01:01 to Daily 02:01
  periodic Daily 02:01 to Daily 03:01
Console#
```

Switch Clustering

Switch Clustering is a method of grouping switches together to enable centralized management through a single unit. Switches that support clustering can be grouped together regardless of physical location or switch type, as long as they are connected to the same local network.

Table 27: Switch Cluster Commands

Command	Function	Mode
cluster	Configures clustering on the switch	GC
cluster commander	Configures the switch as a cluster Commander	GC
cluster ip-pool	Sets the cluster IP address pool for Members	GC
cluster member	Sets Candidate switches as cluster members	GC
rcommand	Provides configuration access to Member switches	GC
show cluster	Displays the switch clustering status	PE
show cluster members	Displays current cluster Members	PE
show cluster candidates	Displays current cluster Candidates in the network	PE

Using Switch Clustering

 A switch cluster has a primary unit called the "Commander" which is used to manage all other "Member" switches in the cluster. The management station can use either Telnet or the web interface to communicate directly with the Commander through its IP address, and then use the Commander to manage the Member switches through the cluster's "internal" IP addresses.

- Clustered switches must be in the same Ethernet broadcast domain. In other words, clustering only functions for switches which can pass information between the Commander and potential Candidates or active Members through VLAN 4093.
- Once a switch has been configured to be a cluster Commander, it automatically discovers other cluster-enabled switches in the network. These "Candidate" switches only become cluster Members when manually selected by the administrator through the management station.
- ◆ The cluster VLAN 4093 is not configured by default. Before using clustering, take the following actions to set up this VLAN:
 - 1. Create VLAN 4093 (see "Editing VLAN Groups" on page 581).
 - 2. Add the participating ports to this VLAN (see "Configuring VLAN Interfaces" on page 583), and set them to hybrid mode, tagged members, PVID = 1, and acceptable frame type = all.

Note: Cluster Member switches can be managed either through a Telnet connection to the Commander, or through a web management connection to the Commander. When using a console connection, from the Commander CLI prompt, use the roommand to connect to the Member switch.

cluster This command enables clustering on the switch. Use the **no** form to disable clustering.

Syntax

[no] cluster

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

◆ To create a switch cluster, first be sure that clustering is enabled on the switch (the default is enabled), then set the switch as a Cluster Commander. Set a Cluster IP Pool that does not conflict with any other IP subnets in the network. Cluster IP addresses are assigned to switches when they become Members and are used for communication between Member switches and the Commander.

- Switch clusters are limited to the same Ethernet broadcast domain.
- ◆ There can be up to 100 candidates and 36 member switches in one cluster.
- A switch can only be a Member of one cluster.
- Configured switch clusters are maintained across power resets and network changes.

Example

```
Console(config)#cluster
Console(config)#
```

cluster commander This command enables the switch as a cluster Commander. Use the **no** form to disable the switch as cluster Commander.

Syntax

[no] cluster commander

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Once a switch has been configured to be a cluster Commander, it automatically discovers other cluster-enabled switches in the network. These "Candidate" switches only become cluster Members when manually selected by the administrator through the management station.
- ◆ Cluster Member switches can be managed through a Telnet connection to the Commander. From the Commander CLI prompt, use the rcommand id command to connect to the Member switch.

```
Console(config) #cluster commander
Console(config)#
```

cluster ip-pool This command sets the cluster IP address pool. Use the **no** form to reset to the default address.

Syntax

cluster ip-pool *ip-address*

no cluster ip-pool

ip-address - The base IP address for IP addresses assigned to cluster Members. The IP address must start 10.x.x.x.

Default Setting

10.254.254.1

Command Mode

Global Configuration

Command Usage

- An "internal" IP address pool is used to assign IP addresses to Member switches in the cluster. Internal cluster IP addresses are in the form 10.x.x.member-ID. Only the base IP address of the pool needs to be set since Member IDs can only be between 1 and 36.
- Set a Cluster IP Pool that does not conflict with addresses in the network IP subnet. Cluster IP addresses are assigned to switches when they become Members and are used for communication between Member switches and the Commander.
- ◆ You cannot change the cluster IP pool when the switch is currently in Commander mode. Commander mode must first be disabled.

Example

```
Console(config) #cluster ip-pool 10.2.3.4
Console(config)#
```

cluster member This command configures a Candidate switch as a cluster Member. Use the **no** form to remove a Member switch from the cluster.

Syntax

cluster member mac-address mac-address id member-id

no cluster member id member-id

mac-address - The MAC address of the Candidate switch.

member-id - The ID number to assign to the Member switch. (Range: 1-36)

Default Setting

No Members

Command Mode

Global Configuration

Command Usage

- The maximum number of cluster Members is 36.
- ◆ The maximum number of cluster Candidates is 100.

Example

```
Console(config)#cluster member mac-address 00-12-34-56-78-9a id 5 Console(config)#
```

rcommand This command provides access to a cluster Member CLI for configuration.

Syntax

rcommand id member-id

member-id - The ID number of the Member switch. (Range: 1-36)

Command Mode

Privileged Exec

Command Usage

- This command only operates through a Telnet connection to the Commander switch. Managing cluster Members using the local console CLI on the Commander is not supported.
- There is no need to enter the username and password for access to the Member switch CLI.

```
Console#rcommand id 1

CLI session with the ECS4620-28T is opened.

To end the CLI session, enter [Exit].

Vty-0#
```

show cluster This command shows the switch clustering configuration.

Command Mode

Privileged Exec

Example

```
Console#show cluster
ROIE : commander
Interval Heartbeat : 30
Heartbeat Loss Count : 3 seconds
Number of Members : 1
Number of Candidates : 2
Console#
```

show cluster members This command shows the current switch cluster members.

Command Mode

Privileged Exec

Example

```
Console#show cluster members
Cluster Members:
ID : 1
Role : Active member
IP Address : 10.254.254.2
MAC Address : 00-E0-0C-00-00-FE
Description : ECS4620-28T
Console#
```

candidates

show cluster This command shows the discovered Candidate switches in the network.

Command Mode

Privileged Exec

```
Console#show cluster candidates
Cluster Candidates:
          MAC Address
                      Description
______
Candidate join 00-E0-0C-00-00-FE ECS4620-52T
Candidate 00-12-CF-0B-47-A0 ECS4620-52P
Console#
```

Stacking

This section includes commands which configure a unit as the stack master, set the 10G ports to stacking mode, or renumber all units in the stack. For information on how to physically connect units into a stack, see the Hardware Installation Guide. For detailed information on how stacking is implemented for this type of switch, refer to "Stack Operations" on page 69.

Table 28: Stacking Commands

Command	Function	Mode
switch all renumber	Renumbers stack units	PE
switch master button	Configures a unit as the stack master	PE
switch stacking button	Sets the front panel 10G ports to stacking mode	PE
show switch master button	Shows the status of the master button	PE
show switch stacking button	Shows the status of the stacking button	PE

switch all renumber This command resets the switch unit identification numbers in the stack. All stack members are numbered sequentially starting from the top unit for a non-loop stack, or starting from the Master unit for a looped stack.

Syntax

switch all renumber

Default Setting

- For non-loop stacking, the top unit is unit 1.
- For loop stacking, the master unit is unit 1.

Command Mode

Privileged Exec

Command Usage

The system will restart after renumbering is completed.

Example

This example shows how to renumber all units.

Console#switch all renumber Console#

switch master button This command configures a unit as the stack master. Use the no form to disable the master button.

Syntax

[no] switch master button unit

unit - Unit identifier. (Range: 1-8)

Default Setting

Disabled

Command Mode

Privileged Exec

Command Usage

- The switch must be rebooted to activate this command. Note that the configured setting is not affected by changes to the start-up configuration file.
- Set the front panel 10G ports to stacking mode with the switch stacking button command prior to rebooting the switch.
- If the stack has not been initialized, the master button must be disabled on all other units in the stack, and those units rebooted.
- If the stack has been initialized, and this command used to configure a new stack master, then the master button on the old master must be disabled before rebooting the stack.
- After the newly configured stack master has been rebooted, the front panel unit identifier will the updated on each unit in the stack.
- The bootup messages on all slave units will be halted when the master unit is rebooted, and configuration through the CLI will be restricted to the master unit.

Example

This example shows the current switch set to stack master, the switch rebooted, and the messages displayed after the reboot process completes.

```
Console#switch master button 1
Console#reload
****************
Finished provision complete ...
Processing hot swap insertion: 57-108, and use default [TRUE]
***** Master sending maintenance packet
---- Master state preemption
Hot swap insertion done.
Pre-provision complete ...
Finished pre-provision complete ...
```

```
Provision complete ...
Finished module 2 provision complete ...
Module provision complete.
```

switch stacking This command sets the front panel 10G ports to stacking mode. Use the **no** form to **button** disable this function.

Syntax

[no] switch stacking button

Default Setting

Disabled

Command Mode

Privileged Exec

Command Usage

- Use this command on all stack members.
- Use the switch master button command to specify one unit as the stack master.
- Every switch in the stack must be rebooted to activate this command. Note that the configured setting is not affected by changes to the start-up configuration file.

Example

```
Console#switch stacking button
Console#
```

button

show switch master This command shows the status of the master button.

Command Mode

Privileged Exec

Command Usage

- If the stack has not been initialized, "N" will be displayed in the switch ID field.
- Use the switch master button command to specify one unit as the stack master.

```
Console#show switch master button
Switch ID Master-button-pressed
_____
  1
               Υ
  2
               Ν
Console#
```

Chapter 4 | System Management Commands Stacking

show switch stacking button

show switch stacking This command shows the status of the stacking button.

Command Mode

Privileged Exec

Command Usage

Use the switch stacking button command to set the 10G ports to stacking mode.

```
Console#show switch stacking button
Config Status Active Status
-----
Y Y
Console#
```

5

SNMP Commands

SNMP commands control access to this switch from management stations using the Simple Network Management Protocol (SNMP), as well as the error types sent to trap managers.

SNMP Version 3 also provides security features that cover message integrity, authentication, and encryption; as well as controlling user access to specific areas of the MIB tree. To use SNMPv3, first set an SNMP engine ID (or accept the default), specify read and write access views for the MIB tree, configure SNMP user groups with the required security model (i.e., SNMP v1, v2c or v3) and security level (i.e., authentication and privacy), and then assign SNMP users to these groups, along with their specific authentication and privacy passwords.

Table 29: SNMP Commands

Command	Function	Mode
General SNMP Commands		
snmp-server	Enables the SNMP agent	GC
snmp-server community	Sets up the community access string to permit access to SNMP commands	GC
snmp-server contact	Sets the system contact string	GC
snmp-server location	Sets the system location string	GC
show snmp	Displays the status of SNMP communications	NE, PE
SNMP Target Host Commands	5	
snmp-server enable traps	Enables the device to send SNMP traps (i.e., SNMP notifications)	GC
snmp-server host	Specifies the recipient of an SNMP notification operation	GC
snmp-server enable port-traps mac-notification	Enables the device to send SNMP traps (i.e., SNMP notifications) when a dynamic MAC address is added or removed	IC
show snmp-server enable port-traps	Shows if SNMP traps are enabled or disabled for the specified interfaces	PE
SNMPv3 Engine Commands		
snmp-server engine-id	Sets the SNMP engine ID	GC
snmp-server group	Adds an SNMP group, mapping users to views	GC
snmp-server user	Adds a user to an SNMP group	GC
snmp-server view	Adds an SNMP view	GC
show snmp engine-id	Shows the SNMP engine ID	PE
show snmp group	Shows the SNMP groups	PE

Table 29: SNMP Commands (Continued)

Command	Function	Mode	
show snmp user	Shows the SNMP users	PE	
show snmp view	Shows the SNMP views	PE	
Notification Log Commands	shows the stunk views		
nlm	Enables the specified notification log	GC	
snmp-server notify-filter	Creates a notification log and specifies the target host	GC	
show nlm oper-status	Shows operation status of configured notification logs	PE	
show snmp notify-filter	Displays the configured notification logs	PE	
ATC Trap Commands			
snmp-server enable port- traps atc broadcast-alarm- clear	Sends a trap when broadcast traffic falls beneath the lower threshold after a storm control response has been triggered	IC (Port)	
snmp-server enable port- traps atc broadcast-alarm- fire	Sends a trap when broadcast traffic exceeds the upper threshold for automatic storm control	IC (Port)	
snmp-server enable port- traps atc broadcast-control- apply	Sends a trap when broadcast traffic exceeds the upper threshold for automatic storm control and the apply timer expires	IC (Port)	
snmp-server enable port- traps atc broadcast-control- release	Sends a trap when broadcast traffic falls beneath the lower threshold after a storm control response has been triggered and the release timer expires	IC (Port)	
snmp-server enable port- traps atc multicast-alarm- clear	Sends a trap when multicast traffic falls beneath the lower threshold after a storm control response has been triggered	IC (Port)	
snmp-server enable port- traps atc multicast-alarm- fire	Sends a trap when multicast traffic exceeds the upper threshold for automatic storm control	IC (Port)	
snmp-server enable port- traps atc multicast-control- apply	Sends a trap when multicast traffic exceeds the upper threshold for automatic storm control and the apply timer expires	IC (Port)	
snmp-server enable port- traps atc multicast-control- release	Sends a trap when multicast traffic falls beneath the lower threshold after a storm control response has been triggered and the release timer expires	IC (Port)	
Connectivity Fault Management Trap Commands			
snmp-server enable traps ethernet cfm cc	Enables SNMP traps for CFM continuity check events	GC	
snmp-server enable traps ethernet cfm crosscheck	Enables SNMP traps for CFM continuity check events, in relation to the cross-check operations between statically configured MEPs and those learned via continuity check messages	GC	
Transceiver Power Threshold Trap Commands			
transceiver-threshold current	Sends a trap when the transceiver current falls outside the specified thresholds $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) ^{2}$	IC (Port)	
transceiver-threshold rx-power	Sends a trap when the power level of the received signal falls outside the specified thresholds	IC (Port)	
transceiver-threshold temperature	Sends a trap when the transceiver temperature falls outside the specified thresholds	IC (Port)	

Table 29: SNMP Commands (Continued)

Command	Function	Mode
transceiver-threshold tx-power	Sends a trap when the power level of the transmitted signal power outside the specified thresholds	IC (Port)
transceiver-threshold voltage	Sends a trap when the transceiver voltage falls outside the specified thresholds	IC (Port)
Additional Trap Commands		
memory	Sets the rising and falling threshold for the memory utilization alarm	GC
process cpu	Sets the rising and falling threshold for the CPU utilization alarm	GC
show memory	Shows memory utilization parameters	PE
show process cpu	Shows CPU utilization parameters	PE

General SNMP Commands

snmp-server This command enables the SNMPv3 engine and services for all management clients (i.e., versions 1, 2c, 3). Use the **no** form to disable the server.

Syntax

[no] snmp-server

Default Setting

Enabled

Command Mode

Global Configuration

Example

Console(config) #snmp-server Console(config)#

snmp-server This command defines community access strings used to authorize management community access by clients using SNMP v1 or v2c. Use the **no** form to remove the specified community string.

Syntax

snmp-server community string [ro | rw]

no snmp-server community string

string - Community string that acts like a password and permits access to the SNMP protocol. (Maximum length: 32 characters, case sensitive; Maximum number of strings: 5)

- ro Specifies read-only access. Authorized management stations are only able to retrieve MIB objects.
- rw Specifies read/write access. Authorized management stations are able to both retrieve and modify MIB objects.

Default Setting

- public Read-only access. Authorized management stations are only able to retrieve MIB objects.
- private Read/write access. Authorized management stations are able to both retrieve and modify MIB objects.

Command Mode

Global Configuration

Example

```
Console(config) #snmp-server community alpha rw
Console(config)#
```

snmp-server contact This command sets the system contact string. Use the **no** form to remove the system contact information.

Syntax

snmp-server contact string

no snmp-server contact

string - String that describes the system contact information. (Maximum length: 255 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Console(config) #snmp-server contact Paul
Console(config)#
```

Related Commands

snmp-server location (203)

snmp-server location This command sets the system location string. Use the **no** form to remove the location string.

Syntax

snmp-server location text

no snmp-server location

text - String that describes the system location. (Maximum length: 255 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Console(config) #snmp-server location WC-19
Console(config)#
```

Related Commands

snmp-server contact (202)

show snmp This command can be used to check the status of SNMP communications.

Default Setting

None

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command provides information on the community access strings, counters for SNMP input and output protocol data units, and whether or not SNMP logging has been enabled with the snmp-server enable traps command.

```
Console#show snmp
SNMP Agent : Enabled
SNMP Traps :
Authentication : Enabled
Link-up-down : Enabled
MAC-notification : Disabled
MAC-notification interval : 1 second(s)
```

Chapter 5 | SNMP Commands

SNMP Target Host Commands

```
SNMP Communities :
  1. public, and the access level is read-only
  2. private, and the access level is read/write
0 SNMP packets input
   0 Bad SNMP version errors
   0 Unknown community name
   O Illegal operation for community name supplied
   0 Encoding errors
   0 Number of requested variables
   0 Number of altered variables
   0 Get-request PDUs
   0 Get-next PDUs
   0 Set-request PDUs
0 SNMP packets output
   0 Too big errors
   0 No such name errors
   0 Bad values errors
    0 General errors
   0 Response PDUs
   0 Trap PDUs
SNMP Logging: Disabled
Console#
```

SNMP Target Host Commands

snmp-server This command enables this device to send Simple Network Management Protocol enable traps or informs (i.e., SNMP notifications). Use the no form to disable SNMP notifications.

Syntax

[no] snmp-server enable traps [authentication | link-up-down | **ethernet cfm | mac-notification [interval** seconds]]

authentication - Keyword to issue authentication failure notifications.

link-up-down - Keyword to issue link-up or link-down notifications.

ethernet cfm - Connectivity Fault Management traps. For more information on these traps, see "CFM Commands" on page 803.

mac-notification - Keyword to issue trap when a dynamic MAC address is added or removed.

interval - Specifies the interval between issuing two consecutive traps. (Range: 1-3600 seconds; Default: 1 second)

Default Setting

Issue authentication and link-up-down traps. Other traps are disabled.

Command Mode

Global Configuration

Command Usage

- If you do not enter an **snmp-server enable traps** command, no notifications controlled by this command are sent. In order to configure this device to send SNMP notifications, you must enter at least one **snmp-server enable traps** command. If you enter the command with no keywords, both authentication and link-up-down notifications are enabled. If you enter the command with a keyword, only the notification type related to that keyword is enabled.
- ◆ The **snmp-server enable traps** command is used in conjunction with the snmp-server host command. Use the snmp-server host command to specify which host or hosts receive SNMP notifications. In order to send notifications, you must configure at least one snmp-server host command.
- The authentication, link-up, and link-down traps are legacy notifications, and therefore when used for SNMP Version 3 hosts, they must be enabled in conjunction with the corresponding entries in the Notify View assigned by the snmp-server group command.

Example

Console(config)#snmp-server enable traps link-up-down
Console(config)#

Related Commands

snmp-server host (206)

snmp-server host This command specifies the recipient of a Simple Network Management Protocol notification operation. Use the **no** form to remove the specified host.

Syntax

snmp-server host host-addr [inform [retry retries | timeout seconds]] community-string [version {1 | 2c | 3 {auth | noauth | priv} [udp-port port]}

no snmp-server host host-addr

host-addr - IPv4 or IPv6 address of the host (the targeted recipient). (Maximum host addresses: 5 trap destination IP address entries)

inform - Notifications are sent as inform messages. Note that this option is only available for version 2c and 3 hosts. (Default: traps are used)

retries - The maximum number of times to resend an inform message if the recipient does not acknowledge receipt. (Range: 0-255; Default: 3)

seconds - The number of seconds to wait for an acknowledgment before resending an inform message. (Range: 0-2147483647 centiseconds; Default: 1500 centiseconds)

community-string - Password-like community string sent with the notification operation to SNMP V1 and V2c hosts. Although you can set this string using the **snmp-server host** command by itself, we recommend defining it with the snmp-server community command prior to using the **snmp-server host** command. (Maximum length: 32 characters)

version - Specifies whether to send notifications as SNMP Version 1, 2c or 3 traps. (Range: 1, 2c, 3; Default: 1)

auth | noauth | priv - This group uses SNMPv3 with authentication, no authentication, or with authentication and privacy. See "Simple Network Management Protocol" in the Web Management Guide for further information about these authentication and encryption options.

port - Host UDP port to use. (Range: 1-65535; Default: 162)

Default Setting

Host Address: None **Notification Type: Traps** SNMP Version: 1 UDP Port: 162

Command Mode

Global Configuration

Command Usage

If you do not enter an **snmp-server host** command, no notifications are sent. In order to configure the switch to send SNMP notifications, you must enter at least one **snmp-server host** command. In order to enable multiple hosts, you must issue a separate **snmp-server host** command for each host.

- ◆ The snmp-server host command is used in conjunction with the snmp-server enable traps command. Use the snmp-server enable traps command to enable the sending of traps or informs and to specify which SNMP notifications are sent globally. For a host to receive notifications, at least one snmp-server enable traps command and the snmp-server host command for that host must be enabled.
- Some notification types cannot be controlled with the snmp-server enable traps command. For example, some notification types are always enabled.
- Notifications are issued by the switch as trap messages by default. The recipient of a trap message does not send a response to the switch. Traps are therefore not as reliable as inform messages, which include a request for acknowledgement of receipt. Informs can be used to ensure that critical information is received by the host. However, note that informs consume more system resources because they must be kept in memory until a response is received. Informs also add to network traffic. You should consider these effects when deciding whether to issue notifications as traps or informs.

To send an inform to a SNMPv2c host, complete these steps:

- 1. Enable the SNMP agent (page 201).
- 2. Create a view with the required notification messages (page 213).
- **3.** Create a group that includes the required notify view (page 210).
- **4.** Allow the switch to send SNMP traps; i.e., notifications (page 204).
- **5.** Specify the target host that will receive inform messages with the **snmp-server host** command as described in this section.

To send an inform to a SNMPv3 host, complete these steps:

- 1. Enable the SNMP agent (page 201).
- **2.** Create a remote SNMPv3 user to use in the message exchange process (page 211).
- **3.** Create a view with the required notification messages (page 213).
- **4.** Create a group that includes the required notify view (page 210).
- **5.** Allow the switch to send SNMP traps; i.e., notifications (page 204).
- **6.** Specify the target host that will receive inform messages with the **snmp-server host** command as described in this section.
- The switch can send SNMP Version 1, 2c or 3 notifications to a host IP address, depending on the SNMP version that the management station supports. If the snmp-server host command does not specify the SNMP version, the default is to send SNMP version 1 notifications.
- ◆ If you specify an SNMP Version 3 host, then the community string is interpreted as an SNMP user name. The user name must first be defined with the snmpserver user command. Otherwise, an SNMPv3 group will be automatically created by the snmp-server host command using the name of the specified community string, and default settings for the read, write, and notify view.

Example

```
Console(config) #snmp-server host 10.1.19.23 batman
Console(config)#
```

Related Commands

snmp-server enable traps (204)

mac-notification default setting.

snmp-server This command enables the device to send SNMP traps (i.e., SNMP notifications) enable port-traps when a dynamic MAC address is added or removed. Use the no form to restore the

Syntax

[no] snmp-server enable port-traps mac-notification

mac-notification - Keyword to issue trap when a dynamic MAC address is added or removed.

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This command can enable MAC authentication traps on the current interface only if they are also enabled at the global level with the snmp-server enable traps macauthentication command.

Example

```
Console(config)#interface ethernet 1/1
{\tt Console(config-if)\#snmp-server\ enable\ port-traps\ mac-notification}
Console(config)#
```

enable port-traps interfaces.

show snmp-server This command shows if SNMP traps are enabled or disabled for the specified

Syntax

show snmp-server enable port-traps interface [interface]

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
   port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

Example

```
Console#show snmp-server enable port-traps interface
Interface MAC Notification Trap
Eth 1/1
Eth 1/2
                             Nο
Eth 1/3
                             No
```

SNMPv3 Commands

snmp-server This command configures an identification string for the SNMPv3 engine. Use the **engine-id no** form to restore the default.

Syntax

snmp-server engine-id {local | remote {ip-address}} engineid-string no snmp-server engine-id {local | remote {ip-address}}

local - Specifies the SNMP engine on this switch.

remote - Specifies an SNMP engine on a remote device.

ip-address - IPv4 or IPv6 address of the remote device.

engineid-string - String identifying the engine ID. (Range: 1-26 hexadecimal characters)

Default Setting

A unique engine ID is automatically generated by the switch based on its MAC address.

Command Mode

Global Configuration

Command Usage

- An SNMP engine is an independent SNMP agent that resides either on this switch or on a remote device. This engine protects against message replay, delay, and redirection. The engine ID is also used in combination with user passwords to generate the security keys for authenticating and encrypting SNMPv3 packets.
- A remote engine ID is required when using SNMPv3 informs. (See the snmpserver host command.) The remote engine ID is used to compute the security digest for authentication and encryption of packets passed between the switch and a user on the remote host. SNMP passwords are localized using the engine ID of the authoritative agent. For informs, the authoritative SNMP agent is the

remote agent. You therefore need to configure the remote agent's SNMP engine ID before you can send proxy requests or informs to it.

- Trailing zeroes need not be entered to uniquely specify a engine ID. In other words, the value "0123456789" is equivalent to "0123456789" followed by 16 zeroes for a local engine ID.
- A local engine ID is automatically generated that is unique to the switch. This is referred to as the default engine ID. If the local engine ID is deleted or changed, all SNMP users will be cleared. You will need to reconfigure all existing users (page 211).

Example

```
Console(config) #snmp-server engine-id local 1234567890
Console(config) #snmp-server engineID remote 9876543210 192.168.1.19
Console(config)#
```

Related Commands

snmp-server host (206)

snmp-server group This command adds an SNMP group, mapping SNMP users to SNMP views. Use the **no** form to remove an SNMP group.

Syntax

```
snmp-server group groupname
 {v1 | v2c | v3 {auth | noauth | priv}}
 [read readview] [write writeview] [notify notifyview]
```

no snmp-server group groupname

groupname - Name of an SNMP group. (Range: 1-32 characters)

v1 | **v2c** | **v3** - Use SNMP version 1, 2c or 3.

auth | noauth | priv - This group uses SNMPv3 with authentication, no authentication, or with authentication and privacy. See "Simple Network Management Protocol" in the Web Management Guide for further information about these authentication and encryption options.

readview - Defines the view for read access. (1-32 characters)

writeview - Defines the view for write access. (1-32 characters)

notifyview - Defines the view for notifications. (1-32 characters)

Default Setting

Default groups: public¹ (read only), private² (read/write) readview - Every object belonging to the Internet OID space (1). writeview - Nothing is defined. notifyview - Nothing is defined.

1. No view is defined.

Command Mode

Global Configuration

Command Usage

- ◆ A group sets the access policy for the assigned users.
- When authentication is selected, the MD5 or SHA algorithm is used as specified in the snmp-server user command.
- ♦ When privacy is selected, the DES 56-bit algorithm is used for data encryption.
- For additional information on the notification messages supported by this switch, see the Web Management Guide. Also, note that the authentication, linkup and link-down messages are legacy traps and must therefore be enabled in conjunction with the snmp-server enable traps command.

Example

```
Console(config) #snmp-server group r&d v3 auth write daily
Console(config)#
```

snmp-server user This command adds a user to an SNMP group, restricting the user to a specific SNMP Read, Write, or Notify View. Use the **no** form to remove a user from an SNMP group.

Syntax

```
snmp-server user username groupname
 {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password
 [priv des56 priv-password]]
```

snmp-server user username groupname **remote** ip-address **{v3** [encrypted] [auth {md5 | sha} auth-password [priv des56 priv-password]]

no snmp-server user username {v1 | v2c | v3 | remote}

username - Name of user connecting to the SNMP agent. (Range: 1-32 characters)

groupname - Name of an SNMP group to which the user is assigned. (Range: 1-32 characters)

remote - Specifies an SNMP engine on a remote device.

ip-address - IPv4 address of the remote device.

v1 | **v2c** | **v3** - Use SNMP version 1, 2c or 3.

encrypted - Accepts the password as encrypted input.

auth - Uses SNMPv3 with authentication.

^{2.} Maps to the defaultview.

md5 | sha - Uses MD5 or SHA authentication.

auth-password - Authentication password. Enter as plain text if theencrypted option is not used. Otherwise, enter an encrypted password.(A minimum of eight characters is required.)

priv des56 - Uses SNMPv3 with privacy with DES56 encryption.

priv-password - Privacy password. Enter as plain text if the **encrypted** option is not used. Otherwise, enter an encrypted password.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- ◆ Local users (i.e., the command does not specify a remote engine identifier) must be configured to authorize management access for SNMPv3 clients, or to identify the source of SNMPv3 trap messages sent from the local switch.
- Remote users (i.e., the command specifies a remote engine identifier) must be configured to identify the source of SNMPv3 inform messages sent from the local switch.
- ◆ The SNMP engine ID is used to compute the authentication/privacy digests from the password. You should therefore configure the engine ID with the snmp-server engine-id command before using this configuration command.
- Before you configure a remote user, use the snmp-server engine-id command to specify the engine ID for the remote device where the user resides. Then use the snmp-server user command to specify the user and the IP address for the remote device where the user resides. The remote agent's SNMP engine ID is used to compute authentication/privacy digests from the user's password. If the remote engine ID is not first configured, the snmp-server user command specifying a remote user will fail.
- SNMP passwords are localized using the engine ID of the authoritative agent. For informs, the authoritative SNMP agent is the remote agent. You therefore need to configure the remote agent's SNMP engine ID before you can send proxy requests or informs to it.

Example

Console(config) #snmp-server user steve group r&d v3 auth md5 greenpeace priv des56 einstien
Console(config) #snmp-server user mark group r&d remote 192.168.1.19 v3 auth md5 greenpeace priv des56 einstien
Console(config) #

snmp-server view This command adds an SNMP view which controls user access to the MIB. Use the **no** form to remove an SNMP view.

Syntax

snmp-server view *view-name oid-tree* {**included** | **excluded**}

no snmp-server view view-name

view-name - Name of an SNMP view. (Range: 1-32 characters)

oid-tree - Object identifier of a branch within the MIB tree. Wild cards can be used to mask a specific portion of the OID string. (Refer to the examples.)

included - Defines an included view.

excluded - Defines an excluded view.

Default Setting

defaultview (includes access to the entire MIB tree)

Command Mode

Global Configuration

Command Usage

- ◆ Views are used in the snmp-server group command to restrict user access to specified portions of the MIB tree.
- ◆ The predefined view "defaultview" includes access to the entire MIB tree.

Examples

This view includes MIB-2.

```
Console(config) #snmp-server view mib-2 1.3.6.1.2.1 included
Console(config)#
```

This view includes the MIB-2 interfaces table, if Descr. The wild card is used to select all the index values in this table.

```
Console(config) #snmp-server view if Entry. 2 1.3.6.1.2.1.2.2.1.*.2 included
Console(config)#
```

This view includes the MIB-2 interfaces table, and the mask selects all index entries.

```
Console(config) #snmp-server view if Entry.a 1.3.6.1.2.1.2.2.1.1.* included
Console(config)#
```

show snmp engine-id This command shows the SNMP engine ID.

Command Mode

Privileged Exec

Example

This example shows the default engine ID.

```
Console#show snmp engine-id
Local SNMP EngineID: 8000002a8000000000e8666672
Local SNMP EngineBoots: 1

Remote SNMP EngineID IP address
80000000030004e2b316c54321 192.168.1.19
Console#
```

Table 30: show snmp engine-id - display description

Field	Description
Local SNMP engineID	String identifying the engine ID.
Local SNMP engineBoots	The number of times that the engine has (re-)initialized since the snmp EngineID was last configured.
Remote SNMP engineID	String identifying an engine ID on a remote device.
IP address	IP address of the device containing the corresponding remote SNMP engine.

show snmp group

Four default groups are provided – SNMPv1 read-only access and read/write access, and SNMPv2c read-only access and read/write access.

Command Mode

Privileged Exec

```
Console#show snmp group
Group Name: r&d
Security Model: v3
Read View: defaultview
Write View: daily
Notify View: none
Storage Type: permanent
Row Status: active

Group Name: public
Security Model: v1
Read View: defaultview
Write View: none
Notify View: none
Storage Type: volatile
Row Status: active
```

Group Name: public Security Model: v2c Read View: defaultview Write View: none Notify View: none Storage Type: volatile Row Status: active

Group Name: private Security Model: v1 Read View: defaultview Write View: defaultview Notify View: none Storage Type: volatile Row Status: active

Group Name: private Security Model: v2c Read View: defaultview Write View: defaultview Notify View: none Storage Type: volatile Row Status: active

Console#

Table 31: show snmp group - display description

Field	Description
Group Name	Name of an SNMP group.
Security Model	The SNMP version.
Read View	The associated read view.
Write View	The associated write view.
Notify View	The associated notify view.
Storage Type	The storage type for this entry.
Row Status	The row status of this entry.

show snmp user This command shows information on SNMP users.

Command Mode

Privileged Exec

Example

Console#show snmp user

Engine ID : 800001030300e00c0000fd0000 User Name : steve

User Name : steve
Group Name : rd
Security Model : v1
Authentication Protocol : None
Privacy Protocol : None
Storage Type : Nonvolatile
Row Status : Active

Chapter 5 | SNMP Commands SNMPv3 Commands

SNMP remote user

: 0000937564846450000 Engine ID

User Name : mark Group Name : public

Security Model : v3
Security Level : Anthentication and privacy

 ${\tt Authentication\ Protocol\ :\ MD5}$ Privacy Protocol : DES56 Storage Type : Nonvolatile Row Status : Active

Console#

Table 32: show snmp user - display description

Field	Description
Engine ID	String identifying the engine ID.
User Name	Name of user connecting to the SNMP agent.
Group Name	Name of an SNMP group.
Security Model	The user security model: SNMP v1, v2c or v3.
Security Level	Indicates if authentication or encryption are used.
Authentication Protocol	The authentication protocol used with SNMPv3.
Privacy Protocol	The privacy protocol used with SNMPv3.
Storage Type	The storage type for this entry.
Row Status	The row status of this entry.
SNMP remote user	A user associated with an SNMP engine on a remote device.

show snmp view This command shows information on the SNMP views.

Command Mode

Privileged Exec

Example

Console#show snmp view View Name: mib-2

Subtree OID: 1.2.2.3.6.2.1

View Type: included Storage Type: permanent Row Status: active

View Name: defaultview Subtree OID: 1 View Type: included

Storage Type: volatile Row Status: active

Console#

Table 33: show snmp view - display description

Field	Description
View Name	Name of an SNMP view.
Subtree OID	A branch in the MIB tree.
View Type	Indicates if the view is included or excluded.
Storage Type	The storage type for this entry.
Row Status	The row status of this entry.

Notification Log Commands

nlm This command enables or disables the specified notification log.

Syntax

[no] nlm filter-name

filter-name - Notification log name. (Range: 1-32 characters)

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- Notification logging is enabled by default, but will not start recording information until a logging profile specified by the snmp-server notify-filter command is enabled by the nlm command.
- Disabling logging with this command does not delete the entries stored in the notification log.

Example

This example enables the notification log A1.

Console(config)#nlm A1
Console(config)#

notify-filter log.

snmp-server This command creates an SNMP notification log. Use the **no** form to remove this

Syntax

[no] snmp-server notify-filter profile-name remote ip-address

profile-name - Notification log profile name. (Range: 1-32 characters)

ip-address - IPv4 or IPv6 address of a remote device. The specified target host must already have been configured using the snmp-server host command.

Note: The notification log is stored locally. It is not sent to a remote device. This remote host parameter is only required to complete mandatory fields in the SNMP Notification MIB.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Systems that support SNMP often need a mechanism for recording Notification information as a hedge against lost notifications, whether there are Traps or Informs that may be exceeding retransmission limits. The Notification Log MIB (NLM, RFC 3014) provides an infrastructure in which information from other MIBs may be logged.
- Given the service provided by the NLM, individual MIBs can now bear less responsibility to record transient information associated with an event against the possibility that the Notification message is lost, and applications can poll the log to verify that they have not missed any important Notifications.
- If notification logging is not configured and enabled, when the switch reboots, some SNMP traps (such as warm start) cannot be logged.
- To avoid this problem, notification logging should be configured and enabled using the **snmp-server notify-filter** command and nlm command, and these commands stored in the startup configuration file. Then when the switch reboots, SNMP traps (such as warm start) can now be logged.
- When this command is executed, a notification log is created (with the default parameters defined in RFC 3014). Notification logging is enabled by default (see the nlm command), but will not start recording information until a logging profile specified with this command is enabled with the nlm command.
- Based on the default settings used in RFC 3014, a notification log can contain up to 256 entries, and the entry aging time is 1440 minutes. Information

recorded in a notification log, and the entry aging time can only be configured using SNMP from a network management station.

When a trap host is created with the snmp-server host command, a default notify filter will be created as shown in the example under the show snmp notify-filter command.

Example

This example first creates an entry for a remote host, and then instructs the switch to record this device as the remote host for the specified notification log.

```
Console(config) #snmp-server host 10.1.19.23 batman
Console(config) #snmp-server notify-filter A1 remote 10.1.19.23
Console#
```

show nlm oper-status This command shows the operational status of configured notification logs.

Command Mode

Privileged Exec

Example

```
Console#show nlm oper-status
Filter Name: A1
Oper-Status: Operational
Console#
```

notify-filter

show snmp This command displays the configured notification logs.

Command Mode

Privileged Exec

Example

This example displays the configured notification logs and associated target hosts.

```
Console#show snmp notify-filter
Filter profile name
                          IP address
                           10.1.19.23
Console#
```

Additional Trap Commands

memory This command sets an SNMP trap based on configured thresholds for memory utilization. Use the **no** form to restore the default setting.

Syntax

memory {rising rising-threshold | falling falling-threshold}

no memory {rising | falling}

rising-threshold - Rising threshold for memory utilization alarm expressed in percentage. (Range: 1-100)

falling-threshold - Falling threshold for memory utilization alarm expressed in percentage. (Range: 1-100)

Default Setting

Rising Threshold: 90% Falling Threshold: 70%

Command Mode

Global Configuration

Command Usage

Once the rising alarm threshold is exceeded, utilization must drop beneath the falling threshold before the alarm is terminated, and then exceed the rising threshold again before another alarm is triggered.

Example

```
Console(config) #memory rising 80
Console(config) #memory falling 60
Console#
```

Related Commands

show memory (126)

process cpu This command sets an SNMP trap based on configured thresholds for CPU utilization. Use the no form to restore the default setting.

Syntax

process cpu {rising rising-threshold | falling falling-threshold}

no process cpu {rising | falling}

rising-threshold - Rising threshold for CPU utilization alarm expressed in percentage. (Range: 1-100)

falling-threshold - Falling threshold for CPU utilization alarm expressed in percentage. (Range: 1-100)

Default Setting

Rising Threshold: 90% Falling Threshold: 70%

Command Mode

Global Configuration

Command Usage

Once the rising alarm threshold is exceeded, utilization must drop beneath the falling threshold before the alarm is terminated, and then exceed the rising threshold again before another alarm is triggered.

Example

Console(config)#process cpu rising 80
Console(config)#process cpu falling 60
Console#

Related Commands

show process cpu (127)

Chapter 5 | SNMP Commands Additional Trap Commands

Remote Monitoring Commands

Remote Monitoring allows a remote device to collect information or respond to specified events on an independent basis. This switch is an RMON-capable device which can independently perform a wide range of tasks, significantly reducing network management traffic. It can continuously run diagnostics and log information on network performance. If an event is triggered, it can automatically notify the network administrator of a failure and provide historical information about the event. If it cannot connect to the management agent, it will continue to perform any specified tasks and pass data back to the management station the next time it is contacted.

This switch supports mini-RMON, which consists of the Statistics, History, Event and Alarm groups. When RMON is enabled, the system gradually builds up information about its physical interfaces, storing this information in the relevant RMON database group. A management agent then periodically communicates with the switch using the SNMP protocol. However, if the switch encounters a critical event, it can automatically send a trap message to the management agent which can then respond to the event if so configured.

Table 34: RMON Commands

Command	Function	Mode
rmon alarm	Sets threshold bounds for a monitored variable	GC
rmon event	Creates a response event for an alarm	GC
rmon collection history	Periodically samples statistics	IC
rmon collection rmon1	Enables statistics collection	IC
show rmon alarms	Shows the settings for all configured alarms	PE
show rmon events	Shows the settings for all configured events	PE
show rmon history	Shows the sampling parameters for each entry	PE
show rmon statistics	Shows the collected statistics	PE

rmon alarm This command sets threshold bounds for a monitored variable. Use the **no** form to remove an alarm.

Syntax

rmon alarm index variable interval {absolute | delta} rising-threshold threshold [event-index] falling-threshold threshold [event-index] [**owner** name]

no rmon alarm index

index – Index to this entry. (Range: 1-65535)

variable – The object identifier of the MIB variable to be sampled. Only variables of the type ether Stats Entry.n.n may be sampled. Note that etherStatsEntry.n uniquely defines the MIB variable, and etherStatsEntry.n.n defines the MIB variable, plus the etherStatsIndex. For example, 1.3.6.1.2.1.16.1.1.1.6.1 denotes etherStatsBroadcastPkts, plus the etherStatsIndex of 1.

interval – The polling interval. (Range: 1-31622400 seconds)

absolute - The variable is compared directly to the thresholds at the end of the sampling period.

delta – The last sample is subtracted from the current value and the difference is then compared to the thresholds.

threshold – An alarm threshold for the sampled variable. (Range: 0-2147483647)

event-index – The index of the event to use if an alarm is triggered. If there is no corresponding entry in the event control table, then no event will be generated. (Range: 1-65535)

name - Name of the person who created this entry. (Range: 1-127 characters)

Default Setting

1.3.6.1.2.1.16.1.1.1.6.1 - 1.3.6.1.2.1.16.1.1.1.6.28/52 Taking delta samples every 30 seconds, Rising threshold is 892800, assigned to event 0 Falling threshold is 446400, assigned to event 0

Command Mode

Global Configuration

Command Usage

- If an event is already defined for an index, the entry must be deleted before any changes can be made with this command.
- If the current value is greater than or equal to the rising threshold, and the last sample value was less than this threshold, then an alarm will be generated. After a rising event has been generated, another such event will not be

generated until the sampled value has fallen below the rising threshold, reaches the falling threshold, and again moves back up to the rising threshold.

If the current value is less than or equal to the falling threshold, and the last sample value was greater than this threshold, then an alarm will be generated. After a falling event has been generated, another such event will not be generated until the sampled value has risen above the falling threshold, reaches the rising threshold, and again moves back down to the failing threshold.

Example

```
Console(config) #rmon alarm 1 1.3.6.1.2.1.16.1.1.6.1 15 delta
 rising-threshold 100 1 falling-threshold 30 1 owner mike
Console(config)#
```

rmon event This command creates a response event for an alarm. Use the **no** form to remove an event.

Syntax

rmon event index [**log**] | [**trap** community] | [**description** string] | [**owner** name] no rmon event index

index – Index to this entry. (Range: 1-65535)

log – Generates an RMON log entry when the event is triggered. Log messages are processed based on the current configuration settings for event logging (see "Event Logging" on page 162).

trap – Sends a trap message to all configured trap managers (see the snmp-server host command).

community – A password-like community string sent with the trap operation to SNMP v1 and v2c hosts. Although this string can be set using the **rmon event** command by itself, it is recommended that the string be defined using the snmp-server community command prior to using the rmon event command. (Range: 1-32 characters)

string – A comment that describes this event. (Range: 1-127 characters)

name – Name of the person who created this entry. (Range: 1-127 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- If an event is already defined for an index, the entry must be deleted before any changes can be made with this command.
- The specified events determine the action to take when an alarm triggers this event. The response to an alarm can include logging the alarm or sending a message to a trap manager.

Example

```
Console(config) #rmon event 2 log description urgent owner mike
Console(config)#
```

rmon collection This command periodically samples statistics on a physical interface. Use the no history form to disable periodic sampling.

Syntax

```
rmon collection history controlEntry index
 [[owner name] [buckets number] [interval seconds]] |
```

[buckets number] [interval seconds] | interval seconds

no rmon collection history controlEntry index

```
index – Index to this entry. (Range: 1-65535)
```

number – The number of buckets requested for this entry. (Range: 1-65536)

seconds – The polling interval. (Range: 1-3600 seconds)

name – Name of the person who created this entry.

(Range: 1-127 characters)

Default Setting

1.3.6.1.2.1.16.1.1.1.6.1 - 1.3.6.1.2.1.16.1.1.1.6.28/52

Buckets: 50

Interval: 30 seconds for even numbered entries, 1800 seconds for odd numbered entries

Command Mode

Interface Configuration (Ethernet)

Command Usage

- By default, each index number equates to a port on the switch, but can be changed to any number not currently in use.
- If periodic sampling is already enabled on an interface, the entry must be deleted before any changes can be made with this command.
- ◆ The information collected for each sample includes:

input octets, packets, broadcast packets, multicast packets, undersize packets, oversize packets, fragments, jabbers, CRC alignment errors, collisions, drop events, and network utilization.

The switch reserves two controlEntry index entries for each port. If a default index entry is re-assigned to another port by this command, the show running-config command will display a message indicating that this index is not available for the port to which is normally assigned.

For example, if control entry 15 is assigned to port 5 as shown below, the **show** running-config command will indicate that this entry is not available for port

```
Console(config) #interface ethernet 1/5
Console(config-if) #rmon collection history controlEntry 15
Console(config-if)#end
Console#show running-config
interface ethernet 1/5
rmon collection history controlEntry 15 buckets 50 interval 1800
interface ethernet 1/8
no rmon collection history controlEntry 15
```

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #rmon collection history controlentry 21 owner mike buckets
 24 interval 60
Console(config-if)#
```

rmon collection This command enables the collection of statistics on a physical interface. Use the rmon1 no form to disable statistics collection.

Syntax

```
rmon collection rmon1 controlEntry index [owner name]
no rmon collection rmon1 controlEntry index
```

```
index – Index to this entry. (Range: 1-65535)
name – Name of the person who created this entry.
(Range: 1-127 characters)
```

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

• By default, each index number equates to a port on the switch, but can be changed to any number not currently in use.

- If statistics collection is already enabled on an interface, the entry must be deleted before any changes can be made with this command.
- The information collected for each entry includes:

input octets, packets, broadcast packets, multicast packets, undersize packets, oversize packets, fragments, jabbers, CRC alignment errors, collisions, drop events, and packets of specified lengths

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #rmon collection rmon1 controlentry 1 owner mike
Console(config-if)#
```

show rmon alarms This command shows the settings for all configured alarms.

Command Mode

Privileged Exec

Example

```
Console#show rmon alarms
Alarm 1 is valid, owned by
Monitors 1.3.6.1.2.1.16.1.1.6.1 every 30 seconds
Taking delta samples, last value was 0
Rising threshold is 892800, assigned to event 0
 Falling threshold is 446400, assigned to event 0
```

show rmon events This command shows the settings for all configured events.

Command Mode

Privileged Exec

Example

```
Console#show rmon events
Event 2 is valid, owned by mike
Description is urgent
Event firing causes log and trap to community , last fired 00:00:00
Console#
```

show rmon history This command shows the sampling parameters configured for each entry in the history group.

Command Mode

Privileged Exec

Example

```
Console#show rmon history
Entry 1 is valid, and owned by
Monitors 1.3.6.1.2.1.2.2.1.1.1 every 1800 seconds
Requested # of time intervals, ie buckets, is 8
Granted # of time intervals, ie buckets, is 8
 Sample # 1 began measuring at 00:00:01
 Received 77671 octets, 1077 packets,
 61 broadcast and 978 multicast packets,
 0 undersized and 0 oversized packets,
 0 fragments and 0 jabbers packets,
 0 CRC alignment errors and 0 collisions.
  # of dropped packet events is 0
 Network utilization is estimated at 0
```

show rmon statistics This command shows the information collected for all configured entries in the statistics group.

Command Mode

Privileged Exec

Example

```
Console#show rmon statistics
Interface 1 is valid, and owned by
Monitors 1.3.6.1.2.1.2.2.1.1.1 which has
Received 164289 octets, 2372 packets,
120 broadcast and 2211 multicast packets,
 0 undersized and 0 oversized packets,
 0 fragments and 0 jabbers,
 0 CRC alignment errors and 0 collisions.
 # of dropped packet events (due to lack of resources): 0
 # of packets received of length (in octets):
 64: 2245, 65-127: 87, 128-255: 31,
  256-511: 5, 512-1023: 2, 1024-1518: 2
```

Flow Sampling Commands

Flow sampling (sFlow) can be used with a remote sFlow Collector to provide an accurate, detailed and real-time overview of the types and levels of traffic present on the network. The sFlow Agent samples 1 out of *n* packets from all data traversing the switch, re-encapsulates the samples as sFlow datagrams and transmits them to the sFlow Collector. This sampling occurs at the internal hardware level where all traffic is seen, whereas traditional probes only have a partial view of traffic as it is sampled at the monitored interface. Moreover, the processor and memory load imposed by the sFlow agent is minimal since local analysis does not take place.

Note: The terms "collector", "receiver" and "owner", in the context of this chapter, all refer to a remote server capable of receiving the sFlow datagrams generated by the sFlow agent of the switch.

Table 35: sFlow Commands

Command	Function	Mode
sflow owner	Creates an sFlow collector which the switch uses to send samples to.	PE
sflow polling instance	Configures an sFlow polling data source that takes samples periodically based on time.	PE
sflow sampling instance	Configures an sFlow sampling data source that samples periodically based on a packet count.	PE
show sflow	Shows the global and interface settings for the sFlow process	PE

sflow owner This command creates an sFlow collector on the switch. Use the **no** form to remove the sFlow receiver.

Syntax

sflow owner owner-name **timeout** timeout-value [destination {ipv4-address | ipv6-address}] [port destination-udp-port] [max-datagram-size max-datagram-size] [version {v4 | v5}]

no sflow owner owner-name

owner-name - Name of the collector. (Range: 1-30 alphanumeric characters) timeout-value - The length of time the sFlow interface is available to send samples to a receiver, after which the owner and associated polling and

sampling data source instances are removed from the configuration. (Range: 30-10000000 seconds)

ipv4-address - IPv4 address of the sFlow collector. Valid IPv4 addresses consist of four decimal numbers, 0 to 255, separated by periods.

ipv6-address - IPv6 address of the sFlow collector. A full IPv6 address including the network prefix and host address bits. An IPv6 address consists of 8 colon-separated 16-bit hexadecimal values. One double colon may be used to indicate the appropriate number of zeros required to fill the undefined fields.

destination-udp-port - The UDP port on which the collector is listening for sFlow streams. (Range: 1-65535)

max-datagram-size - The maximum size of the sFlow datagram payload. (Range: 200-1500 bytes)

version {**v4** | **v5**} - Sends either v4 or v5 sFlow datagrams to the receiver.

Default Setting

No owner is configured UDP Port: 6343 Version: v4

Maximum Datagram Size: 1400 bytes

Command Mode

Privileged Exec

Command Usage

- Use the **sflow owner** command to create an owner instance of an sFlow collector. If the socket port, maximum datagram size, and datagram version are not specified, then the default values are used.
- Once an owner is created, the **sflow owner** command can again be used to modify the owner's port number. All other parameter values for the owner will be retained if the port is modified.
- Use the **no sflow owner** command to remove the collector.
- When the **sflow owner** command is issued, it's associated timeout value will immediately begin to count down. Once the timeout value has reached zero seconds, the sFlow owner and it's associated sampling sources will be deleted from the configuration.

Example

This example shows an sflow collector being created on the switch.

```
Console(config)#sflow owner stat_server1 timeout 100 destination
  192.168.220.225 port 22500 max-datagram-size 512 version v5
Console(config)#
```

This example shows how to modify the sFlow port number for an already configured collector.

```
Console(config) #sflow owner stat_server1 timeout 100 port 35100
Console(config)#
```

sflow polling instance This command enables an sFlow polling data source, for a specified interface, that polls periodically based on a specified time interval. Use the **no** form to remove the polling data source instance from the switch's sFlow configuration.

Syntax

sflow polling {interface *interface*} **instance** *instance-id* **receiver** *owner-name* polling-interval seconds

no sflow polling {interface interface} instance instance-id

interface - The source from which the samples will be taken at specified intervals and sent to a collector.

ethernet unit/port

```
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
```

instance-id - An instance ID used to identify the sampling source. (Range: 1)

owner-name - The associated receiver, to which the samples will be sent. (Range: 1-30 alphanumeric characters)

polling-interval - The time interval at which the sFlow process adds counter values to the sample datagram. (Range: 0-10000000 seconds, 0 disables this feature)

Default Setting

No sFlow polling instance is configured.

Command Mode

Privileged Exec

Command Usage

This command enables a polling data source and configures the interval at which counter values are added to the sample datagram.

Example

This example sets the polling interval to 10 seconds.

```
Console(config)#interface ethernet 1/9
Console(config-if) #sflow polling-interval 10
Console(config-if)#
```

sflow sampling This command enables an sFlow data source instance for a specific interface that instance takes samples periodically based on the number of packets processed. Use the no form to remove the sampling data source instance from the switch's sFlow configuration.

Syntax

sflow sampling {interface interface} instance instance-id receiver owner-name sampling-rate sample-rate [max-header-size max-header-size]

no sflow sample {interface interface} instance instance-id

interface - The source from which the samples will be taken and sent to a collector.

ethernet *unit/port*

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

instance-id - An instance ID used to identify the sampling source. (Range: 1)

owner-name - The associated receiver, to which the samples will be sent. (Range: 1-30 alphanumeric characters)

sample-rate - The packet sampling rate, or the number of packets out of which one sample will be taken. (Range: 256-16777215 packets)

max-header-size - The maximum size of the sFlow datagram header. (Range: 64-256 bytes)

Default Setting

No sFlow sampling instance id configured. Maximum Header Size: 128 bytes

Command Mode

Privileged Exec

Example

This example enables a sampling data source on Ethernet interface 1/1, an associated receiver named "owner1", and a sampling rate of one out of 100. The maximum header size is also set to 200 bytes.

Console# sflow sampling interface ethernet 1/1 instance 1 receiver owner1 sampling-rate 100 max-header-size 200 Console#

The following command removes a sampling data source from Ethernet interface 1/1

```
Console# no sflow sampling interface ethernet 1/1 instance 1
Console#
```

show sflow This command shows the global and interface settings for the sFlow process.

Syntax

```
show sflow [owner owner-name | interface interface]
  owner-name - The associated receiver, to which the samples are sent.
  (Range: 1-30 alphanumeric characters)
  interface
  ethernet unit/port
     unit - Unit identifier. (Range: 1-8)
     port - Port number. (Range: 1-28/52)
```

Command Mode

Privileged Exec

Example

```
Console#show sflow interface ethernet 1/2

Receiver Owner Name : stat1
Receiver Timeout : 99633 sec
Receiver Destination : 192.168.32.32
Receiver Socket Port : 6343
Maximum Datagram Size : 1400 bytes
Datagram Version : 4

Data Source : Eth 1/2
Sampling Instance ID : 1
Sampling Rate : 512
Maximum Header Size : 128 bytes

Console#
```

8

Authentication Commands

You can configure this switch to authenticate users logging into the system for management access using local or remote authentication methods. Port-based authentication using IEEE 802.1X can also be configured to control either management access to the uplink ports or client access³ to the data ports.

Table 36: Authentication Commands

Command Group	Function
User Accounts and Privilege Levels	Configures the basic user names and passwords for management access, and assigns a privilege level to specified command groups or individual commands
Authentication Sequence	Defines logon authentication method and precedence
RADIUS Client	Configures settings for authentication via a RADIUS server
TACACS+ Client	Configures settings for authentication via a TACACS+ server
AAA	Configures authentication, authorization, and accounting for network access
Web Server	Enables management access via a web browser
Telnet Server	Enables management access via Telnet
Secure Shell	Provides secure replacement for Telnet
802.1X Port Authentication	Configures host authentication on specific ports using 802.1X
Management IP Filter	Configures IP addresses that are allowed management access
PPPoE Intermediate Agent	Configures relay parameters required for sending authentication messages between a client and broadband remote access servers

^{3.} For other methods of controlling client access, see "General Security Measures" on page 303.

User Accounts and Privilege Levels

The basic commands required for management access and assigning command privilege levels are listed in this section. This switch also includes other options for password checking via the console or a Telnet connection (page 151), user authentication via a remote authentication server (page 237), and host access authentication for specific ports (page 276).

Table 37: User Access Commands

Command	Function	Mode
enable password	Sets a password to control access to the Privileged Exec level	GC
username	Establishes a user name-based authentication system at login	GC
privilege	Assigns a privilege level to specified command groups or individual commands	GC
show privilege	Shows the privilege level for the current user, or the privilege level for commands modified by the privilege command	PE

enable password

After initially logging onto the system, you should set the Privileged Exec password. Remember to record it in a safe place. This command controls access to the Privileged Exec level from the Normal Exec level. Use the **no** form to reset the default password.

Syntax

enable password [level level] {0 | 7} password

no enable password [level level]

level level - Sets the command access privileges. (Range: 0-15)

Level 0, 8 and 15 are designed for users (guest), managers (network maintenance), and administrators (top-level access). The other levels can be used to configured specialized access profiles.

Level 0-7 provide the same default access privileges, all within Normal Exec mode under the "Console>" command prompt.

Level 8-14 provide the same default access privileges, including additional commands in Normal Exec mode, and a subset of commands in Privileged Exec mode under the "Console#" command prompt.

Level 15 provides full access to all commands.

The privilege level associated with any command can be changed using the privilege command.

{**0** | **7**} - 0 means plain password, 7 means encrypted password.

password - Password for this privilege level.

(Maximum length: 32 characters plain text or encrypted, case sensitive)

Default Setting

The default is level 15. The default password is "super"

Command Mode

Global Configuration

Command Usage

- You cannot set a null password. You will have to enter a password to change the command mode from Normal Exec to Privileged Exec with the enable command.
- The encrypted password is required for compatibility with legacy password settings (i.e., plain text or encrypted) when reading the configuration file during system bootup or when downloading the configuration file from an FTP server. There is no need for you to manually configure encrypted passwords.

Example

```
Console(config) #enable password level 15 0 admin
Console(config)#
```

Related Commands

enable (109) authentication enable (242)

username This command adds named users, requires authentication at login, specifies or changes a user's password (or specify that no password is required), or specifies or changes a user's access level. Use the **no** form to remove a user name.

Syntax

username name {access-level | nopassword | password {0 | 7} password} no username name

name - The name of the user. (Maximum length: 32 characters, case sensitive. Maximum users: 16)

The device has two predefined users, **guest** which is assigned privilege level **0** (Normal Exec) and has access to a limited number of commands, and admin which is assigned privilege level 15 and has full access to all commands.

access-level *level* - Specifies command access privileges. (Range: 0-15)

Level 0, 8 and 15 are designed for users (quest), managers (network maintenance), and administrators (top-level access). The other levels can be used to configured specialized access profiles.

Level 0-7 provide the same default access privileges, all within Normal Exec mode under the "Console>" command prompt.

User Accounts and Privilege Levels

Level 8-14 provide the same default access privileges, including additional commands in Normal Exec mode, and a subset of commands in Privileged Exec mode under the "Console#" command prompt.

Level 15 provides full access to all commands.

The privilege level associated with any command can be changed using the privilege command.

Any privilege level can access all of the commands assigned to lower privilege levels. For example, privilege level 8 can access all commands assigned to privilege levels 7-0 according to default settings, and to any other commands assigned to levels 7-0 using the privilege command.

nopassword - No password is required for this user to log in.

{**0** | **7**} - 0 means plain password, 7 means encrypted password.

password *password* - The authentication password for the user. (Maximum length: 32 characters plain text or encrypted, case sensitive)

Default Setting

The default access level is 0 (Normal Exec).

The factory defaults for the user names and passwords are:

Table 38: Default Login Settings

username	access-level	password
guest	0	guest
admin	15	admin

Command Mode

Global Configuration

Command Usage

The encrypted password is required for compatibility with legacy password settings (i.e., plain text or encrypted) when reading the configuration file during system bootup or when downloading the configuration file from an FTP server. There is no need for you to manually configure encrypted passwords.

Example

This example shows how the set the access level and password for a user.

```
Console(config) #username bob access-level 15
Console(config) #username bob password 0 smith
Console(config)#
```

privilege This command assigns a privilege level to specified command groups or individual commands. Use the **no** form to restore the default setting.

Syntax

privilege mode [all] level level command

no privilege mode [all] command

mode - The configuration mode containing the specified command. (See "Understanding Command Modes" on page 98 and "Configuration Commands" on page 100.)

all - Modifies the privilege level for all subcommands under the specified command.

level level - Specifies the privilege level for the specified command. Refer to the default settings described for the access level parameter under the username command. (Range: 0-15)

command - Specifies any command contained within the specified mode.

Default Setting

Privilege level 0 provides access to a limited number of the commands which display the current status of the switch, as well as several database clear and reset functions. Level 8 provides access to all display status and configuration commands, except for those controlling various authentication and security features. Level 15 provides full access to all commands.

Command Mode

Global Configuration

Example

This example sets the privilege level for the ping command to Privileged Exec.

```
Console(config) #privilege exec level 15 ping
Console(config)#
```

show privilege This command shows the privilege level for the current user, or the privilege level for commands modified by the privilege command.

Syntax

show privilege [command]

command - Displays the privilege level for all commands modified by the privilege command.

Command Mode

Privileged Exec

Authentication Sequence

Example

This example shows the privilege level for any command modified by the privilege command.

```
Console#show privilege command
privilege line all level 0 accounting
privilege exec level 15 ping
Console(config)#
```

Authentication Sequence

Three authentication methods can be specified to authenticate users logging into the system for management access. The commands in this section can be used to define the authentication method and sequence.

Table 39: Authentication Sequence Commands

Command	Function	Mode
authentication enable	Defines the authentication method and precedence for command mode change	GC
authentication login	Defines logon authentication method and precedence	GC

authentication enable This command defines the authentication method and precedence to use when changing from Exec command mode to Privileged Exec command mode with the enable command. Use the **no** form to restore the default.

Syntax

authentication enable {[local] [radius] [tacacs]}

no authentication enable

local - Use local password only.

radius - Use RADIUS server password only.

tacacs - Use TACACS server password.

Default Setting

Local

Command Mode

Global Configuration

Command Usage

 RADIUS uses UDP while TACACS+ uses TCP. UDP only offers best effort delivery, while TCP offers a connection-oriented transport. Also, note that RADIUS encrypts only the password in the access-request packet from the client to the server, while TACACS+ encrypts the entire body of the packet.

- RADIUS and TACACS+ logon authentication assigns a specific privilege level for each user name and password pair. The user name, password, and privilege level must be configured on the authentication server.
- You can specify three authentication methods in a single command to indicate the authentication sequence. For example, if you enter "authentication enable radius tacacs local," the user name and password on the RADIUS server is verified first. If the RADIUS server is not available, then authentication is attempted on the TACACS+ server. If the TACACS+ server is not available, the local user name and password is checked.

Example

```
Console(config) #authentication enable radius
Console(config)#
```

Related Commands

enable password - sets the password for changing command modes (238)

authentication login This command defines the login authentication method and precedence. Use the **no** form to restore the default.

Syntax

```
authentication login {[local] [radius] [tacacs]}
no authentication login
```

local - Use local password.

radius - Use RADIUS server password.

tacacs - Use TACACS server password.

Default Setting

Local

Command Mode

Global Configuration

Command Usage

- RADIUS uses UDP while TACACS+ uses TCP. UDP only offers best effort delivery, while TCP offers a connection-oriented transport. Also, note that RADIUS encrypts only the password in the access-request packet from the client to the server, while TACACS+ encrypts the entire body of the packet.
- RADIUS and TACACS+ logon authentication assigns a specific privilege level for each user name and password pair. The user name, password, and privilege level must be configured on the authentication server.

 You can specify three authentication methods in a single command to indicate the authentication sequence. For example, if you enter "authentication login radius tacacs local," the user name and password on the RADIUS server is verified first. If the RADIUS server is not available, then authentication is attempted on the TACACS+ server. If the TACACS+ server is not available, the local user name and password is checked.

Example

```
Console(config) #authentication login radius
Console(config)#
```

Related Commands

username - for setting the local user names and passwords (239)

RADIUS Client

Remote Authentication Dial-in User Service (RADIUS) is a logon authentication protocol that uses software running on a central server to control access to RADIUSaware devices on the network. An authentication server contains a database of multiple user name/password pairs with associated privilege levels for each user or group that require management access to a switch.

Table 40: RADIUS Client Commands

Command	Function	Mode
radius-server acct-port	Sets the RADIUS server network port	GC
radius-server auth-port	Sets the RADIUS server network port	GC
radius-server host	Specifies the RADIUS server	GC
radius-server key	Sets the RADIUS encryption key	GC
radius-server retransmit	Sets the number of retries	GC
radius-server timeout	Sets the interval between sending authentication requests	GC
show radius-server	Shows the current RADIUS settings	PE

radius-server This command sets the RADIUS server network port for accounting messages. Use **acct-port** the **no** form to restore the default.

Syntax

radius-server acct-port port-number no radius-server acct-port

port-number - RADIUS server UDP port used for accounting messages. (Range: 1-65535)

Default Setting

1813

Command Mode

Global Configuration

Example

```
Console(config) #radius-server acct-port 181
Console(config)#
```

auth-port default.

radius-server This command sets the RADIUS server network port. Use the **no** form to restore the

Syntax

radius-server auth-port port-number

no radius-server auth-port

port-number - RADIUS server UDP port used for authentication messages. (Range: 1-65535)

Default Setting

1812

Command Mode

Global Configuration

Example

```
Console(config) #radius-server auth-port 181
Console(config)#
```

radius-server host This command specifies primary and backup RADIUS servers, and authentication and accounting parameters that apply to each server. Use the **no** form to remove a specified server, or to restore the default values.

Syntax

[no] radius-server index host host-ip-address [acct-port acct-port] [authport auth-port] [key key] [retransmit retransmit] [timeout timeout]

index - Allows you to specify up to five servers. These servers are queried in sequence until a server responds or the retransmit period expires.

host-ip-address - IP address of server.

acct-port - RADIUS server UDP port used for accounting messages. (Range: 1-65535)

auth-port - RADIUS server UDP port used for authentication messages. (Range: 1-65535)

key - Encryption key used to authenticate logon access for client. Do not use blank spaces in the string. (Maximum length: 48 characters)

retransmit - Number of times the switch will try to authenticate logon access via the RADIUS server. (Range: 1-30)

timeout - Number of seconds the switch waits for a reply before resending a request. (Range: 1-65535)

Default Setting

auth-port - 1812 acct-port - 1813 timeout - 5 seconds retransmit - 2

Command Mode

Global Configuration

Example

```
Console(config) #radius-server 1 host 192.168.1.20 port 181 timeout 10
 retransmit 5 key green
Console(config)#
```

radius-server key This command sets the RADIUS encryption key. Use the **no** form to restore the default.

Syntax

radius-server key key-string

no radius-server key

key-string - Encryption key used to authenticate logon access for client. Do not use blank spaces in the string. (Maximum length: 48 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Console(config) #radius-server key green
Console(config)#
```

retransmit

radius-server This command sets the number of retries. Use the **no** form to restore the default.

Syntax

radius-server retransmit number-of-retries

no radius-server retransmit

number-of-retries - Number of times the switch will try to authenticate logon access via the RADIUS server. (Range: 1 - 30)

Default Setting

Command Mode

Global Configuration

Example

```
Console(config) #radius-server retransmit 5
Console(config)#
```

radius-server timeout This command sets the interval between transmitting authentication requests to the RADIUS server. Use the **no** form to restore the default.

Syntax

radius-server timeout number-of-seconds

no radius-server timeout

number-of-seconds - Number of seconds the switch waits for a reply before resending a request. (Range: 1-65535)

Default Setting

Command Mode

Global Configuration

Example

```
Console(config) #radius-server timeout 10
Console(config)#
```

show radius-server This command displays the current settings for the RADIUS server.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show radius-server
Remote RADIUS Server Configuration:
Global Settings:
Authentication Port Number: 1812
Accounting Port Number : 1813
Retransmit Times : 2
Request Timeout : 5
Server 1:
Server IP Address : 192.168.1.1
Authentication Port Number: 1812
Accounting Port Number : 1813
Retransmit Times : 2
Request Timeout : 5
RADIUS Server Group:
Group Name
                        Member Index
radius
Console#
```

TACACS+ Client

Terminal Access Controller Access Control System (TACACS+) is a logon authentication protocol that uses software running on a central server to control access to TACACS-aware devices on the network. An authentication server contains a database of multiple user name/password pairs with associated privilege levels for each user or group that require management access to a switch.

Table 41: TACACS+ Client Commands

Command	Function	Mode
tacacs-server host	Specifies the TACACS+ server and optional parameters	GC
tacacs-server key	Sets the TACACS+ encryption key	GC
tacacs-server port	Specifies the TACACS+ server network port	GC
tacacs-server retransmit	Sets the number of retries	GC
tacacs-server timeout	Sets the interval between sending authentication requests	GC
show tacacs-server	Shows the current TACACS+ settings	GC

tacacs-server host This command specifies the TACACS+ server and other optional parameters. Use the **no** form to remove the server, or to restore the default values.

Syntax

tacacs-server index host host-ip-address [key key] [port port-number] [retransmit retransmit] [timeout timeout]

no tacacs-server index

index - The index for this server. (Range: 1)

host-ip-address - IP address of a TACACS+ server.

key - Encryption key used to authenticate logon access for the client. Do not use blank spaces in the string. (Maximum length: 48 characters)

port-number - TACACS+ server TCP port used for authentication messages. (Range: 1-65535)

retransmit - Number of times the switch will try to authenticate logon access via the TACACS+ server. (Range: 1-30)

timeout - Number of seconds the switch waits for a reply before resending a request. (Range: 1-540)

Default Setting

authentication port - 49 timeout - 5 seconds retransmit - 2

Command Mode

Global Configuration

Example

```
Console(config) #tacacs-server 1 host 192.168.1.25 port 181 timeout 10
 retransmit 5 key green
Console(config)#
```

tacacs-server key This command sets the TACACS+ encryption key. Use the **no** form to restore the default.

Syntax

tacacs-server key key-string

no tacacs-server key

key-string - Encryption key used to authenticate logon access for the client. Do not use blank spaces in the string. (Maximum length: 48 characters)

Default Setting

None

TACACS+ Client

Command Mode

Global Configuration

Example

```
Console(config) #tacacs-server key green
Console(config)#
```

tacacs-server port This command specifies the TACACS+ server network port. Use the **no** form to restore the default.

Syntax

tacacs-server port port-number

no tacacs-server port

port-number - TACACS+ server TCP port used for authentication messages. (Range: 1-65535)

Default Setting

49

Command Mode

Global Configuration

Example

```
Console(config) #tacacs-server port 181
Console(config)#
```

retransmit

tacacs-server This command sets the number of retries. Use the **no** form to restore the default.

Syntax

tacacs-server retransmit number-of-retries

no tacacs-server retransmit

number-of-retries - Number of times the switch will try to authenticate logon access via the TACACS+ server. (Range: 1 - 30)

Default Setting

2

Command Mode

Global Configuration

Example

```
Console(config) #tacacs-server retransmit 5
Console(config)#
```

tacacs-server timeout This command sets the interval between transmitting authentication requests to the TACACS+ server. Use the **no** form to restore the default.

Syntax

tacacs-server timeout number-of-seconds

no tacacs-server timeout

number-of-seconds - Number of seconds the switch waits for a reply before resending a request. (Range: 1-540)

Default Setting

Command Mode

Global Configuration

Example

```
Console(config) #tacacs-server timeout 10
Console(config)#
```

show tacacs-server This command displays the current settings for the TACACS+ server.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show tacacs-server
Remote TACACS+ Server Configuration:
Global Settings:
Server Port Number: 49
Retransmit Times : 2
Timeout
Server 1:
Server IP Address : 10.11.12.13
 Server Port Number: 49
Retransmit Times : 2
                   : 4
Timeout
```

TACACS+ Server Group:	
Group Name	Member Index
tacacs+	1
Console#	

AAA

The Authentication, Authorization, and Accounting (AAA) feature provides the main framework for configuring access control on the switch. The AAA functions require the use of configured RADIUS or TACACS+ servers in the network.

Table 42: AAA Commands

Command	Function	Mode
aaa accounting commands	Enables accounting of Exec mode commands	GC
aaa accounting dot1x	Enables accounting of 802.1X services	GC
aaa accounting exec	Enables accounting of Exec services	GC
aaa accounting update	Enables periodoc updates to be sent to the accounting server	GC
aaa authorization exec	Enables authorization of Exec sessions	GC
aaa group server	Groups security servers in to defined lists	GC
server	Configures the IP address of a server in a group list	SG
accounting dot1x	Applies an accounting method to an interface for 802.1X service requests	IC
accounting commands	Applies an accounting method to CLI commands entered by a user	Line
accounting exec	Applies an accounting method to local console, Telnet or SSH connections	Line
authorization exec	Applies an authorization method to local console, Telnet or SSH connections	Line
show accounting	Displays all accounting information	PE

aaa accounting This command enables the accounting of Exec mode commands. Use the **no** form **commands** to disable the accounting service.

Syntax

aaa accounting commands level {default | method-name} start-stop group {tacacs+ | server-group}

no aaa accounting commands level {default | method-name}

level - The privilege level for executing commands. (Range: 0-15)

default - Specifies the default accounting method for service requests.

method-name - Specifies an accounting method for service requests. (Range: 1-64 characters)

start-stop - Records accounting from starting point and stopping point.

group - Specifies the server group to use.

tacacs+ - Specifies all TACACS+ hosts configured with the tacacs-server host command.

server-group - Specifies the name of a server group configured with the aaa group server command. (Range: 1-64 characters)

Default Setting

Accounting is not enabled No servers are specified

Command Mode

Global Configuration

Command Usage

- The accounting of Exec mode commands is only supported by TACACS+ servers.
- Note that the **default** and *method-name* fields are only used to describe the accounting method(s) configured on the specified TACACS+ server, and do not actually send any information to the server about the methods to use.

Example

Console(config) #aaa accounting commands 15 default start-stop group tacacs+ Console(config)#

aaa accounting dot1x This command enables the accounting of requested 802.1X services for network access. Use the **no** form to disable the accounting service.

Syntax

aaa accounting dot1x {default | *method-name***}** start-stop group {radius | tacacs+ | server-group}

no aaa accounting dot1x {default | *method-name***}**

default - Specifies the default accounting method for service requests.

method-name - Specifies an accounting method for service requests. (Range: 1-64 characters)

start-stop - Records accounting from starting point and stopping point.

group - Specifies the server group to use.

radius - Specifies all RADIUS hosts configure with the radius-server host command.

tacacs+ - Specifies all TACACS+ hosts configure with the tacacs-server host command.

server-group - Specifies the name of a server group configured with the aaa group server command. (Range: 1-64 characters)

Default Setting

Accounting is not enabled No servers are specified

Command Mode

Global Configuration

Command Usage

Note that the **default** and *method-name* fields are only used to describe the accounting method(s) configured on the specified RADIUS or TACACS+ servers, and do not actually send any information to the servers about the methods to use.

Example

Console(config) #aaa accounting dot1x default start-stop group radius Console(config)#

aaa accounting exec This command enables the accounting of requested Exec services for network access. Use the **no** form to disable the accounting service.

Syntax

aaa accounting exec {default | *method-name*} start-stop group {radius | tacacs+ | server-group}

no aaa accounting exec {default | *method-name***}**

default - Specifies the default accounting method for service requests.

method-name - Specifies an accounting method for service requests. (Range: 1-64 characters)

start-stop - Records accounting from starting point and stopping point.

group - Specifies the server group to use.

radius - Specifies all RADIUS hosts configure with the radius-server host command.

tacacs+ - Specifies all TACACS+ hosts configure with the tacacs-server host command.

server-group - Specifies the name of a server group configured with the aaa group server command. (Range: 1-64 characters)

Default Setting

Accounting is not enabled No servers are specified

Command Mode

Global Configuration

Command Usage

- ◆ This command runs accounting for Exec service requests for the local console and Telnet connections.
- Note that the **default** and *method-name* fields are only used to describe the accounting method(s) configured on the specified RADIUS or TACACS+ servers, and do not actually send any information to the servers about the methods to use.

Example

Console(config) #aaa accounting exec default start-stop group tacacs+ Console(config)#

aaa accounting This command enables the sending of periodic updates to the accounting server. **update** Use the **no** form to disable accounting updates.

Syntax

aaa accounting update [periodic interval]

no aaa accounting update

interval - Sends an interim accounting record to the server at this interval. (Range: 1-2147483647 minutes)

Default Setting

1 minute

Command Mode

Global Configuration

Command Usage

- When accounting updates are enabled, the switch issues periodic interim accounting records for all users on the system.
- Using the command without specifying an interim interval enables updates, but does not change the current interval setting.

Example

```
Console(config) #aaa accounting update periodic 30
Console(config)#
```

aaa authorization exec This command enables the authorization for Exec access. Use the **no** form to disable the authorization service.

Syntax

```
aaa authorization exec {default | method-name}
 group {tacacs+ | server-group}
```

no aaa authorization exec {default | *method-name***}**

default - Specifies the default authorization method for Exec access.

method-name - Specifies an authorization method for Exec access. (Range: 1-64 characters)

group - Specifies the server group to use.

tacacs+ - Specifies all TACACS+ hosts configured with the tacacs-server host command.

server-group - Specifies the name of a server group configured with the aaa group server command. (Range: 1-64 characters)

Default Setting

Authorization is not enabled No servers are specified

Command Mode

Global Configuration

Command Usage

- This command performs authorization to determine if a user is allowed to run an Exec shell for local console, Telnet, or SSH connections.
- ◆ AAA authentication must be enabled before authorization is enabled.
- If this command is issued without a specified named method, the default method list is applied to all interfaces or lines (where this authorization type applies), except those that have a named method explicitly defined.

Example

```
Console(config) #aaa authorization exec default group tacacs+
Console(config)#
```

aaa group server Use this command to name a group of security server hosts. To remove a server group from the configuration list, enter the **no** form of this command.

Syntax

```
[no] aaa group server {radius | tacacs+} group-name
```

radius - Defines a RADIUS server group.

tacacs+ - Defines a TACACS+ server group.

group-name - A text string that names a security server group. (Range: 1-64 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Console(config) #aaa group server radius tps
Console(config-sg-radius)#
```

server This command adds a security server to an AAA server group. Use the **no** form to remove the associated server from the group.

Syntax

```
[no] server {index | ip-address}
```

index - Specifies the server index. (Range: RADIUS 1-5, TACACS+ 1)

ip-address - Specifies the host IP address of a server.

Default Setting

None

Command Mode

Server Group Configuration

Command Usage

- When specifying the index for a RADIUS server, that server index must already be defined by the radius-server host command.
- When specifying the index for a TACACS+ server, that server index must already be defined by the tacacs-server host command.

Example

```
Console(config) #aaa group server radius tps
Console(config-sg-radius) #server 10.2.68.120
Console(config-sg-radius)#
```

accounting dot1x This command applies an accounting method for 802.1X service requests on an interface. Use the **no** form to disable accounting on the interface.

Syntax

accounting dot1x {default | list-name}

no accounting dot1x

default - Specifies the default method list created with the aga accounting dot1x command.

list-name - Specifies a method list created with the aaa accounting dot1x command.

Default Setting

None

Command Mode

Interface Configuration

Example

```
Console(config)#interface ethernet 1/2
Console(config-if) #accounting dot1x tps
Console(config-if)#
```

accounting This command applies an accounting method to entered CLI commands. Use the **commands no** form to disable accounting for entered CLI commands.

Syntax

accounting commands *level* {**default** | *list-name*}

no accounting commands level

level - The privilege level for executing commands. (Range: 0-15)

default - Specifies the default method list created with the aga accounting commands command.

list-name - Specifies a method list created with the aga accounting commands command.

Default Setting

None

Command Mode

Line Configuration

Example

```
Console(config) #line console
Console(config-line) #accounting commands 15 default
Console(config-line)#
```

accounting exec This command applies an accounting method to local console, Telnet or SSH connections. Use the **no** form to disable accounting on the line.

Syntax

accounting exec {default | *list-name***}**

no accounting exec

default - Specifies the default method list created with the aaa accounting exec command.

list-name - Specifies a method list created with the aaa accounting exec command.

Default Setting

None

Command Mode

Line Configuration

Example

```
Console(config) #line console
Console(config-line) #accounting exec tps
Console(config-line)#exit
Console(config) #line vty
Console(config-line) #accounting exec default
Console(config-line)#
```

authorization exec This command applies an authorization method to local console, Telnet or SSH connections. Use the **no** form to disable authorization on the line.

Syntax

authorization exec {default | list-name}

no authorization exec

default - Specifies the default method list created with the aaa authorization exec command.

list-name - Specifies a method list created with the aga authorization exec command.

Default Setting

None

Command Mode

Line Configuration

Example

```
Console(config) #line console
Console(config-line) #authorization exec tps
Console(config-line) #exit
Console(config) #line vty
Console(config-line) #authorization exec default
Console(config-line) #
```

show accounting This command displays the current accounting settings per function and per port.

Syntax

```
show accounting [commands [level]] |
    [[dot1x [statistics [username user-name | interface interface]] |
    exec [statistics] | statistics]
    commands - Displays command accounting information.
    level - Displays command accounting information for a specifiable command level.
    dot1x - Displays dot1x accounting information.
    exec - Displays Exec accounting records.
    statistics - Displays accounting records.
    user-name - Displays accounting records for a specifiable username.
    interface
    ethernet unit/port
        unit - Unit identifier. (Range: 1-8)
        port - Port number. (Range: 1-28/52)
```

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show accounting
Accounting Type : dot1x
Method List : default
Group List : radius
```

```
: Eth 1/1
  Interface
 Method List : tps
  Group List : radius
  Interface : Eth 1/2
Accounting Type : EXEC
 Method List : default
 Group List : tacacs+
Interface : vty
Accounting Type : Commands 0
 Method List : default
 Group List : tacacs+
Interface
Accounting Type : Commands 15
 Method List : default
 Group List : tacacs+
Interface :
Console#
```

Web Server

This section describes commands used to configure web browser management access to the switch.

Table 43: Web Server Commands

Command	Function	Mode
ip http port	Specifies the port to be used by the web browser interface	GC
ip http server	Allows the switch to be monitored or configured from a browser	GC
ip http secure-port	Specifies the UDP port number for HTTPS	GC
ip http secure-server	Enables HTTPS (HTTP/SSL) for encrypted communications	GC

ip http port This command specifies the TCP port number used by the web browser interface. Use the **no** form to use the default port.

Syntax

ip http port port-number no ip http port

> port-number - The TCP port to be used by the browser interface. (Range: 1-65535)

Default Setting

80

Command Mode

Global Configuration

Example

```
Console(config) #ip http port 769
Console(config)#
```

Related Commands

ip http server (262) show system (131)

ip http server This command allows this device to be monitored or configured from a browser. Use the **no** form to disable this function.

Syntax

[no] ip http server

Default Setting

Enabled

Command Mode

Global Configuration

Example

```
Console(config) #ip http server
Console(config)#
```

Related Commands

ip http port (261) show system (131)

ip http secure-port This command specifies the UDP port number used for HTTPS connection to the switch's web interface. Use the **no** form to restore the default port.

Syntax

```
ip http secure-port port_number
no ip http secure-port
   port_number – The UDP port used for HTTPS. (Range: 1-65535)
```

Default Setting

443

Command Mode

Global Configuration

Command Usage

- ◆ You cannot configure the HTTP and HTTPS servers to use the same port.
- If you change the HTTPS port number, clients attempting to connect to the HTTPS server must specify the port number in the URL, in this format: https:// device:port number

Example

```
Console(config) #ip http secure-port 1000
Console(config)#
```

Related Commands

ip http secure-server (263) show system (131)

ip http secure-server This command enables the secure hypertext transfer protocol (HTTPS) over the Secure Socket Layer (SSL), providing secure access (i.e., an encrypted connection) to the switch's web interface. Use the **no** form to disable this function.

Syntax

[no] ip http secure-server

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- Both HTTP and HTTPS service can be enabled independently on the switch. However, you cannot configure the HTTP and HTTPS servers to use the same UDP port.
- If you enable HTTPS, you must indicate this in the URL that you specify in your browser: **https**://device[:port_number]
- When you start HTTPS, the connection is established in this way:
 - The client authenticates the server using the server's digital certificate.
 - The client and server negotiate a set of security protocols to use for the connection.
 - The client and server generate session keys for encrypting and decrypting data.

The client and server establish a secure encrypted connection.

A padlock icon should appear in the status bar for Internet Explorer 6, Mozilla Firefox 4, or Google Chrome 29, or more recent versions.

The following web browsers and operating systems currently support HTTPS:

Table 44: HTTPS System Support

Web Browser	Operating System
Internet Explorer 6.x or later	Windows 98, Windows NT (with service pack 6a), Windows 2000, XP, Vista, 7, 8
Mozilla Firefox 4 or later	Windows 2000, XP, Vista, 7, 8, Linux
Google Chrome 29 or later	Windows XP, Vista, 7, 8

- ◆ To specify a secure-site certificate, see "Replacing the Default Secure-site Certificate" in the Web Management Guide. Also refer to the copy tftp https-certificate command.
- Connection to the web interface is not supported for HTTPS using an IPv6 link local address.

Example

```
Console(config) #ip http secure-server
Console(config) #
```

Related Commands

ip http secure-port (262) copy tftp https-certificate (140) show system (131)

Telnet Server

This section describes commands used to configure Telnet management access to the switch.

Table 45: Telnet Server Commands

Command	Function	Mode
ip telnet max-sessions	Specifies the maximum number of Telnet sessions that can simultaneously connect to this system	GC
ip telnet port	Specifies the port to be used by the Telnet interface	GC
ip telnet server	Allows the switch to be monitored or configured from Telnet	GC
show ip telnet	Displays configuration settings for the Telnet server	PE

Note: This switch also supports a Telnet client function. A Telnet connection can be made from this switch to another device by entering the telnet command at the Privileged Exec configuration level.

ip telnet max-sessions This command specifies the maximum number of Telnet sessions that can simultaneously connect to this system. Use the **no** from to restore the default setting.

Syntax

ip telnet max-sessions session-count

no ip telnet max-sessions

session-count - The maximum number of allowed Telnet session. (Range: 0-8)

Default Setting

8 sessions

Command Mode

Global Configuration

Command Usage

A maximum of eight sessions can be concurrently opened for Telnet and Secure Shell (i.e., both Telnet and SSH share a maximum number of eight sessions).

Example

```
Console(config) #ip telnet max-sessions 1
Console(config)#
```

ip telnet port This command specifies the TCP port number used by the Telnet interface. Use the **no** form to use the default port.

Syntax

ip telnet port port-number

no telnet port

port-number - The TCP port number to be used by the browser interface. (Range: 1-65535)

Default Setting

23

Command Mode

Global Configuration

Example

```
Console(config) #ip telnet port 123
Console(config)#
```

ip telnet server This command allows this device to be monitored or configured from Telnet. Use the **no** form to disable this function.

Syntax

[no] ip telnet server

Default Setting

Enabled

Command Mode

Global Configuration

Example

```
Console(config) #ip telnet server
Console(config)#
```

show ip telnet This command displays the configuration settings for the Telnet server.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show ip telnet
IP Telnet Configuration:
Telnet Status: Enabled
Telnet Service Port: 23
Telnet Max Session: 8
Console#
```

Secure Shell

This section describes the commands used to configure the SSH server. Note that you also need to install a SSH client on the management station when using this protocol to configure the switch.

Note: The switch supports both SSH Version 1.5 and 2.0 clients.

Table 46: Secure Shell Commands

Command	Function	Mode
ip ssh authentication-retries	Specifies the number of retries allowed by a client	GC
ip ssh server	Enables the SSH server on the switch	GC
ip ssh server-key size	Sets the SSH server key size	GC
ip ssh timeout	Specifies the authentication timeout for the SSH server	GC
copy tftp public-key	Copies the user's public key from a TFTP server to the switch	PE
delete public-key	Deletes the public key for the specified user	PE
disconnect	Terminates a line connection	PE
ip ssh crypto host-key generate	Generates the host key	PE
ip ssh crypto zeroize	Clear the host key from RAM	PE
ip ssh save host-key	Saves the host key from RAM to flash memory	PE
show ip ssh	Displays the status of the SSH server and the configured values for authentication timeout and retries	PE
show public-key	Shows the public key for the specified user or for the host	PE
show ssh	Displays the status of current SSH sessions	PE
show users	Shows SSH users, including privilege level and public key type	PE

Configuration Guidelines

The SSH server on this switch supports both password and public key authentication. If password authentication is specified by the SSH client, then the password can be authenticated either locally or via a RADIUS or TACACS+ remote authentication server, as specified by the authentication login command. If public key authentication is specified by the client, then you must configure authentication keys on both the client and the switch as described in the following section. Note that regardless of whether you use public key or password authentication, you still have to generate authentication keys on the switch and enable the SSH server.

To use the SSH server, complete these steps:

- 1. Generate a Host Key Pair Use the ip ssh crypto host-key generate command to create a host public/private key pair.
- 2. Provide Host Public Key to Clients Many SSH client programs automatically import the host public key during the initial connection setup with the switch. Otherwise, you need to manually create a known hosts file on the management station and place the host public key in it. An entry for a public key in the known hosts file would appear similar to the following example:

10.1.0.54 1024 35 15684995401867669259333946775054617325313674890836547254 15020245593199868544358361651999923329781766065830956 108259132128902337654680172627257141342876294130119619556678259566410486957427 888146206519417467729848654686157177393901647793559423035774130980227370877945 4524083971752646358058176716709574804776117

3. Import Client's Public Key to the Switch – Use the copy tftp public-key command to copy a file containing the public key for all the SSH client's granted management access to the switch. (Note that these clients must be configured locally on the switch with the username command.) The clients are subsequently authenticated using these keys. The current firmware only accepts public key files based on standard UNIX format as shown in the following example for an RSA key:

1024 35

 $134108168560989392104094492015542534763164192187295892114317388005553616163105\\177594083868631109291232226828519254374603100937187721199696317813662774141689\\851320491172048303392543241016379975923714490119380060902539484084827178194372\\288402533115952134861022902978982721353267131629432532818915045306393916643\\steve@192.168.1.19$

- **4.** Set the Optional Parameters Set other optional parameters, including the authentication timeout, the number of retries, and the server key size.
- **5.** Enable SSH Service Use the ip ssh server command to enable the SSH server on the switch.
- **6.** Authentication One of the following authentication methods is employed:

Password Authentication (for SSH v1.5 or V2 Clients)

- **a.** The client sends its password to the server.
- **b.** The switch compares the client's password to those stored in memory.
- **c.** If a match is found, the connection is allowed.

Note: To use SSH with only password authentication, the host public key must still be given to the client, either during initial connection or manually entered into the known host file. However, you do not need to configure the client's keys.

Public Key Authentication – When an SSH client attempts to contact the switch, the SSH server uses the host key pair to negotiate a session key and encryption method. Only clients that have a private key corresponding to the public keys stored on the switch can access it. The following exchanges take place during this process:

Authenticating SSH v1.5 Clients

- **a.** The client sends its RSA public key to the switch.
- **b.** The switch compares the client's public key to those stored in memory.
- **c.** If a match is found, the switch uses its secret key to generate a random 256-bit string as a challenge, encrypts this string with the user's public key, and sends it to the client.
- **d.** The client uses its private key to decrypt the challenge string, computes the MD5 checksum, and sends the checksum back to the switch.
- **e.** The switch compares the checksum sent from the client against that computed for the original string it sent. If the two checksums match, this means that the client's private key corresponds to an authorized public key, and the client is authenticated.

Authenticating SSH v2 Clients

- **a.** The client first queries the switch to determine if DSA public key authentication using a preferred algorithm is acceptable.
- **b.** If the specified algorithm is supported by the switch, it notifies the client to proceed with the authentication process. Otherwise, it rejects the request.
- **c.** The client sends a signature generated using the private key to the switch
- **d.** When the server receives this message, it checks whether the supplied key is acceptable for authentication, and if so, it then checks whether the signature is correct. If both checks succeed, the client is authenticated.

Note: The SSH server supports up to eight client sessions. The maximum number of client sessions includes both current Telnet sessions and SSH sessions.

Note: The SSH server can be accessed using any configured IPv4 or IPv6 interface address on the switch.

ip ssh This command configures the number of times the SSH server attempts to authentication-retries reauthenticate a user. Use the no form to restore the default setting.

Syntax

ip ssh authentication-retries count

no ip ssh authentication-retries

count – The number of authentication attempts permitted after which the interface is reset. (Range: 1-5)

Default Setting

Command Mode

Global Configuration

Example

```
Console(config) #ip ssh authentication-retires 2
Console(config)#
```

Related Commands

show ip ssh (274)

ip ssh server This command enables the Secure Shell (SSH) server on this switch. Use the no form to disable this service.

Syntax

[no] ip ssh server

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- The SSH server supports up to eight client sessions. The maximum number of client sessions includes both current Telnet sessions and SSH sessions.
- The SSH server uses DSA or RSA for key exchange when the client first establishes a connection with the switch, and then negotiates with the client to select either DES (56-bit) or 3DES (168-bit) for data encryption.
- You must generate DSA and RSA host keys before enabling the SSH server.

Example

```
Console#ip ssh crypto host-key generate dsa
Console#configure
Console(config) #ip ssh server
Console(config)#
```

Related Commands

ip ssh crypto host-key generate (273) show ssh (276)

ip ssh server-key size This command sets the SSH server key size. Use the **no** form to restore the default setting.

Syntax

```
ip ssh server-key size key-size
no ip ssh server-key size
```

key-size – The size of server key. (Range: 512-896 bits)

Default Setting

768 bits

Command Mode

Global Configuration

Command Usage

The server key is a private key that is never shared outside the switch. The host key is shared with the SSH client, and is fixed at 1024 bits.

Example

```
Console(config) #ip ssh server-key size 512
Console(config)#
```

ip ssh timeout This command configures the timeout for the SSH server. Use the **no** form to restore the default setting.

Syntax

ip ssh timeout seconds

no ip ssh timeout

seconds - The timeout for client response during SSH negotiation. (Range: 1-120)

Default Setting

10 seconds

Command Mode

Global Configuration

Command Usage

The **timeout** specifies the interval the switch will wait for a response from the client during the SSH negotiation phase. Once an SSH session has been established, the timeout for user input is controlled by the exec-timeout command for vty sessions.

Example

```
Console(config) #ip ssh timeout 60
Console(config)#
```

Related Commands

exec-timeout (153) show ip ssh (274)

delete public-key This command deletes the specified user's public key.

Syntax

delete public-key username [**dsa** | **rsa**]

```
username – Name of an SSH user. (Range: 1-8 characters)
```

dsa – DSA public key type.

rsa – RSA public key type.

Default Setting

Deletes both the DSA and RSA key.

Command Mode

Privileged Exec

Example

Console#delete public-key admin dsa Console#

host-key generate

ip ssh crypto This command generates the host key pair (i.e., public and private).

Syntax

ip ssh crypto host-key generate [dsa | rsa]

dsa – DSA (Version 2) key type.

rsa – RSA (Version 1) key type.

Default Setting

Generates both the DSA and RSA key pairs.

Command Mode

Privileged Exec

Command Usage

- The switch uses only RSA Version 1 for SSHv1.5 clients and DSA Version 2 for SSHv2 clients.
- ◆ This command stores the host key pair in memory (i.e., RAM). Use the ip ssh save host-key command to save the host key pair to flash memory.
- Some SSH client programs automatically add the public key to the known hosts file as part of the configuration process. Otherwise, you must manually create a known hosts file and place the host public key in it.
- The SSH server uses this host key to negotiate a session key and encryption method with the client trying to connect to it.

Example

Console#ip ssh crypto host-key generate dsa Console#

Related Commands

ip ssh crypto zeroize (273) ip ssh save host-key (274)

ip ssh crypto zeroize This command clears the host key from memory (i.e. RAM).

Syntax

ip ssh crypto zeroize [dsa | rsa]

dsa - DSA key type.

rsa – RSA key type.

Default Setting

Clears both the DSA and RSA key.

Command Mode

Privileged Exec

Command Usage

- ◆ This command clears the host key from volatile memory (RAM). Use the **no** ip ssh save host-key command to clear the host key from flash memory.
- ◆ The SSH server must be disabled before you can execute this command.

Example

Console#ip ssh crypto zeroize dsa Console#

Related Commands

ip ssh crypto host-key generate (273) ip ssh save host-key (274) no ip ssh server (270)

ip ssh save host-key This command saves the host key from RAM to flash memory.

Syntax

ip ssh save host-key

Default Setting

Saves both the DSA and RSA key.

Command Mode

Privileged Exec

Example

Console#ip ssh save host-key dsa Console#

Related Commands

ip ssh crypto host-key generate (273)

show ip ssh This command displays the connection settings used when authenticating client access to the SSH server.

Command Mode

Privileged Exec

Example

```
Console#show ip ssh

SSH Enabled - Version 2.0

Negotiation Timeout : 120 seconds; Authentication Retries : 3

Server Key Size : 768 bits

Console#
```

show public-key This command shows the public key for the specified user or for the host.

Syntax

```
show public-key [user [username]| host]
username - Name of an SSH user. (Range: 1-8 characters)
```

Default Setting

Shows all public keys.

Command Mode

Privileged Exec

Command Usage

- If no parameters are entered, all keys are displayed. If the user keyword is entered, but no user name is specified, then the public keys for all users are displayed.
- When an RSA key is displayed, the first field indicates the size of the host key (e.g., 1024), the second field is the encoded public exponent (e.g., 35), and the last string is the encoded modulus. When a DSA key is displayed, the first field indicates that the encryption method used by SSH is based on the Digital Signature Standard (DSS), and the last string is the encoded modulus.

Example

```
Console#show public-key host
Host:
RSA:
1024 \ 65537 \ 13236940658254764031382795526536375927835525327972629521130241
  071942106165575942459093923609695405036277525755625100386613098939383452310
  332802149888661921595568598879891919505883940181387440468908779160305837768\\
 185490002831341625008348718449522087429212255691665655296328163516964040831
  5547660664151657116381
ssh-dss AAAB3NzaC1kc3MAAACBAPWKZTPbsRIB8ydEXcxM3dyV/yrDbKStIlnzD/Dg0h2Hxc
 YV44sXZ2JXhamLK6P8bvuiyacWbUW/a4PAtp1KMSdqsKeh3hKoA3vRRSy1N2XFfAKx15fwFfv
 J1Pd0kFgzLGMinvSNYQwiQXbKTBH0Z4mUZpE85PWxDZMaCNBPjBrRAAAAFQChb4vsdfQGNIjwbv
 wrNLaQ77isiwAAAIEAsy5YWDC99ebYHNRj5kh47wY4i8cZvH+/p9cnrfwFTMU01VFDly3IR
  2G395NLy5Qd7ZDxfA9mCOfT/yyEfbobMJZi8oGCstSNOxrZZVnMqWrTYfdrKX7YKBw/Kjw6Bm
  iFq70+jAhf1Dg451oAc27s6TLdtny1wRq/ow2eTCD5nekAAACBAJ8rMccXTxHLFAczWS7EjOy
 DbsloBfPuSAb4oAsyjKXKVYNLQkTLZfcFRu41bS2KV5LAwecsigF/+DjKGWtPNIQqabKgYCw2
 o/dVzX4Gg+yqdT1YmGA7fHGm8ARGeiG4ssFKy4Z6DmYPXFum1Yq0fhLwuHpOSKdxT3kk475S7
Console#
```

show ssh This command displays the current SSH server connections.

Command Mode

Privileged Exec

Example

Console#show ssh
Connection Version State
Username Encryption
Console#
Username Encryption
Cotos aes128-cbc-hmac-md5
Stoc aes128-cbc-hmac-md5
Console#

Table 47: show ssh - display description

Field	Description
Connection	The session number. (Range: 0-3)
Version	The Secure Shell version number.
State	The authentication negotiation state. (Values: Negotiation-Started, Authentication-Started, Session-Started)
Username	The user name of the client.

802.1X Port Authentication

The switch supports IEEE 802.1X (dot1x) port-based access control that prevents unauthorized access to the network by requiring users to first submit credentials for authentication. Client authentication is controlled centrally by a RADIUS server using EAP (Extensible Authentication Protocol).

Table 48: 802.1X Port Authentication Commands

Command	Function	Mode
General Commands		
dot1x default	Resets all dot1x parameters to their default values	GC
dot1x eapol-pass-through	Passes EAPOL frames to all ports in STP forwarding state when dot1x is globally disabled	GC
dot1x system-auth-control	Enables dot1x globally on the switch.	GC
Authenticator Commands		
dot1x intrusion-action	Sets the port response to intrusion when authentication fails	IC
dot1x max-reauth-req	Sets the maximum number of times that the switch sends an EAP-request/identity frame to the client before restarting the authentication process	IC
dot1x max-req	Sets the maximum number of times that the switch retransmits an EAP request/identity packet to the client before it times out the authentication session	IC

Table 48: 802.1X Port Authentication Commands (Continued)

Command	Function	Mode
dot1x operation-mode	Allows single or multiple hosts on an dot1x port	IC
dot1x port-control	Sets dot1x mode for a port interface	IC
dot1x re-authentication	Enables re-authentication for all ports	IC
dot1x timeout quiet-period	Sets the time that a switch port waits after the Max Request Count has been exceeded before attempting to acquire a new client	IC
dot1x timeout re-authperiod	Sets the time period after which a connected client must be re-authenticated	IC
dot1x timeout supp-timeout	Sets the interval for a supplicant to respond	IC
dot1x timeout tx-period	Sets the time period during an authentication session that the switch waits before re-transmitting an EAP packet	IC
dot1x re-authenticate	Forces re-authentication on specific ports	PE
Supplicant Commands		
dot1x identity profile	Configures dot1x supplicant user name and password	GC
dot1x max-start	Sets the maximum number of times that a port supplicant will send an EAP start frame to the client	IC
dot1x pae supplicant	Enables dot1x supplicant mode on an interface	IC
dot1x timeout auth-period	Sets the time that a supplicant port waits for a response from the authenticator	IC
dot1x timeout held-period	Sets the time a port waits after the maximum start count has been exceeded before attempting to find another authenticator	IC
dot1x timeout start-period	Sets the time that a supplicant port waits before resending an EAPOL start frame to the authenticator	IC
Information Display Command	s	
show dot1x	Shows all dot1x related information	PE

General Commands

dot1x default This command sets all configurable dot1x global and port settings to their default values.

Command Mode

Global Configuration

Example

Console(config) #dot1x default Console(config)#

dot1x eapol- This command passes EAPOL frames through to all ports in STP forwarding state pass-through when dot1x is globally disabled. Use the **no** form to restore the default.

Syntax

[no] dot1x eapol-pass-through

Default Setting

Discards all EAPOL frames when dot1x is globally disabled

Command Mode

Global Configuration

Command Usage

- When this device is functioning as intermediate node in the network and does not need to perform dot1x authentication, the dot1x eapol pass-through command can be used to forward EAPOL frames from other switches on to the authentication servers, thereby allowing the authentication process to still be carried out by switches located on the edge of the network.
- When this device is functioning as an edge switch but does not require any attached clients to be authenticated, the no dot1x eapol-pass-through command can be used to discard unnecessary EAPOL traffic.

Example

This example instructs the switch to pass all EAPOL frame through to any ports in STP forwarding state.

```
Console(config) #dot1x eapol-pass-through
Console(config)#
```

dot1x system- This command enables IEEE 802.1X port authentication globally on the switch. auth-control Use the no form to restore the default.

Syntax

[no] dot1x system-auth-control

Default Setting

Disabled

Command Mode

Global Configuration

Example

```
Console(config) #dot1x system-auth-control
Console(config)#
```

Authenticator Commands

dot1x intrusion-action This command sets the port's response to a failed authentication, either to block all traffic, or to assign all traffic for the port to a guest VLAN. Use the **no** form to reset the default.

Syntax

```
dot1x intrusion-action {block-traffic | guest-vlan}
no dot1x intrusion-action
   block-traffic - Blocks traffic on this port.
   guest-vlan - Assigns the user to the Guest VLAN.
```

Default

block-traffic

Command Mode

Interface Configuration

Command Usage

For guest VLAN assignment to be successful, the VLAN must be configured and set as active (see the vlan database command) and assigned as the guest VLAN for the port (see the network-access guest-vlan command).

Example

```
Console(config)#interface eth 1/2
Console(config-if) #dot1x intrusion-action guest-vlan
Console(config-if)#
```

dot1x max-reauth-req This command sets the maximum number of times that the switch sends an EAPrequest/identity frame to the client before restarting the authentication process. Use the **no** form to restore the default.

Syntax

```
dot1x max-reauth-req count
no dot1x max-reauth-req
   count – The maximum number of requests (Range: 1-10)
```

Default

2

Command Mode

Interface Configuration

Example

```
Console(config) #interface eth 1/2
Console(config-if) #dot1x max-reauth-req 2
Console(config-if)#
```

dot1x max-req This command sets the maximum number of times the switch port will retransmit an EAP request/identity packet to the client before it times out the authentication session. Use the **no** form to restore the default.

Syntax

```
dot1x max-req count
no dot1x max-req
```

count – The maximum number of requests (Range: 1-10)

Default

Command Mode

Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if) #dot1x max-req 2
Console(config-if)#
```

dot1x This command allows hosts (clients) to connect to an 802.1X-authorized port. Use **operation-mode** the **no** form with no keywords to restore the default to single host. Use the **no** form with the **multi-host max-count** keywords to restore the default maximum count.

Syntax

```
dot1x operation-mode {single-host | multi-host [max-count count] | mac-
 based-auth}
```

no dot1x operation-mode [multi-host max-count]

single-host – Allows only a single host to connect to this port.

multi-host - Allows multiple host to connect to this port.

max-count – Keyword for the maximum number of hosts.

count – The maximum number of hosts that can connect to a port. (Range: 1-1024; Default: 5)

mac-based – Allows multiple hosts to connect to this port, with each host needing to be authenticated.

Default

Single-host

Command Mode

Interface Configuration

Command Usage

- The "max-count" parameter specified by this command is only effective if the dot1x mode is set to "auto" by the dot1x port-control command.
- In "multi-host" mode, only one host connected to a port needs to pass authentication for all other hosts to be granted network access. Similarly, a port can become unauthorized for all hosts if one attached host fails reauthentication or sends an EAPOL logoff message.
- ◆ In "mac-based-auth" mode, each host connected to a port needs to pass authentication. The number of hosts allowed access to a port operating in this mode is limited only by the available space in the secure address table (i.e., up to 1024 addresses).

Example

```
Console(config)#interface eth 1/2
Console(config-if) #dot1x operation-mode multi-host max-count 10
Console(config-if)#
```

dot1x port-control This command sets the dot1x mode on a port interface. Use the **no** form to restore the default.

Syntax

dot1x port-control {auto | force-authorized | force-unauthorized} no dot1x port-control

auto – Requires a dot1x-aware connected client to be authorized by the RADIUS server. Clients that are not dot1x-aware will be denied access.

force-authorized – Configures the port to grant access to all clients, either dot1x-aware or otherwise.

force-unauthorized – Configures the port to deny access to all clients, either dot1x-aware or otherwise.

Default

force-authorized

Command Mode

Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if) #dot1x port-control auto
Console(config-if)#
```

dot1x This command enables periodic re-authentication for a specified port. Use the no re-authentication form to disable re-authentication.

Syntax

[no] dot1x re-authentication

Command Mode

Interface Configuration

Command Usage

- The re-authentication process verifies the connected client's user ID and password on the RADIUS server. During re-authentication, the client remains connected the network and the process is handled transparently by the dot1x client software. Only if re-authentication fails is the port blocked.
- The connected client is re-authenticated after the interval specified by the dot1x timeout re-authoriod command. The default is 3600 seconds.

Example

```
Console(config) #interface eth 1/2
Console(config-if) #dot1x re-authentication
Console(config-if)#
```

Related Commands

dot1x timeout re-authperiod (283)

dot1x timeout This command sets the time that a switch port waits after the maximum request quiet-period count (see page 280) has been exceeded before attempting to acquire a new client. Use the **no** form to reset the default.

Syntax

dot1x timeout quiet-period seconds no dot1x timeout quiet-period seconds - The number of seconds. (Range: 1-65535)

Default

60 seconds

Command Mode

Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if) #dot1x timeout quiet-period 350
Console(config-if)#
```

dot1x timeout This command sets the time period after which a connected client must be rere-authperiod authenticated. Use the **no** form of this command to reset the default.

Syntax

dot1x timeout re-authperiod seconds no dot1x timeout re-authperiod

seconds - The number of seconds. (Range: 1-65535)

Default

3600 seconds

Command Mode

Interface Configuration

Example

```
Console(config) #interface eth 1/2
Console(config-if) #dot1x timeout re-authperiod 300
Console(config-if)#
```

dot1x timeout This command sets the time that an interface on the switch waits for a response to supp-timeout an EAP request from a client before re-transmitting an EAP packet. Use the no form to reset to the default value.

Syntax

dot1x timeout supp-timeout seconds no dot1x timeout supp-timeout

seconds - The number of seconds. (Range: 1-65535)

Default

30 seconds

Command Mode

Interface Configuration

802.1X Port Authentication

Command Usage

This command sets the timeout for EAP-request frames other than EAP-request/ identity frames. If dot1x authentication is enabled on a port, the switch will initiate authentication when the port link state comes up. It will send an EAP-request/ identity frame to the client to request its identity, followed by one or more requests for authentication information. It may also send other EAP-request frames to the client during an active connection as required for reauthentication.

Example

```
Console(config)#interface eth 1/2
Console(config-if) #dot1x timeout supp-timeout 300
Console(config-if)#
```

dot1x timeout This command sets the time that an interface on the switch waits during an tx-period authentication session before re-transmitting an EAP packet. Use the no form to reset to the default value.

Syntax

```
dot1x timeout tx-period seconds
no dot1x timeout tx-period
```

seconds - The number of seconds. (Range: 1-65535)

Default

30 seconds

Command Mode

Interface Configuration

Example

```
Console(config) #interface eth 1/2
Console(config-if) #dot1x timeout tx-period 300
Console(config-if)#
```

dot1x re-authenticate This command forces re-authentication on all ports or a specific interface.

Syntax

```
dot1x re-authenticate [interface]
```

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
```

Command Mode

Privileged Exec

Command Usage

The re-authentication process verifies the connected client's user ID and password on the RADIUS server. During re-authentication, the client remains connected the network and the process is handled transparently by the dot1x client software. Only if re-authentication fails is the port blocked.

Example

```
Console#dot1x re-authenticate
Console#
```

Supplicant Commands

dot1x identity profile This command sets the dot1x supplicant user name and password. Use the **no** form to delete the identity settings.

Syntax

dot1x identity profile {username username | password password} no dot1x identity profile {username | password}

username - Specifies the supplicant user name. (Range: 1-8 characters) password - Specifies the supplicant password. (Range: 1-8 characters)

Default

No user name or password

Command Mode

Global Configuration

Command Usage

The global supplicant user name and password are used to identify this switch as a supplicant when responding to an MD5 challenge from the authenticator. These parameters must be set when this switch passes client authentication requests to another authenticator on the network (see the dot1x pae supplicant command.

Example

```
Console(config) #dot1x identity profile username steve
Console(config) #dot1x identity profile password excess
Console(config)#
```

dot1x max-start This command sets the maximum number of times that a port supplicant will send an EAP start frame to the client before assuming that the client is 802.1X unaware. Use the **no** form to restore the default value.

Syntax

dot1x max-start count

no dot1x max-start

count - Specifies the maximum number of EAP start frames. (Range: 1-65535)

Default

3

Command Mode

Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if)#dot1x max-start 10
Console(config-if)#
```

dot1x pae supplicant This command enables dot1x supplicant mode on a port. Use the **no** form to disable dot1x supplicant mode on a port.

Syntax

[no] dot1x pae supplicant

Default

Disabled

Command Mode

Interface Configuration

Command Usage

- When devices attached to a port must submit requests to another authenticator on the network, configure the identity profile parameters (see dot1x identity profile command) which identify this switch as a supplicant, and enable dot1x supplicant mode for those ports which must authenticate clients through a remote authenticator using this command. In this mode the port will not respond to dot1x messages meant for an authenticator.
- This switch can be configured to serve as the authenticator on selected ports by setting the control mode to "auto" (see the dot1x port-control command), and as a supplicant on other ports by the setting the control mode to "forceauthorized" and enabling dot1x supplicant mode with this command.

◆ A port cannot be configured as a dot1x supplicant if it is a member of a trunk or LACP is enabled on the port.

Example

```
Console(config)#interface ethernet 1/2
Console(config-if) #dot1x pae supplicant
Console(config-if)#
```

dot1x timeout This command sets the time that a supplicant port waits for a response from the auth-period authenticator. Use the **no** form to restore the default setting.

Syntax

dot1x timeout auth-period seconds no dot1x timeout auth-period

seconds - The number of seconds. (Range: 1-65535)

Default

30 seconds

Command Mode

Interface Configuration

Command Usage

This command sets the time that the supplicant waits for a response from the authenticator for packets other than EAPOL-Start.

Example

```
Console(config) #interface eth 1/2
Console(config-if) #dot1x timeout auth-period 60
Console(config-if)#
```

dot1x timeout This command sets the time that a supplicant port waits before resending its held-period credentials to find a new an authenticator. Use the no form to reset the default.

Syntax

dot1x timeout held-period seconds no dot1x timeout held-period seconds - The number of seconds. (Range: 1-65535)

Default

60 seconds

802.1X Port Authentication

Command Mode

Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if) #dot1x timeout held-period 120
Console(config-if)#
```

dot1x timeout This command sets the time that a supplicant port waits before resending an **start-period** EAPOL start frame to the authenticator. Use the **no** form to restore the default setting.

Syntax

```
dot1x timeout start-period seconds
no dot1x timeout start-period
```

seconds - The number of seconds. (Range: 1-65535)

Default

30 seconds

Command Mode

Interface Configuration

Example

```
Console(config) #interface eth 1/2
Console(config-if) #dot1x timeout start-period 60
Console(config-if)#
```

Information Display Commands

show dot1x This command shows general port authentication related settings on the switch or a specific interface.

Syntax

```
show dot1x [statistics] [interface interface]
   statistics - Displays dot1x status for each port.
   interface
        ethernet unit/port
            unit - Unit identifier. (Range: 1-8)
            port - Port number. (Range: 1-28/52)
```

Command Mode

Privileged Exec

Command Usage

This command displays the following information:

- ◆ Global 802.1X Parameters Shows whether or not 802.1X port authentication is globally enabled on the switch (page 278).
- Authenticator Parameters Shows whether or not EAPOL pass-through is enabled (page 278).
- ◆ Supplicant Parameters Shows the supplicant user name used when the switch responds to an MD5 challenge from an authenticator (page 285).
- ♦ 802.1X Port Summary Displays the port access control parameters for each interface that has enabled 802.1X, including the following items:
 - Type Administrative state for port access control (Enabled, Authenticator, or Supplicant).
 - Operation Mode Allows single or multiple hosts (page 280).
 - Control Mode Dot1x port control mode (page 281).
 - Authorized Authorization status (yes or n/a not authorized).
- ◆ 802.1X Port Details Displays the port access control parameters for each interface, including the following items:
 - Reauthentication Periodic re-authentication (page 282).
 - Reauth Period Time after which a connected client must be reauthenticated (page 283).
 - Quiet Period Time a port waits after Max Request Count is exceeded before attempting to acquire a new client (page 282).
 - TX Period Time a port waits during authentication session before retransmitting EAP packet (page 284).
 - Supplicant Timeout Supplicant timeout.
 - Server Timeout Server timeout. A RADIUS server must be set before the correct operational value of 10 seconds will be displayed in this field.
 - Reauth Max Retries Maximum number of reauthentication attempts.
 - Max Request Maximum number of times a port will retransmit an EAP request/identity packet to the client before it times out the authentication session (page 280).
 - Operation Mode

 – Shows if single or multiple hosts (clients) can connect to an 802.1X-authorized port.
 - Port Control-Shows the dot1x mode on a port as auto, force-authorized, or force-unauthorized (page 281).
 - Intrusion Action

 – Shows the port response to intrusion when authentication fails (page 279).
 - Supplicant MAC address of authorized client.

Authenticator PAF State Machine

- State Current state (including initialize, disconnected, connecting, authenticating, authenticated, aborting, held, force_authorized, force_unauthorized).
- Reauth Count Number of times connecting state is re-entered.
- Current Identifier

 The integer (0-255) used by the Authenticator to identify the current authentication session.

Backend State Machine

- State Current state (including request, response, success, fail, timeout, idle, initialize).
- Request Count

 Number of EAP Request packets sent to the Supplicant without receiving a response.
- Identifier (Server) Identifier carried in the most recent EAP Success, Failure or Request packet received from the Authentication Server.

Reauthentication State Machine

State – Current state (including initialize, reauthenticate).

Example

```
Console#show dot1x
Global 802.1X Parameters
 System Auth Control : Enabled
Authenticator Parameters:
 EAPOL Pass Through
                        : Disabled
Supplicant Parameters:
Identity Profile Username : steve
802.1X Port Summary
                  Operation Mode Control Mode
Port
       Type
                                                      Authorized
Eth 1/ 1 Disabled Single-Host Force-Authorized Yes Eth 1/ 2 Disabled Single-Host Force-Authorized Yes
Eth 1/27 Disabled Single-Host Force-Authorized Yes Eth 1/28 Enabled Single-Host Auto Yes
802.1X Port Details
802.1% Authenticator is enabled on port 1/1
802.1X Supplicant is disabled on port 1/1
802.1X Authenticator is enabled on port 28
Reauthentication : Enabled
Reauth Period : 3600
Quiet Period : 60
TX Period : 30
TX Period
                    : 30
Supplicant Timeout : 30
Server Timeout
                    : 10
```

Reauth Max Retries : 2

Max Request : 2
Operation Mode : Multi-host
Port Control : Auto
Intrusion Action : Block traffic

Supplicant : 00-e0-29-94-34-65

Authenticator PAE State Machine State : Authenticated Reauth Count : 0

Current Identifier : 3

Backend State Machine

State : Idle Request Count : 0 Identifier(Server) : 2

Reauthentication State Machine State : Initialize

Console#

Management IP Filter

This section describes commands used to configure IP management access to the switch.

Table 49: Management IP Filter Commands

Command	Function	Mode
management	Configures IP addresses that are allowed management access	GC
show management	Displays the switch to be monitored or configured from a browser	PE

management This command specifies the client IP addresses that are allowed management access to the switch through various protocols. A list of up to 15 IP addresses or IP address groups can be specified. Use the **no** form to restore the default setting.

Syntax

[no] management {all-client | http-client | snmp-client | telnet-client} startaddress [end-address]

all-client - Adds IP address(es) to all groups.

http-client - Adds IP address(es) to the web group.

snmp-client - Adds IP address(es) to the SNMP group.

telnet-client - Adds IP address(es) to the Telnet group.

start-address - A single IP address, or the starting address of a range.

end-address - The end address of a range.

Default Setting

All addresses

Command Mode

Global Configuration

Command Usage

- The management interfaces are open to all IP addresses by default. Once you add an entry to a filter list, access to that interface is restricted to the specified addresses.
- If anyone tries to access a management interface on the switch from an invalid address, the switch will reject the connection, enter an event message in the system log, and send a trap message to the trap manager.
- IP address can be configured for SNMP, web, and Telnet access respectively. Each of these groups can include up to five different sets of addresses, either individual addresses or address ranges.
- When entering addresses for the same group (i.e., SNMP, web, or Telnet), the switch will not accept overlapping address ranges. When entering addresses for different groups, the switch will accept overlapping address ranges.
- You cannot delete an individual address from a specified range. You must delete the entire range, and re-enter the addresses.
- You can delete an address range just by specifying the start address, or by specifying both the start address and end address.

Example

This example restricts management access to the indicated addresses.

```
Console(config) #management all-client 192.168.1.19
Console(config) #management all-client 192.168.1.25 192.168.1.30
Console#
```

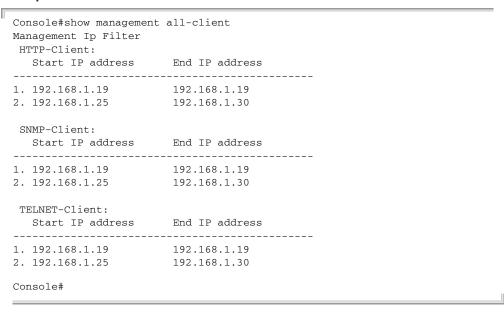
show management This command displays the client IP addresses that are allowed management access to the switch through various protocols.

Syntax

show management {all-client | http-client | snmp-client | telnet-client}

all-client - Displays IP addresses for all groups.

http-client - Displays IP addresses for the web group.


snmp-client - Displays IP addresses for the SNMP group.

telnet-client - Displays IP addresses for the Telnet group.

Command Mode

Privileged Exec

Example

PPPoE Intermediate Agent

This section describes commands used to configure the PPPoE Intermediate Agent (PPPoE IA) relay parameters required for passing authentication messages between a client and broadband remote access servers.

Table 50: PPPoE Intermediate Agent Commands

Command	Function	Mode
pppoe intermediate-agent	Enables the PPPoE IA globally on the switch	GC
pppoe intermediate-agent format-type	Sets the access node identifier and generic error message for the switch	GC
pppoe intermediate-agent port-enable	Enables the PPPoE IA on an interface	IC
pppoe intermediate-agent port-format-type	Sets the circuit-id or remote-id for an interface	IC
pppoe intermediate-agent port-format-type remote- id-delimiter	Sets the remote-id delimiter for an interface	IC
pppoe intermediate-agent trust	Sets the trust mode for an interface	IC
pppoe intermediate-agent vendor-tag strip	Enables the stripping of vendor tags from PPPoE Discovery packets sent from a PPPoE server	IC

Table 50: PPPoE Intermediate Agent Commands (Continued)

Command	Function	Mode
clear pppoe intermediateagent statistics	Clears PPPoE IA statistics	PE
show pppoe intermediateagent info	Displays PPPoE IA configuration settings	PE
show pppoe intermediateagent statistics	Displays PPPoE IA statistics	PE

pppoe This command enables the PPPoE Intermediate Agent globally on the switch. Use intermediate-agent the no form to disable this feature.

Syntax

[no] pppoe intermediate-agent

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- The switch inserts a tag identifying itself as a PPPoE Intermediate Agent residing between the attached client requesting network access and the ports connected to broadband remote access servers (BRAS). The switch extracts access-loop information from the client's PPPoE Active Discovery Request, and forwards this information to all trusted ports designated by the pppoe intermediate-agent trust command. The BRAS detects the presence of the subscriber's circuit-ID tag inserted by the switch during the PPPoE discovery phase, and sends this tag as a NAS-port-ID attribute in PPP authentication and AAA accounting requests to a RADIUS server.
- PPPoE IA must be enabled globally by this command before this feature can be enabled on an interface using the pppoe intermediate-agent port-enable command.

Example

Console(config) #pppoe intermediate-agent Console(config)#

format-type

pppoe This command sets the access node identifier and generic error message for the intermediate-agent switch. Use the **no** form to restore the default settings.

Syntax

pppoe intermediate-agent format-type {access-node-identifier id-string | **generic-error-message** *error-message*}

no pppoe intermediate-agent format-type {access-node-identifier | generic-error-message}

id-string - String identifying this switch as an PPPoE IA to the PPPoE server. (Range: 1-48 ASCII characters)

error-message - An error message notifying the sender that the PPPoE Discovery packet was too large.

Default Setting

- Access Node Identifier: IP address of the first IPv4 interface on the switch.
- Generic Error Message: PPPoE Discover packet too large to process. Try reducing the number of tags added.

Command Mode

Global Configuration

Command Usage

- The switch uses the access-node-identifier to generate the circuit-id for PPPoE discovery stage packets sent to the BRAS, but does not modify the source or destination MAC address of these PPPoE discovery packets.
- These messages are forwarded to all trusted ports designated by the pppoe intermediate-agent trust command.

Example

Console(config) #pppoe intermediate-agent format-type access-node-identifier billibong Console(config)#

intermediate-agent feature. port-enable

pppoe This command enables the PPPoE IA on an interface. Use the **no** form to disable this

Syntax

[no] pppoe intermediate-agent port-enable

Default Setting

Disabled

PPPoE Intermediate Agent

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

PPPoE IA must also be enabled globally on the switch for this command to take effect.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #pppoe intermediate-agent port-enable
Console(config-if)#
```

port-format-type

pppoe This command sets the circuit-id or remote-id for an interface. Use the **no** form to **intermediate-agent** restore the default settings.

Syntax

pppoe intermediate-agent port-format-type {circuit-id | remote-id} id-string

circuit-id - String identifying the circuit identifier (or interface) on this switch to which the user is connected. (Range: 1-10 ASCII characters)

remote-id - String identifying the remote identifier (or interface) on this switch to which the user is connected. (Range: 1-63 ASCII characters)

Default Setting

circuit-id: unit/port:vlan-id or 0/trunk-id:vlan-id remote-id: port MAC address

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- ◆ The PPPoE server extracts the Line-ID tag from PPPoE discovery stage messages, and uses the Circuit-ID field of that tag as a NAS-Port-ID attribute in AAA access and accounting requests.
- The switch intercepts PPPoE discovery frames from the client and inserts a unique line identifier using the PPPoE Vendor-Specific tag (0x0105) to PPPoE Active Discovery Initiation (PADI) and Request (PADR) packets. The switch then forwards these packets to the PPPoE server. The tag contains the Line-ID of the customer line over which the discovery packet was received, entering the switch (or access node) where the intermediate agent resides.
- Outgoing PAD Offer (PADO) and Session-confirmation (PADS) packets sent from the PPPoE Server include the Circuit-ID tag inserted by the switch, and should be stripped out of PADO and PADS packets which are to be passed directly to

end-node clients using the pppoe intermediate-agent vendor-tag strip command.

If the remote-id is unspecified, the port name will be used for this parameter. If the port name is not configured, the remote-id is set to the port MAC (yy-yy-yyyy-yy-yy#), where # is the default delimiter.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #pppoe intermediate-agent port-format-type circuit-id
 ECS4620-28T
Console(config-if)#
```

port-format-type remote-id-delimiter

pppoe This command sets the remote-id delimiter for an interface. Use the **enable** intermediate-agent keyword to enable the delimiter. Use the no form with the enable keyword to disable the delimiter. Use the **no** form without any keywords toto restore the default settings.

Syntax

pppoe intermediate-agent port-format-type remote-id-delimiter {enable | ascii-code}

ascii-code - ASCII character of delimiter. (Range: 0-255)

Default Setting

Disabled

ASCII code: 35 ("#")

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

If the delimiter is enabled and it occurs in the remote ID string, the string will be truncated at that point.

Example

This command enables the delimiter for port 5.

```
Console(config) #interface ethernet 1/5
Console(config-if) #pppoe intermediate-agent port-format-type remote-id-
 delimiter
Console(config-if)#
```

PPPoE Intermediate Agent

trust

pppoe This command sets an interface to trusted mode to indicate that it is connected to a **intermediate-agent** PPPoE server. Use the **no** form to set an interface to untrusted mode.

Syntax

[no] pppoe intermediate-agent trust

Default Setting

Untrusted

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Set any interfaces connecting the switch to a PPPoE Server as trusted. Interfaces that connect the switch to users (PPPoE clients) should be set as untrusted.
- ◆ At least one trusted interface must be configured on the switch for the PPPoE IA to function.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #pppoe intermediate-agent trust
Console(config-if)#
```

vendor-tag strip

pppoe This command enables the stripping of vendor tags from PPPoE Discovery packets **intermediate-agent** sent from a PPPoE server. Use the **no** form to disable this feature.

Syntax

[no] pppoe intermediate-agent vendor-tag strip

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This command only applies to trusted interfaces. It is used to strip off vendorspecific tags (which carry subscriber and line identification information) in PPPoE Discovery packets received from an upstream PPPoE server before forwarding them to a user.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #pppoe intermediate-agent vendor-tag strip
Console(config-if)#
```

intermediate-agent statistics Syntax

clear pppoe This command clears statistical counters for the PPPoE Intermediate Agent.

clear pppoe intermediate-agent statistics interface [interface]

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
   port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

Example

```
Console#clear pppoe intermediate-agent statistics
Console#
```

intermediate-agent

show pppoe This command displays configuration settings for the PPPoE Intermediate Agent.

info Syntax

show pppoe intermediate-agent info [interface [interface]]

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
   port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

Example

```
Console#show pppoe intermediate-agent info
PPPoE Intermediate Agent Global Status
                                                    : Enabled
PPPoE Intermediate Agent Admin Access Node Identifier : 192.168.0.2
PPPoE Intermediate Agent Oper Access Node Identifier : 192.168.0.2
```

```
PPPOE Intermediate Agent Admin Generic Error Message :

PPPOE Intermediate Agent Oper Generic Error Message :

PPPOE Discover packet too large to process. Try reducing the number of tags added.

Console#show pppoe intermediate-agent info interface ethernet 1/1

Interface PPPOE IA Trusted Vendor-Tag Strip Admin Circuit-ID Admin Remote-ID

Eth 1/2 Yes Yes Yes 1/2:vid 00-00-E8-94-40-02

R-ID Delimiter Delimiter ASCII Oper Circuit-ID Oper Remote-ID

Yes 3 1/2:vid 00-00-E8-94-40-02

Console#
```

show pppoe This con intermediate-agent statistics Syntax

show pppoe This command displays statistics for the PPPoE Intermediate Agent.

tax show pppoe intermediate-agent statistics interface [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Command Mode

Privileged Exec

Example

Console#show pppoe intermediate-agent statistics interface ethernet 1/1

Eth 1/1 statistics

Received: All PADI PADO PADR PADS PADT

3 0 0 0 0 0 3

Dropped: Response from untrusted Request towards untrusted Malformed

0 0 0

Console#

Table 51: show pppoe intermediate-agent statistics - display description

Field	Description
PADI	PPPoE Active Discovery Initiation
PADO	PPPoE Active Discovery Offer
PADR	PPPoE Active Discovery Request

Table 51: show pppoe intermediate-agent statistics - display description

Field	Description
PADS	PPPoE Active Discovery Session-Confirmation
PADT	PPPoE Active Discovery Terminate

Chapter 8 | Authentication Commands PPPoE Intermediate Agent

General Security Measures

This switch supports many methods of segregating traffic for clients attached to each of the data ports, and for ensuring that only authorized clients gain access to the network. Port-based authentication using IEEE 802.1X is commonly used for these purposes. In addition to these method, several other options of providing client security are described in this chapter. These include port-based authentication, which can be configured to allow network client access by specifying a fixed set of MAC addresses. The addresses assigned to DHCP clients can also be carefully controlled with IP Source Guard and DHCP Snooping commands.

Table 52: General Security Commands

Command Group	Function
Port Security*	Configures secure addresses for a port
802.1X Port Authentication*	Configures host authentication on specific ports using 802.1X
Network Access*	Configures MAC authentication and dynamic VLAN assignment
Web Authentication*	Configures Web authentication
Access Control Lists*	Provides filtering for IP frames (based on address, protocol, TCP/UDP port number or TCP control code) or non-IP frames (based on MAC address or Ethernet type)
DHCPv4 Snooping*	Filters untrusted DHCPv4 messages on unsecure ports by building and maintaining a DHCPv4 snooping binding table
DHCPv6 Snooping*	Filters untrusted DHCPv6 messages on unsecure ports by building and maintaining a DHCPv6 snooping binding table
IPv4 Source Guard*	Filters IP traffic on insecure ports for which the source address cannot be identified via DHCP snooping nor static source bindings
IPv6 Source Guard*	Filters IPv6 traffic on insecure ports for which the source address cannot be identified via DHCPv6 snooping nor static source bindings
ND Snooping	Maintains IPv6 prefix table and user address binding table which can be used for stateless address auto-configuration or for address filtering by IPv6 Source Guard
ARP Inspection	Validates the MAC-to-IP address bindings in ARP packets
DoS Protection	Protects against Denial-of-Service attacks
Port-based Traffic Segmentation	Configures traffic segmentation for different client sessions based on specified downlink and uplink ports

^{*} The priority of execution for these filtering commands is Port Security, Port Authentication, Network Access, Web Authentication, Access Control Lists, DHCP Snooping, and then IP Source Guard.

Port Security

These commands can be used to enable port security on a port.

When MAC address learning is disabled on an interface, only incoming traffic with source addresses already stored in the dynamic or static address table for this port will be authorized to access the network.

When using port security, the switch stops learning new MAC addresses on the specified port when it has reached a configured maximum number. Only incoming traffic with source addresses already stored in the dynamic or static address table for this port will be authorized to access the network. The port will drop any incoming frames with a source MAC address that is unknown or has been previously learned from another port. If a device with an unauthorized MAC address attempts to use the switch port, the intrusion will be detected and the switch can automatically take action by disabling the port and sending a trap message.

Table 53: Management IP Filter Commands

Command	Function	Mode
mac-address-table static	Maps a static address to a port in a VLAN	GC
mac-learning	Enables MAC address learning on the selected physical interface or VLAN	IC
port security	Configures a secure port	IC
port security mac-address- as-permanent	Saves the MAC addresses learned by port security as static entries.	PE
show mac-address-table	Displays entries in the bridge-forwarding database	PE
show port security	Displays port security status and secure address count	PE

mac-learning This command enables MAC address learning on the selected interface. Use the no form to disable MAC address learning.

Syntax

[no] mac-learning

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet or Port Channel)

Command Usage

◆ The **no mac-learning** command immediately stops the switch from learning new MAC addresses on the specified port or trunk. Incoming traffic with source addresses not stored in the static address table, will be flooded. However, if a

security function such as 802.1X or DHCP snooping is enabled and maclearning is disabled, then only incoming traffic with source addresses stored in the static address table will be accepted, all other packets are dropped. Note that the dynamic addresses stored in the address table when MAC address learning is disabled are flushed from the system, and no dynamic addresses are subsequently learned until MAC address learning has been re-enabled.

The mac-learning commands cannot be used if 802.1X Port Authentication has been globally enabled on the switch with the dot1x system-auth-control command, or if MAC Address Security has been enabled by the port security command on the same interface.

Example

The following example disables MAC address learning for port 2.

```
Console(config)#interface ethernet 1/2
Console(config-if) #no mac-learning
Console(config-if)#
```

Related Commands

show interfaces status (428)

port security This command enables or configures port security. Use the **no** form without any keywords to disable port security. Use the **no** form with the appropriate keyword to restore the default settings for a response to security violation or for the maximum number of allowed addresses.

Syntax

```
port security [action {shutdown | trap | trap-and-shutdown} | max-mac-
 count address-count]
```

no port security [action | max-mac-count]

action - Response to take when port security is violated.

shutdown - Disable port only.

trap - Issue SNMP trap message only.

trap-and-shutdown - Issue SNMP trap message and disable port.

max-mac-count

address-count - The maximum number of MAC addresses that can be learned on a port. (Range: 0 - 1024, where 0 means disabled)

Default Setting

Status: Disabled Action: None

Maximum Addresses: 0

Command Mode

Interface Configuration (Ethernet)

Command Usage

- ◆ The default maximum number of MAC addresses allowed on a secure port is zero (that is, port security is disabled). To use port security, you must configure the maximum number of addresses allowed on a port using the **port security max-mac-count** command.
- When port security is enabled using the port security command, or the maximum number or allowed addresses is set to a value lower than the current limit after port security has been enabled, the switch first clears all dynamically learned entries from the address table. It then starts learning new MAC addresses on the specified port, and stops learning addresses when it reaches a configured maximum number. Only incoming traffic with source addresses already stored in the dynamic or static address table will be accepted.
- ◆ To configure the maximum number of address entries which can be learned on a port, specify the maximum number of dynamic addresses allowed. The switch will learn up to the maximum number of allowed address pairs <source MAC address, VLAN> for frames received on the port. (The specified maximum address count is effective when port security is enabled or disabled.) Note that you can manually add additional secure addresses to a port using the macaddress-table static command. When the port has reached the maximum number of MAC addresses, the port will stop learning new addresses. The MAC addresses already in the address table will be retained and will not be aged out.
- MAC addresses that port security has learned, can be saved in the configuration file as static entries. See command port security mac-address-as-permanent.
- If port security is enabled, and the maximum number of allowed addresses are set to a non-zero value, any device not in the address table that attempts to use the port will be prevented from accessing the switch.
- ◆ If a port is disabled due to a security violation, it must be manually re-enabled using the no shutdown command.
- ◆ A secure port has the following restrictions:
 - Cannot be connected to a network interconnection device.
 - Cannot be a trunk port.
 - RSPAN and port security are mutually exclusive functions. If port security is enabled on a port, that port cannot be set as an RSPAN uplink port, source port, or destination port. Also, when a port is configured as an RSPAN uplink port, source port, or destination port, port security cannot be enabled on that port.

Example

The following example enables port security for port 5, and sets the response to a security violation to issue a trap message:

```
Console(config)#interface ethernet 1/5
Console(config-if)#port security action trap
```

Related Commands

show interfaces status (428) shutdown (421) mac-address-table static (507)

port security Use this commac-address-as-static entries. permanent

port security Use this command to save the MAC addresses that port security has learned as c-address-as-static entries.

Syntax

port security mac-address-as-permanent [interface interface]

interface - Specifies a port interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

This example shows the switch saving the MAC addresses learned by port security on ethernet port 1/3.

```
Console#port security mac-address-as-permanent interface ethernet 1/3 Console#
```

show port security This command displays port security status and the secure address count.

Syntax

show port security [interface interface]

interface - Specifies a port interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

This example shows the port security settings and number of secure addresses for all ports.

```
Console#show port security
Global Port Security Parameters
Secure MAC Aging Mode : Disabled
Port Security Port Summary
Port Port Security Port Status Intrusion Action MaxMacCnt CurrMacCnt
Eth 1/ 1 Disabled Secure/Down None
                                                      0
                      Secure/Up None
                                                                0
Eth 1/ 2 Enabled
                                                      10
Eth 1/ 3 Disabled Secure/Down None
Eth 1/ 4 Disabled Secure/Down None
Eth 1/ 5 Disabled Secure/Down None
                                                                0
                                                      0
                                                       0
                                                                  0
```

Table 54: show port security - display description

Field	Description
Port Security	The configured status (enabled or disabled).
Port Status	 The operational status: Secure/Down – Port security is disabled. Secure/Up – Port security is enabled. Shutdown – Port is shut down due to a response to a port security violation.
Intrusion Action	The configured intrusion response.
MaxMacCnt	The maximum number of addresses which can be stored in the address table for this interface (either dynamic or static).
CurrMacCnt	The current number of secure entries in the address table.

The following example shows the port security settings and number of secure addresses for a specific port. The Last Intrusion MAC and Last Time Detected Intrusion MAC fields show information about the last detected intrusion MAC address. These fields are not applicable if no intrusion has been detected or port security is disabled. The MAC Filter ID field is configured by the network-access port-mac-filter command. If this field displays Disabled, then any unknown source MAC address can be learned as a secure MAC address. If it displays a filter identifier, then only source MAC address entries in MAC Filter table can be learned as secure MAC addresses.

```
Console#show port security interface ethernet 1/2
Global Port Security Parameters
Secure MAC Aging Mode : Disabled
```

```
Port Security Details
                                      : 1/2
Port
Port Security
                                      : Enabled
Port Status
                                      : Secure/Up
Intrusion Action
                                      : None
Max MAC Count
                                      : 0
                                      : 0
Current MAC Count
MAC Filter
                                      : Disabled
Last Intrusion MAC
                                      : NA
 Last Time Detected Intrusion MAC
                                      : NA
Console#
```

This example shows information about a detected intrusion.

```
Console#show port security interface ethernet 1/2
Global Port Security Parameters
Secure MAC Aging Mode : Disabled
Port Security Details
                                      : 1/2
 Port Security
                                     : Enabled
Port Status
                                     : Secure/Up
                                     : None
Intrusion Action
Max MAC Count
                                      : 0
 Current MAC Count
                                      : 0
MAC Filter
                                      : Disabled
Last Intrusion MAC
                                      : 00-10-22-00-00-01
Last Time Detected Intrusion MAC
                                     : 2010/7/29 15:13:03
Console#
```

Network Access (MAC Address Authentication)

Network Access authentication controls access to the network by authenticating the MAC address of each host that attempts to connect to a switch port. Traffic received from a specific MAC address is forwarded by the switch only if the source MAC address is successfully authenticated by a central RADIUS server. While authentication for a MAC address is in progress, all traffic is blocked until authentication is completed. Once successfully authenticated, the RADIUS server may optionally assign VLAN and QoS settings for the switch port.

Table 55: Network Access Commands

Command	Function	Mode
network-access aging	Enables MAC address aging	GC
network-access mac-filter	Adds a MAC address to a filter table	GC
mac-authentication reauth-time	Sets the time period after which a connected MAC address must be re-authenticated	GC
network-access dynamic-qos	Enables the dynamic quality of service feature	IC
network-access dynamic-vlan	${\sf EnablesdynamicVLANassignmentfromaRADIUSserver}$	IC
network-access guest-vlan	Specifies the guest VLAN	IC

Table 55: Network Access Commands (Continued)

Command	Function	Mode
network-access link-detection	Enables the link detection feature	IC
network-access link-detection link-down	Configures the link detection feature to detect and act upon link-down events	IC
network-access link-detection link-up	Configures the link detection feature to detect and act upon link-up events	IC
network-access link-detection link-up-down	Configures the link detection feature to detect and act upon both link-up and link-down events	IC
network-access max-mac-count	Sets the maximum number of MAC addresses that can be authenticated on a port via all forms of authentication	IC
network-access mode mac-authentication	Enables MAC authentication on an interface	IC
network-access port-mac-filter	Enables the specified MAC address filter	IC
mac-authentication intrusion-action	Determines the port response when a connected host fails MAC authentication.	IC
mac-authentication max-mac-count	Sets the maximum number of MAC addresses that can be authenticated on a port via MAC authentication	IC
clear network-access	Clears authenticated MAC addresses from the address table	PE
show network-access	Displays the MAC authentication settings for port interfaces	PE
show network-access mac-address-table	Displays information for entries in the secure MAC address table	PE
show network-access mac-filter	Displays information for entries in the MAC filter tables	PE

network-access aging Use this command to enable aging for authenticated MAC addresses stored in the secure MAC address table. Use the **no** form of this command to disable address aging.

Syntax

[no] network-access aging

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

 Authenticated MAC addresses are stored as dynamic entries in the switch's secure MAC address table and are removed when the aging time expires. The address aging time is determined by the mac-address-table aging-time command.

- This parameter applies to authenticated MAC addresses configured by the MAC Address Authentication process described in this section, as well as to any secure MAC addresses authenticated by 802.1X, regardless of the 802.1X Operation Mode (Single-Host, Multi-Host, or MAC-Based authentication as described on page 280).
- The maximum number of secure MAC addresses supported for the switch system is 1024.

Example

```
Console(config-if) #network-access aging
Console(config-if)#
```

network-access Use this command to add a MAC address into a filter table. Use the **no** form of this mac-filter command to remove the specified MAC address.

Syntax

```
[no] network-access mac-filter filter-id
 mac-address mac-address [mask mask-address]
   filter-id - Specifies a MAC address filter table. (Range: 1-64)
   mac-address - Specifies a MAC address entry. (Format: xx-xx-xx-xx-xx)
   mask - Specifies a MAC address bit mask for a range of addresses.
```

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Specified addresses are exempt from network access authentication.
- ◆ This command is different from configuring static addresses with the macaddress-table static command in that it allows you configure a range of addresses when using a mask, and then to assign these addresses to one or more ports with the network-access port-mac-filter command.
- Up to 64 filter tables can be defined.
- There is no limitation on the number of entries that can entered in a filter table.

Example

```
Console(config) #network-access mac-filter 1 mac-address 11-22-33-44-55-66
Console(config)#
```

Chapter 9 | General Security Measures

Network Access (MAC Address Authentication)

mac-authentication Use this command to set the time period after which a connected MAC address reauth-time must be re-authenticated. Use the no form of this command to restore the default value.

Syntax

mac-authentication reauth-time seconds

no mac-authentication reauth-time

seconds - The reauthentication time period. (Range: 120-1000000 seconds)

Default Setting

1800

Command Mode

Global Configuration

Command Usage

- ◆ The reauthentication time is a global setting and applies to all ports.
- When the reauthentication time expires for a secure MAC address it is reauthenticated with the RADIUS server. During the reauthentication process traffic through the port remains unaffected.

Example

```
Console(config) #mac-authentication reauth-time 300
Console(config)#
```

network-access Use this command to enable the dynamic QoS feature for an authenticated port. **dynamic-gos** Use the **no** form to restore the default.

Syntax

[no] network-access dynamic-gos

Default Setting

Disabled

Command Mode

Interface Configuration

Command Usage

 The RADIUS server may optionally return dynamic QoS assignments to be applied to a switch port for an authenticated user. The "Filter-ID" attribute

Network Access (MAC Address Authentication)

(attribute 11) can be configured on the RADIUS server to pass the following OoS information:

Table 56: Dynamic QoS Profiles

Profile	Attribute Syntax	Example
DiffServ	service-policy-in=policy-map-name	service-policy-in=p1
Rate Limit	rate-limit-input=rate (kbps)	rate-limit-input=100 (kbps)
	rate-limit-output=rate (kbps)	rate-limit-output=200 (kbps)
802.1p	${\bf switch port-priority-default} = value$	switchport-priority-default=2
IP ACL	ip-access-group-in=ip-acl-name	ip-access-group-in=ipv4acl
IPv6 ACL	ipv6-access-group-in=ipv6-acl-name	ipv6-access-group-in=ipv6acl
MAC ACL	mac-access-group-in=mac-acl-name	mac-access-group-in=macAcl

- When the last user logs off of a port with a dynamic QoS assignment, the switch restores the original QoS configuration for the port.
- When a user attempts to log into the network with a returned dynamic QoS profile that is different from users already logged on to the same port, the user is denied access.
- While a port has an assigned dynamic QoS profile, any manual QoS configuration changes only take effect after all users have logged off of the port.

Note: Any configuration changes for dynamic QoS are not saved to the switch configuration file.

Example

The following example enables the dynamic QoS feature on port 1.

```
Console(config)#interface ethernet 1/1
Console(config-if) #network-access dynamic-qos
Console(config-if)#
```

network-access Use this command to enable dynamic VLAN assignment for an authenticated port. dynamic-vlan Use the **no** form to disable dynamic VLAN assignment.

Syntax

[no] network-access dynamic-vlan

Default Setting

Enabled

Network Access (MAC Address Authentication)

Command Mode

Interface Configuration

Command Usage

- When enabled, the VLAN identifiers returned by the RADIUS server through the 802.1X authentication process will be applied to the port, providing the VLANs have already been created on the switch. GVRP is not used to create the VLANs.
- ◆ The VLAN settings specified by the first authenticated MAC address are implemented for a port. Other authenticated MAC addresses on the port must have same VLAN configuration, or they are treated as an authentication failure.
- ◆ If dynamic VLAN assignment is enabled on a port and the RADIUS server returns no VLAN configuration, the authentication is still treated as a success, and the host assigned to the default untagged VLAN.
- ♦ When the dynamic VLAN assignment status is changed on a port, all authenticated addresses are cleared from the secure MAC address table.

Example

The following example enables dynamic VLAN assignment on port 1.

```
Console(config)#interface ethernet 1/1
Console(config-if) #network-access dynamic-vlan
Console(config-if)#
```

network-access Use this command to assign all traffic on a port to a guest VLAN when 802.1x quest-vlan authentication is rejected. Use the **no** form of this command to disable guest VLAN assignment.

Syntax

network-access guest-vlan vlan-id no network-access guest-vlan vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Disabled

Command Mode

Interface Configuration

Command Usage

◆ The VLAN to be used as the guest VLAN must be defined and set as active (See the vlan database command).

 When used with 802.1X authentication, the intrusion-action must be set for "guest-vlan" to be effective (see the dot1x intrusion-action command).

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #network-access guest-vlan 25
Console(config-if)#
```

network-access Use this command to enable link detection for the selected port. Use the **no** form of link-detection this command to restore the default.

Syntax

[no] network-access link-detection

Default Setting

Disabled

Command Mode

Interface Configuration

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #network-access link-detection
Console(config-if)#
```

network-access link- Use this command to detect link-down events. When detected, the switch can shut detection link-down down the port, send an SNMP trap, or both. Use the **no** form of this command to disable this feature.

Syntax

```
network-access link-detection link-down
 action [shutdown | trap | trap-and-shutdown]
```

no network-access link-detection

action - Response to take when port security is violated.

shutdown - Disable port only.

trap - Issue SNMP trap message only.

trap-and-shutdown - Issue SNMP trap message and disable the port.

Default Setting

Disabled

Chapter 9 | General Security Measures

Network Access (MAC Address Authentication)

Command Mode

Interface Configuration

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #network-access link-detection link-down action trap
Console(config-if)#
```

network-access link- Use this command to detect link-up events. When detected, the switch can shut detection link-up down the port, send an SNMP trap, or both. Use the **no** form of this command to disable this feature.

Syntax

```
network-access link-detection link-up
 action [shutdown | trap | trap-and-shutdown]
```

no network-access link-detection

action - Response to take when port security is violated.

shutdown - Disable port only.

trap - Issue SNMP trap message only.

trap-and-shutdown - Issue SNMP trap message and disable the port.

Default Setting

Disabled

Command Mode

Interface Configuration

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #network-access link-detection link-up action trap
Console(config-if)#
```

network-access Use this command to detect link-up and link-down events. When either event is link-detection detected, the switch can shut down the port, send an SNMP trap, or both. Use the link-up-down no form of this command to disable this feature.

Syntax

network-access link-detection link-up-down action [shutdown | trap | trap-and-shutdown]

no network-access link-detection

action - Response to take when port security is violated.

shutdown - Disable port only.

trap - Issue SNMP trap message only.

trap-and-shutdown - Issue SNMP trap message and disable the port.

Default Setting

Disabled

Command Mode

Interface Configuration

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #network-access link-detection link-up-down action trap
Console(config-if)#
```

network-access Use this command to set the maximum number of MAC addresses that can be max-mac-count authenticated on a port interface via all forms of authentication. Use the **no** form of this command to restore the default.

Syntax

network-access max-mac-count count

no network-access max-mac-count

count - The maximum number of authenticated IEEE 802.1X and MAC addresses allowed. (Range: 0-2048; 0 for unlimited)

Default Setting

1024

Command Mode

Interface Configuration

Network Access (MAC Address Authentication)

Command Usage

The maximum number of MAC addresses per port is 1024, and the maximum number of secure MAC addresses supported for the switch system is 1024. When the limit is reached, all new MAC addresses are treated as authentication failures.

Example

```
Console(config-if) #network-access max-mac-count 5
Console(config-if)#
```

network-access mode Use this command to enable network access authentication on a port. Use the **no** mac-authentication form of this command to disable network access authentication.

Syntax

[no] network-access mode mac-authentication

Default Setting

Disabled

Command Mode

Interface Configuration

Command Usage

- When enabled on a port, the authentication process sends a Password Authentication Protocol (PAP) request to a configured RADIUS server. The user name and password are both equal to the MAC address being authenticated.
- On the RADIUS server, PAP user name and passwords must be configured in the MAC address format XX-XX-XX-XX-XX (all in upper case).
- Authenticated MAC addresses are stored as dynamic entries in the switch secure MAC address table and are removed when the aging time expires. The maximum number of secure MAC addresses supported for the switch system is 1024.
- Configured static MAC addresses are added to the secure address table when seen on a switch port. Static addresses are treated as authenticated without sending a request to a RADIUS server.
- MAC authentication, 802.1X, and port security cannot be configured together on the same port. Only one security mechanism can be applied.
- MAC authentication cannot be configured on trunk ports.
- When port status changes to down, all MAC addresses are cleared from the secure MAC address table. Static VLAN assignments are not restored.

The RADIUS server may optionally return a VLAN identifier list. VLAN identifier list is carried in the "Tunnel-Private-Group-ID" attribute. The VLAN list can contain multiple VLAN identifiers in the format "1u,2t," where "u" indicates untagged VLAN and "t" tagged VLAN. The "Tunnel-Type" attribute should be set to "VLAN," and the "Tunnel-Medium-Type" attribute set to "802."

Example

```
Console(config-if) #network-access mode mac-authentication
Console(config-if)#
```

network-access Use this command to enable the specified MAC address filter. Use the **no** form of **port-mac-filter** this command to disable the specified MAC address filter.

Syntax

```
network-access port-mac-filter filter-id
no network-access port-mac-filter
```

filter-id - Specifies a MAC address filter table. (Range: 1-64)

Default Setting

None

Command Mode

Interface Configuration

Command Mode

- Entries in the MAC address filter table can be configured with the networkaccess mac-filter command.
- Only one filter table can be assigned to a port.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #network-access port-mac-filter 1
Console(config-if)#
```

Chapter 9 | General Security Measures

Network Access (MAC Address Authentication)

mac-authentication Use this command to configure the port response to a host MAC authentication intrusion-action failure. Use the **no** form of this command to restore the default.

Syntax

mac-authentication intrusion-action {block traffic | pass traffic} no mac-authentication intrusion-action

Default Setting

Block Traffic

Command Mode

Interface Configuration

Example

Console(config-if) #mac-authentication intrusion-action block-traffic Console(config-if)#

mac-authentication Use this command to set the maximum number of MAC addresses that can be max-mac-count authenticated on a port via MAC authentication. Use the no form of this command to restore the default.

Syntax

mac-authentication max-mac-count count

no mac-authentication max-mac-count

count - The maximum number of MAC-authenticated MAC addresses allowed. (Range: 1-1024)

Default Setting

1024

Command Mode

Interface Configuration

Example

Console(config-if) #mac-authentication max-mac-count 32 Console(config-if)#

clear network-access Use this command to clear entries from the secure MAC addresses table.

Syntax

clear network-access mac-address-table [static | dynamic]

[address mac-address] [interface interface]

static - Specifies static address entries.

dynamic - Specifies dynamic address entries.

mac-address - Specifies a MAC address entry. (Format: xx-xx-xx-xx-xx)

interface - Specifies a port interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

Default Setting

None

Command Mode

Privileged Exec

Example

Console#clear network-access mac-address-table interface ethernet 1/1 Console#

show network-access Use this command to display the MAC authentication settings for port interfaces.

Syntax

show network-access [interface interface]

interface - Specifies a port interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

Default Setting

Displays the settings for all interfaces.

Command Mode

Privileged Exec

Example

```
Console#show network-access interface ethernet 1/1
Global secure port information
Reauthentication Time
                                      : 1800
MAC Address Aging
                                      : Disabled
Port : 1/1
MAC Authentication
                                    : Disabled
MAC Authentication Intrusion Action : Block traffic
MAC Authentication Maximum MAC Counts : 1024
Maximum MAC Counts
Dynamic VLAN Assignment
Dynamic QoS Assignment
Dynamic VLAN Assignment
                                      : Enabled
                                      : Disabled
MAC Filter ID
                                      : Disabled
Guest VIAN
                                      · Disabled
Link Detection
                                      : Disabled
Detection Mode
                                    : Link-down
Detection Action
                                     : Trap
Console#
```

mac-address-table

show network-access Use this command to display secure MAC address table entries.

Syntax

```
show network-access mac-address-table [static | dynamic]
 [address mac-address [mask]] [interface interface] [sort {address |
 interface}]
```

static - Specifies static address entries.

dynamic - Specifies dynamic address entries.

mac-address - Specifies a MAC address entry.

(Format: xx-xx-xx-xx-xx)

mask - Specifies a MAC address bit mask for filtering displayed addresses.

interface - Specifies a port interface.

ethernet *unit/port*

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

sort - Sorts displayed entries by either MAC address or interface.

Default Setting

Displays all filters.

Command Mode

Privileged Exec

Command Usage

When using a bit mask to filter displayed MAC addresses, a 1 means "care" and a 0 means "don't care". For example, a MAC of 00-00-01-02-03-04 and mask FF-FF-FF-

00-00-00 would result in all MACs in the range 00-00-01-00-00 to 00-00-01-FF-FF-FF to be displayed. All other MACs would be filtered out.

Example

Interfa	ce MAC Address	RADIUS Server	Time	Attribute
1/1	00-00-01-02-03-04	172.155.120.17	00d06h32m50s	Static
1/1	00-00-01-02-03-05	172.155.120.17	00d06h33m20s	Dynamic
1/1	00-00-01-02-03-06	172.155.120.17	00d06h35m10s	Static
1/3	00-00-01-02-03-07	172.155.120.17	00d06h34m20s	Dynamic

mac-filter

show network-access Use this command to display information for entries in the MAC filter tables.

Syntax

show network-access mac-filter [filter-id]

filter-id - Specifies a MAC address filter table. (Range: 1-64)

Default Setting

Displays all filters.

Command Mode

Privileged Exec

Example

```
Console#show network-access mac-filter
Filter ID MAC Address MAC Mask
      1 00-00-01-02-03-08 FF-FF-FF-FF-FF
Console#
```

Web Authentication

Web authentication allows stations to authenticate and access the network in situations where 802.1X or Network Access authentication are infeasible or impractical. The web authentication feature allows unauthenticated hosts to request and receive a DHCP assigned IP address and perform DNS queries. All other traffic, except for HTTP protocol traffic, is blocked. The switch intercepts HTTP protocol traffic and redirects it to a switch-generated web page that facilitates user name and password authentication via RADIUS. Once authentication is successful, the web browser is forwarded on to the originally requested web page. Successful authentication is valid for all hosts connected to the port.

Note: RADIUS authentication must be activated and configured for the web authentication feature to work properly (see "Authentication Sequence" on page 242).

Note: Web authentication cannot be configured on trunk ports.

Table 57: Web Authentication

Command	Function	Mode
web-auth login-attempts	Defines the limit for failed web authentication login attempts	GC
web-auth quiet-period	Defines the amount of time to wait after the limit for failed login attempts is exceeded.	GC
web-auth session-timeout	Defines the amount of time a session remains valid	GC
web-auth system-auth-control	Enables web authentication globally for the switch	GC
web-auth	Enables web authentication for an interface	IC
web-auth re-authenticate (Port)	Ends all web authentication sessions on the port and forces the users to re-authenticate	PE
web-auth re-authenticate (IP)	Ends the web authentication session associated with the designated IP address and forces the user to reauthenticate	PE
show web-auth	Displays global web authentication parameters	PE
show web-auth interface	Displays interface-specific web authentication parameters and statistics	PE
show web-auth summary	Displays a summary of web authentication port parameters and statistics	PE

web-auth This command defines the limit for failed web authentication login attempts. After login-attempts the limit is reached, the switch refuses further login attempts until the quiet time expires. Use the **no** form to restore the default.

Syntax

web-auth login-attempts count

no web-auth login-attempts

count - The limit of allowed failed login attempts. (Range: 1-3)

Default Setting

3 login attempts

Command Mode

Global Configuration

Example

```
Console(config) #web-auth login-attempts 2
Console(config)#
```

quiet-period

web-auth This command defines the amount of time a host must wait after exceeding the limit for failed login attempts, before it may attempt web authentication again. Use the **no** form to restore the default.

Syntax

web-auth quiet-period time

no web-auth quiet period

time - The amount of time the host must wait before attempting authentication again. (Range: 1-180 seconds)

Default Setting

60 seconds

Command Mode

Global Configuration

```
Console(config) #web-auth quiet-period 120
Console(config)#
```

Web Authentication

web-auth This command defines the amount of time a web-authentication session remains session-timeout valid. When the session timeout has been reached, the host is logged off and must re-authenticate itself the next time data transmission takes place. Use the **no** form to restore the default.

Syntax

web-auth session-timeout timeout

no web-auth session timeout

timeout - The amount of time that an authenticated session remains valid. (Range: 300-3600 seconds)

Default Setting

3600 seconds

Command Mode

Global Configuration

Example

```
Console(config) #web-auth session-timeout 1800
Console(config)#
```

system-auth-control to restore the default.

web-auth This command globally enables web authentication for the switch. Use the **no** form

Syntax

[no] web-auth system-auth-control

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

Both web-auth system-auth-control for the switch and web-auth for an interface must be enabled for the web authentication feature to be active.

```
Console(config) #web-auth system-auth-control
Console(config)#
```

web-auth This command enables web authentication for an interface. Use the no form to restore the default.

Syntax

[no] web-auth

Default Setting

Disabled

Command Mode

Interface Configuration

Command Usage

Both web-auth system-auth-control for the switch and web-auth for a port must be enabled for the web authentication feature to be active.

Example

```
Console(config-if) #web-auth
Console(config-if)#
```

web-auth This command ends all web authentication sessions connected to the port and re-authenticate (Port) forces the users to re-authenticate.

Syntax

web-auth re-authenticate interface interface

interface - Specifies a port interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

Default Setting

None

Command Mode

Privileged Exec

Example

Console#web-auth re-authenticate interface ethernet 1/2 Console#

Web Authentication

web-auth This command ends the web authentication session associated with the re-authenticate (IP) designated IP address and forces the user to re-authenticate.

Syntax

web-auth re-authenticate interface ip

```
interface - Specifies a port interface.
    ethernet unit/port
        unit - Unit identifier. (Range: 1-8)
        port - Port number. (Range: 1-28/52)
```

ip - IPv4 formatted IP address

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#web-auth re-authenticate interface ethernet 1/2 192.168.1.5
Console#
```

show web-auth This command displays global web authentication parameters.

Command Mode

Privileged Exec

```
Console#show web-auth
Global Web-Auth Parameters
 System Auth Control : Enabled
 Session Timeout
                       : 3600
 Quiet Period
                        : 60
 Max Login Attempts
                        : 3
Console#
```

interface statistics.

show web-auth This command displays interface-specific web authentication parameters and

Syntax

show web-auth interface interface

interface - Specifies a port interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

```
Console#show web-auth interface ethernet 1/2
Web Auth Status
               : Enabled
Host Summary
IP address
           Web-Auth-State Remaining-Session-Time
1.1.1.1 Authenticated 295
1.1.1.2 Authenticated 111
           Authenticated 111
Console#
```

summary statistics.

show web-auth This command displays a summary of web authentication port parameters and

Command Mode

Privileged Exec

```
Console#show web-auth summary
Global Web-Auth Parameters
 System Auth Control : Enabled
Fort Status Authenticated Host Count
       Status
Port
1/ 1 Disabled
1/ 2 Enabled
1/ 3 Disabled
1/ 4 Disabled
1/ 5 Disabled
                              0
                               8
                               0
                                0
1/5
             Disabled
                                0
```

DHCPv4 Snooping

DHCPv4 snooping allows a switch to protect a network from rogue DHCPv4 servers or other devices which send port-related information to a DHCPv4 server. This information can be useful in tracking an IP address back to a physical port. This section describes commands used to configure DHCPv4 snooping.

Table 58: DHCP Snooping Commands

Command	Function	Mode
ip dhcp snooping	Enables DHCP snooping globally	GC
ip dhcp snooping information option	Enables or disables the use of DHCP Option 82 information, and specifies frame format for the remote-id	GC
ip dhcp snooping information option encode no-subtype	Disables use of sub-type and sub-length for the CID/RID in Option 82 information	GC
ip dhcp snooping information option remote-id	Sets the remote ID to the switch's IP address, MAC address, arbitrary string, or TR-101 compliant node identifier	GC
ip dhcp snooping information option tr101 board-id	Sets the board identifier used in Option 82 information based on TR-101 syntax	GC
ip dhcp snooping information policy	Sets the information option policy for DHCP client packets that include Option 82 information	GC
ip dhcp snooping limit rate	Sets the maximum number of DHCP packets that can be trapped for DHCP snooping	GC
ip dhcp snooping verify mac-address	Verifies the client's hardware address stored in the DHCP packet against the source MAC address in the Ethernet header	GC
ip dhcp snooping vlan	Enables DHCP snooping on the specified VLAN	GC
ip dhcp snooping information option circuit-id	Specifies DHCP Option 82 circuit-id suboption information	IC
ip dhcp snooping trust	Configures the specified interface as trusted	IC
clear ip dhcp snooping binding	Clears DHCP snooping binding table entries from RAM	PE
clear ip dhcp snooping database flash	Removes all dynamically learned snooping entries from flash memory.	PE
ip dhcp snooping database flash	Writes all dynamically learned snooping entries to flash memory	PE
show ip dhcp snooping	Shows the DHCP snooping configuration settings	PE
show ip dhcp snooping binding	Shows the DHCP snooping binding table entries	PE

ip dhcp snooping This command enables DHCP snooping globally. Use the **no** form to restore the default setting.

Syntax

[no] ip dhcp snooping

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Network traffic may be disrupted when malicious DHCP messages are received from an outside source. DHCP snooping is used to filter DHCP messages received on an unsecure interface from outside the network or fire wall. When DHCP snooping is enabled globally by this command, and enabled on a VLAN interface by the ip dhcp snooping vlan command, DHCP messages received on an untrusted interface (as specified by the no ip dhcp snooping trust command) from a device not listed in the DHCP snooping table will be dropped.
- When enabled, DHCP messages entering an untrusted interface are filtered based upon dynamic entries learned via DHCP snooping.
- Table entries are only learned for trusted interfaces. Each entry includes a MAC address, IP address, lease time, VLAN identifier, and port identifier.
- When DHCP snooping is enabled, the rate limit for the number of DHCP messages that can be processed by the switch is 100 packets per second. Any DHCP packets in excess of this limit are dropped.
- Filtering rules are implemented as follows:
 - If global DHCP snooping is disabled, all DHCP packets are forwarded.
 - If DHCP snooping is enabled globally, and also enabled on the VLAN where the DHCP packet is received, all DHCP packets are forwarded for a trusted port. If the received packet is a DHCP ACK message, a dynamic DHCP snooping entry is also added to the binding table.
 - If DHCP snooping is enabled globally, and also enabled on the VLAN where the DHCP packet is received, but the port is not trusted, it is processed as follows:
 - If the DHCP packet is a reply packet from a DHCP server (including OFFER, ACK or NAK messages), the packet is dropped.

- If the DHCP packet is from a client, such as a DECLINE or RELEASE message, the switch forwards the packet only if the corresponding entry is found in the binding table.
- If the DHCP packet is from client, such as a DISCOVER, REQUEST, INFORM, DECLINE or RELEASE message, the packet is forwarded if MAC address verification is disabled (as specified by the ip dhcp snooping verify mac-address command). However, if MAC address verification is enabled, then the packet will only be forwarded if the client's hardware address stored in the DHCP packet is the same as the source MAC address in the Ethernet header.
- If the DHCP packet is not a recognizable type, it is dropped.
- If a DHCP packet from a client passes the filtering criteria above, it will only be forwarded to trusted ports in the same VLAN.
- If a DHCP packet is from server is received on a trusted port, it will be forwarded to both trusted and untrusted ports in the same VLAN.
- If DHCP snooping is globally disabled, all dynamic bindings are removed from the binding table.
- Additional considerations when the switch itself is a DHCP client The port(s) through which the switch submits a client request to the DHCP server must be configured as trusted (using the ip dhcp snooping trust command). Note that the switch will not add a dynamic entry for itself to the binding table when it receives an ACK message from a DHCP server. Also, when the switch sends out DHCP client packets for itself, no filtering takes place. However, when the switch receives any messages from a DHCP server, any packets received from untrusted ports are dropped.

Example

This example enables DHCP snooping globally for the switch.

Console(config)#ip dhcp snooping
Console(config)#

Related Commands

ip dhcp snooping vlan (338) ip dhcp snooping trust (340)

information option

ip dhcp snooping This command enables the use of DHCP Option 82 information for the switch, and specifies the frame format to use for the remote-id when Option 82 information is generated by the switch. Use the **no** form without any keywords to disable this function, the no form with the encode no-subtype keyword to enable use of subtype and sub-length in CID/RID fields, or the **no** form with the **remote-id** keyword to set the remote ID to the switch's MAC address encoded in hexadecimal.

Syntax

ip dhcp snooping information option [encode no-subtype] [remote-id {ip-address [encode {ascii | hex}] | mac-address [encode {ascii | hex}] | string string}]

no ip dhcp snooping information option [encode no-subtype] [remote-id [ip-address encode] | [mac-address encode]]

encode no-subtype - Disables use of sub-type and sub-length fields in circuit-ID (CID) and remote-ID (RID) in Option 82 information.

mac-address - Inserts a MAC address in the remote ID sub-option for the DHCP snooping agent (that is, the MAC address of the switch's CPU).

ip-address - Inserts an IP address in the remote ID sub-option for the DHCP snooping agent (that is, the IP address of the management interface).

encode - Indicates encoding in ASCII or hexadecimal.

string - An arbitrary string inserted into the remote identifier field. (Range: 1-32 characters)

Default Setting

Option 82: Disabled

CID/RID sub-type: Enabled

Remote ID: MAC address (hexadecimal)

Command Mode

Global Configuration

Command Usage

- DHCP provides a relay mechanism for sending information about the switch and its DHCP clients to the DHCP server. Known as DHCP Option 82, it allows compatible DHCP servers to use the information when assigning IP addresses, or to set other services or policies for clients.
- When the DHCP Snooping Information Option 82 is enabled, the requesting client (or an intermediate relay agent that has used the information fields to describe itself) can be identified in the DHCP request packets forwarded by the switch and in reply packets sent back from the DHCP server.
- When the DHCP Snooping Information Option is enabled, clients can be identified by the switch port to which they are connected rather than just their MAC address. DHCP client-server exchange messages are then forwarded

directly between the server and client without having to flood them to the entire VLAN.

- DHCP snooping must be enabled for the DHCP Option 82 information to be inserted into packets. When enabled, the switch will only add/remove option 82 information in incoming DCHP packets but not relay them. Packets are processed as follows:
 - If an incoming packet is a DHCP request packet with option 82 information, it will modify the option 82 information according to settings specified with ip dhcp snooping information policy command.
 - If an incoming packet is a DHCP request packet without option 82 information, enabling the DHCP snooping information option will add option 82 information to the packet.
 - If an incoming packet is a DHCP reply packet with option 82 information, enabling the DHCP snooping information option will remove option 82 information from the packet.

Example

This example enables the DHCP Snooping Information Option.

```
Console(config) #ip dhcp snooping information option
Console(config)#
```

information option encode no-subtype

ip dhcp snooping This command disables the use of sub-type and sub-length fields for the circuit-ID (CID) and remote-ID (RID) in Option 82 information generated by the switch. Use the **no** form to enable the use of these fields.

Syntax

[no] ip dhcp snooping information option encode no-subtype

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

See the Command Usage section under the ip dhcp snooping information option circuit-id command for a description of how these fields are included in TR-101 syntax.

EXAMPLE

This example enables the use of sub-type and sub-length fields for the circuit-ID (CID) and remote-ID (RID).

```
Console(config) #no ip dhcp snooping information option encode no-subtype
Console(config)#
```

remote-id setting.

ip dhcp snooping This command sets the remote ID to the switch's IP address, MAC address, arbitrary information option string, or TR-101 compliant node identifier. Use the **no** form to restore the default

Syntax

```
ip dhcp snooping information option remote-id
 {ip-address [encode {ascii | hex}] |
 mac-address [encode {ascii | hex}] | string |
 tr101 node-identifier {ip | sysname}]
```

no ip dhcp snooping information option remote-id [ip-address encode] | [mac-address encode]

mac-address - Inserts a MAC address in the remote ID sub-option for the DHCP snooping agent (that is, the MAC address of the switch's CPU).

ip-address - Inserts an IP address in the remote ID sub-option for the DHCP snooping agent (that is, the IP address of the management interface).

encode - Indicates encoding in ASCII or hexadecimal.

string - An arbitrary string inserted into the remote identifier field. (Range: 1-32 characters)

tr101 node-identifier - The remote ID generated by the switch is based on TR-101 syntax (R-124, Access_Node_ID).

ip - Specifies the switch's IP address as the node identifier.

sysname - Specifies the system name as the node identifier.

Default Setting

MAC address (hexadecimal)

Command Mode

Global Configuration

Example

This example sets the remote ID to the switch's IP address.

```
Console(config) #ip dhcp snooping information option remote-id tr101
 node-identifier ip
Console(config)#
```

information option tr101 board-id

ip dhcp snooping This command sets the board identifier used in Option 82 information based on TR-101 syntax. Use the **no** form to remove the board identifier.

Syntax

ip dhcp snooping information option tr101 board-id board-id no ip dhcp snooping information option tr101 board-id

board-id - TR101 Board ID. (Range: 0-9)

Default Setting

not defined

Command Mode

Global Configuration

Example

This example sets the board ID to 0.

Console(config) #ip dhcp snooping information option tr101 board-id 0 Console(config)#

ip dhcp snooping This command sets the DHCP snooping information option policy for DHCP client **information policy** packets that include Option 82 information.

Syntax

ip dhcp snooping information policy {drop | keep | replace}

drop - Drops the client's request packet instead of relaying it.

keep - Retains the Option 82 information in the client request, and forwards the packets to trusted ports.

replace - Replaces the Option 82 information circuit-id and remote-id fields in the client's request with information about the relay agent itself, inserts the relay agent's address (when DHCP snooping is enabled), and forwards the packets to trusted ports.

Default Setting

replace

Command Mode

Global Configuration

Command Usage

When the switch receives DHCP packets from clients that already include DHCP Option 82 information, the switch can be configured to set the action policy for these packets. The switch can either drop the DHCP packets, keep the existing information, or replace it with the switch's relay information.

Example

```
Console(config) #ip dhcp snooping information policy drop
Console(config)#
```

ip dhcp snooping This command sets the maximum number of DHCP packets that can be trapped by **limit rate** the switch for DHCP snooping. Use the **no** form to restore the default setting.

Syntax

ip dhcp snooping limit rate rate

no dhcp snooping limit rate

rate - The maximum number of DHCP packets that may be trapped for DHCP snooping. (Range: 1-2048 packets/second)

Default Setting

Disabled

Command Mode

Global Configuration

Example

This example sets the DHCP snooping rate limit to 100 packets per second.

```
Console(config) #ip dhcp snooping limit rate 100
Console(config)#
```

verify mac-address

ip dhcp snooping This command verifies the client's hardware address stored in the DHCP packet against the source MAC address in the Ethernet header. Use the **no** form to disable this function.

Syntax

[no] ip dhcp binding verify mac-address

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

If MAC address verification is enabled, and the source MAC address in the Ethernet header of the packet is not same as the client's hardware address in the DHCP packet, the packet is dropped.

DHCPv4 Snooping

Example

This example enables MAC address verification.

```
Console(config) #ip dhcp snooping verify mac-address
Console(config)#
```

Related Commands

ip dhcp snooping (331) ip dhcp snooping vlan (338) ip dhcp snooping trust (340)

ip dhcp snooping vlan This command enables DHCP snooping on the specified VLAN. Use the **no** form to restore the default setting.

Syntax

[no] ip dhcp snooping vlan vlan-id

vlan-id - ID of a configured VLAN (Range: 1-4094)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- When DHCP snooping is enabled globally using the ip dhcp snooping command, and enabled on a VLAN with this command, DHCP packet filtering will be performed on any untrusted ports within the VLAN as specified by the ip dhcp snooping trust command.
- When the DHCP snooping is globally disabled, DHCP snooping can still be configured for specific VLANs, but the changes will not take effect until DHCP snooping is globally re-enabled.
- ♦ When DHCP snooping is globally enabled, and then disabled on a VLAN, all dynamic bindings learned for this VLAN are removed from the binding table.

Example

This example enables DHCP snooping for VLAN 1.

```
Console(config) #ip dhcp snooping vlan 1
Console(config)#
```

Related Commands

ip dhcp snooping (331) ip dhcp snooping trust (340)

information option circuit-id

ip dhcp snooping This command specifies DHCP Option 82 circuit-id suboption information. Use the **no** form to use the default settings.

Syntax

ip dhcp snooping information option circuit-id string string no dhcp snooping information option circuit-id

string - An arbitrary string inserted into the circuit identifier field. (Range: 1-32 characters)

Default Setting

VLAN-Unit-Port

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- DHCP provides a relay mechanism for sending information about the switch and its DHCP clients to the DHCP server. DHCP Option 82 allows compatible DHCP servers to use the information when assigning IP addresses, to set other services or policies for clients. For more information of this process, refer to the Command Usage section under the ip dhcp snooping information option command.
- Option 82 information generated by the switch is based on TR-101 syntax as shown below:

Table 59: Option 82 information

82	3-69	1	1-67	x1	x2	х3	х4	х5	x63
opt82	opt-len	sub-opt1	string-len			R-124	string		

The circuit identifier used by this switch starts at sub-option1 and goes to the end of the R-124 string. The R-124 string includes the following information:

- sub-type Distinguishes different types of circuit IDs.
- sub-length Length of the circuit ID type
- access node identifier ASCII string. Default is the MAC address of the switch's CPU. This field is set by the ip dhcp snooping information option command,
- eth The second field is the fixed string "eth"
- slot The slot represents the stack unit for this system.

- port The port which received the DHCP request. If the packet arrives over a trunk, the value is the ifIndex of the trunk.
- vlan Tag of the VLAN which received the DHCP request. Note that the sub-type and sub-length fields can be enabled or disabled using the ip dhcp snooping information option command.
- The **ip dhcp snooping information option circuit-id** command can be used to modify the default settings described above.

Example

This example sets the DHCP Snooping Information circuit-id suboption string.

```
Console(config) #interface ethernet 1/1
Console(config-if) #ip dhcp snooping information option circuit-id string mv2
Console(config-if)#
```

ip dhcp snooping trust This command configures the specified interface as trusted. Use the **no** form to restore the default setting.

Syntax

[no] ip dhcp snooping trust

Default Setting

All interfaces are untrusted

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- A trusted interface is an interface that is configured to receive only messages from within the network. An untrusted interface is an interface that is configured to receive messages from outside the network or fire wall.
- Set all ports connected to DHCP servers within the local network or fire wall to trusted, and all other ports outside the local network or fire wall to untrusted.
- ♦ When DHCP snooping is enabled globally using the ip dhcp snooping command, and enabled on a VLAN with ip dhcp snooping vlan command, DHCP packet filtering will be performed on any untrusted ports within the VLAN according to the default status, or as specifically configured for an interface with the no ip dhcp snooping trust command.
- When an untrusted port is changed to a trusted port, all the dynamic DHCP snooping bindings associated with this port are removed.

Additional considerations when the switch itself is a DHCP client – The port(s) through which it submits a client request to the DHCP server must be configured as trusted.

Example

This example sets port 5 to untrusted.

```
Console(config)#interface ethernet 1/5
Console(config-if) #no ip dhcp snooping trust
Console(config-if)#
```

Related Commands

ip dhcp snooping (331) ip dhcp snooping vlan (338)

clear ip dhcp This command clears DHCP snooping binding table entries from RAM. Use this **snooping binding** command without any optional keywords to clear all entries from the binding table.

Syntax

clear ip dhcp snooping binding [mac-address vlan vlan-id]

mac-address - Specifies a MAC address entry. (Format: xx-xx-xx-xx-xx) *vlan-id* - ID of a configured VLAN (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#clear ip dhcp snooping binding 11-22-33-44-55-66 vlan 1
Console#
```

snooping database flash

clear ip dhcp This command removes all dynamically learned snooping entries from flash memory.

Command Mode

Privileged Exec

```
Console#clear ip dhcp snooping database flash
Console#
```

database flash

ip dhcp snooping This command writes all dynamically learned snooping entries to flash memory.

Command Mode

Privileged Exec

Command Usage

This command can be used to store the currently learned dynamic DHCP snooping entries to flash memory. These entries will be restored to the snooping table when the switch is reset. However, note that the lease time shown for a dynamic entry that has been restored from flash memory will no longer be valid.

Example

```
Console#ip dhcp snooping database flash
Console#
```

show ip dhcp snooping

This command shows the DHCP snooping configuration settings.

Command Mode

Privileged Exec

```
Console#show ip dhcp snooping
Global DHCP Snooping Status: enabled
DHCP Snooping Information Option Status: enabled
DHCP Snooping Information Option Sub-option Format: extra subtype included
DHCP Snooping Information Option Remote ID: MAC Address (ascii encoded)
DHCP Snooping Information Option TR101 Board ID: none
DHCP Snooping Information Policy: replace
DHCP Snooping is configured on the following VLANs:
Verify Source MAC-Address: enabled
DHCP Snooping rate limit: unlimited
Interface Trusted Circuit-ID mode Circuit-ID Value
______
Eth 1/1 No Vlan-Unit-Port ---
Eth 1/2 No
                   Vlan-Unit-Port ---
                   Vlan-Unit-Port
Eth 1/3 No
Eth 1/4 No
Eth 1/5 No
         No
No
                    Vlan-Unit-Port
                    Vlan-Unit-Port
```

show ip dhcp snooping binding

show ip dhcp This command shows the DHCP snooping binding table entries.

Command Mode

Privileged Exec

Example

Console#show ip dhcp	snooping bind	ling		
MAC Address IP	Address	Lease(sec)	Type	VLAN Interface
11-22-33-44-55-66 19	2.168.0.99	0	Dynamic-DHCPSNP	1 Eth 1/5
Console#				

DHCPv6 Snooping

DHCPv6 snooping allows a switch to protect a network from rogue DHCPv6 servers or other devices which send port-related information to a DHCPv6 server. This information can be useful in tracking an IP address back to a physical port. This section describes commands used to configure DHCPv6 snooping.

Table 60: DHCP Snooping Commands

Command	Function	Mode
ipv6 dhcp snooping	Enables DHCPv6 snooping globally	GC
ipv6 dhcp snooping option remote-id	Enables insertion of DHCPv6 Option 37 relay agent remote-id	GC
pv6 dhcp snooping option remote-id policy	Sets the information option policy for DHCPv6 client packets that include Option 37 information	GC
ipv6 dhcp snooping vlan	Enables DHCPv6 snooping on the specified VLAN	GC
pv6 dhcp snooping max-binding	Sets the maximum number of entries which can be stored in the binding database for an interface	IC
pv6 dhcp snooping trust	Configures the specified interface as trusted	IC
clear ipv6 dhcp snooping binding	Clears DHCPv6 snooping binding table entries from RAM	PE
clear ipv6 dhcp snooping statistics	Clears statistical counters for DHCPv6 snooping client, server and relay packets	PE
show ipv6 dhcp snooping	Shows the DHCPv6 snooping configuration settings	PE
show ipv6 dhcp snooping binding	Shows the DHCPv6 snooping binding table entries	PE
show ipv6 dhcp snooping statistics	Shows statistics for DHCPv6 snooping client, server and relay packets	PE

ipv6 dhcp snooping This command enables DHCPv6 snooping globally. Use the **no** form to restore the default setting.

Syntax

[no] ipv6 dhcp snooping

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Network traffic may be disrupted when malicious DHCPv6 messages are received from an outside source. DHCPv6 snooping is used to filter DHCPv6 messages received on an unsecure interface from outside the network or fire wall. When DHCPv6 snooping is enabled globally by this command, and enabled on a VLAN interface by the ipv6 dhcp snooping vlan command, DHCP messages received on an untrusted interface (as specified by the no ipv6 dhcp snooping trust command) from a device not listed in the DHCPv6 snooping table will be dropped.
- When enabled, DHCPv6 messages entering an untrusted interface are filtered based upon dynamic entries learned via DHCPv6 snooping.
- Table entries are only learned for trusted interfaces. Each entry includes a MAC address, IPv6 address, lease time, binding type, VLAN identifier, and port identifier.
- When DHCPv6 snooping is enabled, the rate limit for the number of DHCPv6 messages that can be processed by the switch is 100 packets per second. Any DHCPv6 packets in excess of this limit are dropped.
- Filtering rules are implemented as follows:
 - If global DHCPv6 snooping is disabled, all DHCPv6 packets are forwarded.
 - If DHCPv6 snooping is enabled globally, and also enabled on the VLAN where the DHCPv6 packet is received, DHCPv6 packets are forwarded for a trusted port as described below.
 - If DHCPv6 snooping is enabled globally, and also enabled on the VLAN where the DHCP packet is received, but the port is not trusted, DHCP packets are processed according to message type as follows:

DHCP Client Packet

Request: Update entry in binding cache, recording client's DHCPv6 Unique Identifier (DUID), server's DUID, Identity Association (IA) type, IA Identifier, and address (4 message exchanges to get IPv6 address), and forward to trusted port.

- Solicit: Add new entry in binding cache, recording client's DUID, IA type, IA ID (2 message exchanges to get IPv6 address with rapid commit option, otherwise 4 message exchanges), and forward to trusted port.
- Decline: If no matching entry is found in binding cache, drop this packet.
- Renew, Rebind, Release, Confirm: If no matching entry is found in binding cache, drop this packet.
- If the DHCPv6 packet is not a recognizable type, it is dropped.

If a DHCPv6 packet from a client passes the filtering criteria above, it will only be forwarded to trusted ports in the same VLAN.

DHCP Server Packet

- If a DHCP server packet is received on an untrusted port, drop this packet and add a log entry in the system.
- If a DHCPv6 Reply packet is received from a server on a trusted port, it will be processed in the following manner:
 - **A.** Check if IPv6 address in IA option is found in binding table:
 - If yes, continue to C.
 - If not, continue to B.
 - **B.** Check if IPv6 address in IA option is found in binding cache:
 - If yes, continue to C.
 - If not, check failed, and forward packet to trusted port.
 - **C.** Check status code in IA option:
 - If successful, and entry is in binding table, update lease time and forward to original destination.
 - If successful, and entry is in binding cache, move entry from binding cache to binding table, update lease time and forward to original destination.
 - Otherwise, remove binding entry. and check failed.
- If a DHCPv6 Relay packet is received, check the relay message option in Relay-Forward or Relay-Reply packet, and process client and server packets as described above.
- If DHCPv6 snooping is globally disabled, all dynamic bindings are removed from the binding table.

◆ Additional considerations when the switch itself is a DHCPv6 client – The port(s) through which the switch submits a client request to the DHCPv6 server must be configured as trusted (using the ipv6 dhcp snooping trust command). Note that the switch will not add a dynamic entry for itself to the binding table when it receives an ACK message from a DHCPv6 server. Also, when the switch sends out DHCPv6 client packets for itself, no filtering takes place. However, when the switch receives any messages from a DHCPv6 server, any packets received from untrusted ports are dropped.

Example

This example enables DHCPv6 snooping globally for the switch.

```
Console(config)#ipv6 dhcp snooping
Console(config)#
```

Related Commands

ipv6 dhcp snooping vlan (348) ipv6 dhcp snooping trust (349)

ipv6 dhcp snooping option remote-id

This command enables the insertion of remote-id option 37 information into DHCPv6 client messages. Remote-id option information such as the port attached to the client, DUID, and VLAN ID is used by the DHCPv6 server to assign preassigned configuration data specific to the DHCPv6 client. Use the **no** form of the command to disable this function.

Syntax

[no] ipv6 dhcp snooping option remote-id

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- DHCPv6 provides a relay mechanism for sending information about the switch and its DHCPv6 clients to the DHCPv6 server. Known as DHCPv6 Option 37, it allows compatible DHCPv6 servers to use the information when assigning IP addresses, or to set other services or policies for clients.
- When DHCPv6 Snooping Information Option 37 is enabled, the requesting client (or an intermediate relay agent that has used the information fields to describe itself) can be identified in the DHCPv6 request packets forwarded by the switch and in reply packets sent back from the DHCPv6 server.
- When the DHCPv6 Snooping Option 37 is enabled, clients can be identified by the switch port to which they are connected rather than just their MAC address.

DHCPv6 client-server exchange messages are then forwarded directly between the server and client without having to flood them to the entire VLAN.

- DHCPv6 snooping must be enabled for the DHCPv6 Option 37 information to be inserted into packets. When enabled, the switch will either drop, keep or remove option 37 information in incoming DCHPv6 packets. Packets are processed as follows:
 - If an incoming packet is a DHCPv6 request packet with option 37 information, it will modify the option 37 information according to settings specified with ipv6 dhcp snooping option remote-id policy command.
 - If an incoming packet is a DHCPv6 request packet without option 37 information, enabling the DHCPv6 snooping information option will add option 37 information to the packet.
 - If an incoming packet is a DHCPv6 reply packet with option 37 information, enabling the DHCPv6 snooping information option will remove option 37 information from the packet.
- When this switch inserts Option 37 information in DHCPv6 client request packets, the switch's MAC address (hexadecimal) is used for the remote ID.

Example

This example enables the DHCPv6 Snooping Remote-ID Option.

```
Console(config) #ipv6 dhcp snooping option remote-id
Console(config)#
```

option remote-id policy

ipv6 dhcp snooping This command sets the remote-id option policy for DHCPv6 client packets that include Option 37 information. Use the **no** form to disable this function.

Syntax

ipv6 dhcp snooping option remote-id policy {drop | keep | replace} no ipv6 dhcp snooping option remote-id policy

drop - Drops the client's request packet instead of relaying it.

keep - Retains the Option 37 information in the client request, and forwards the packets to trusted ports.

replace - Replaces the Option 37 remote-ID in the client's request with the relay agent's remote-ID (when DHCPv6 snooping is enabled), and forwards the packets to trusted ports.

Default Setting

drop

Command Mode

Global Configuration

Command Usage

When the switch receives DHCPv6 packets from clients that already include DHCP Option 37 information, the switch can be configured to set the action policy for these packets. The switch can either drop the DHCPv6 packets, keep the existing information, or replace it with the switch's relay agent information.

Example

This example configures the switch to keep existing remote-id option 37 information within DHCPv6 client packets and forward it.

```
Console(config) #ipv6 dhcp snooping option remote-id policy keep
Console(config)#
```

ipv6 dhcp snooping This command enables DHCPv6 snooping on the specified VLAN. Use the **no** form vlan to restore the default setting.

Syntax

[no] ipv6 dhcp snooping vlan {vlan-id | vlan-range}

vlan-id - ID of a configured VLAN (Range: 1-4094)

vlan-range - A consecutive range of VLANs indicated by the use a hyphen, or a random group of VLANs with each entry separated by a comma.

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- ♦ When DHCPv6 snooping enabled globally using the ipv6 dhcp snooping command, and enabled on a VLAN with this command, DHCPv6 packet filtering will be performed on any untrusted ports within the VLAN as specified by the ipv6 dhcp snooping trust command.
- When the DHCPv6 snooping is globally disabled, DHCPv6 snooping can still be configured for specific VLANs, but the changes will not take effect until DHCPv6 snooping is globally re-enabled.
- ♦ When DHCPv6 snooping is enabled globally, and then disabled on a VLAN, all dynamic bindings learned for this VLAN are removed from the binding table.

Example

This example enables DHCP6 snooping for VLAN 1.

```
Console(config)#ipv6 dhcp snooping vlan 1
Console(config)#
```

Related Commands

ipv6 dhcp snooping (344) ipv6 dhcp snooping trust (349)

ipv6 dhcp snooping This command sets the maximum number of entries which can be stored in the max-binding binding database for an interface. Use the **no** form to restore the default setting.

Syntax

ipv6 dhcp snooping max-binding count no ipv6 dhcp snooping max-binding

count - Maximum number of entries. (Range: 1-5)

Default Setting

5

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

This example sets the maximum number of binding entries to 1.

```
Console(config)#interface ethernet 1/1
Console(config-if) #ipv6 dhcp snooping max-binding 1
Console(config-if)#
```

ipv6 dhcp snooping This command configures the specified interface as trusted. Use the **no** form to **trust** restore the default setting.

Syntax

[no] ipv6 dhcp snooping trust

Default Setting

All interfaces are untrusted

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- A trusted interface is an interface that is configured to receive only messages from within the network. An untrusted interface is an interface that is configured to receive messages from outside the network or fire wall.
- Set all ports connected to DHCv6 servers within the local network or fire wall to trusted, and all other ports outside the local network or fire wall to untrusted.
- When DHCPv6 snooping is enabled globally using the ipv6 dhcp snooping command, and enabled on a VLAN with ipv6 dhcp snooping vlan command, DHCPv6 packet filtering will be performed on any untrusted ports within the VLAN according to the default status, or as specifically configured for an interface with the **no ipv6 dhcp snooping trust** command.
- When an untrusted port is changed to a trusted port, all the dynamic DHCPv6 snooping bindings associated with this port are removed.
- Additional considerations when the switch itself is a DHCPv6 client The port(s) through which it submits a client request to the DHCPv6 server must be configured as trusted.

Example

This example sets port 5 to untrusted.

```
Console(config)#interface ethernet 1/5
Console(config-if) #no ipv6 dhcp snooping trust
Console(config-if)#
```

Related Commands

ipv6 dhcp snooping (344) ipv6 dhcp snooping vlan (348)

snooping binding

clear ipv6 dhcp This command clears DHCPv6 snooping binding table entries from RAM. Use this command without any optional keywords to clear all entries from the binding table.

Syntax

clear ipv6 dhcp snooping binding [mac-address ipv6-address]

mac-address - Specifies a MAC address entry. (Format: xx-xx-xx-xx-xx)

ipv6-address - Corresponding IPv6 address. This address must be entered according to RFC 2373 "IPv6 Addressing Architecture," using 8 colonseparated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

Command Mode

Privileged Exec

Example

Console(config) #clear ipv6 dhcp snooping binding 00-12-cf-01-02-03 2001::1 Console(config)#

snooping statistics relay packets.

clear ipv6 dhcp This command clears statistical counters for DHCPv6 snooping client, server and

Command Mode

Privileged Exec

Example

Console(config) #clear ipv6 dhcp snooping statistics Console(config)#

snooping

show ipv6 dhcp This command shows the DHCPv6 snooping configuration settings.

Command Mode

Privileged Exec

```
Console#show ipv6 dhcp snooping
Global DHCPv6 Snooping status: disabled
DHCPv6 Snooping remote-id option status: disabled
DHCPv6 Snooping remote-id policy: drop
DHCPv6 Snooping is configured on the following VLANs:
  1,
                 Trusted
Interface
                              Max-binding Current-binding
Eth 1/1
                  No
Eth 1/2
                  No
                                         5
                                                          0
                  No
                                         5
Eth 1/3
                                                         0
Eth 1/4
                  No
                                         5
                                                         0
Eth 1/5
                  Yes
```

snooping binding

show ipv6 dhcp This command shows the DHCPv6 snooping binding table entries.

Command Mode

Privileged Exec

Example

Console#show ipv6 dhcp snooping binding NA - Non-temporary address TA - Temporary address				
Link-layer Address: 00-13-49-aa-39-26 IPv6 Address	Lifetime	VLAN	Port	Туре
2001:b021:1435:5612:ab3c:6792:a452:6712				NA
Link-layer Address: 00-12-cf-01-02-03 IPv6 Address	Lifetime	VLAN	Port	Туре
2001:b000::1				NA
Console#				

snooping statistics packets.

show ipv6 dhcp This command shows statistics for DHCPv6 snooping client, server and relay

Command Mode

Privileged Exec

```
Console#show ipv6 dhcp snooping statistics
DHCPv6 Snooping Statistics:
   Client Packet: Solicit, Request, Confirm, Renew, Rebind,
                       Decline, Release, Information-request
   Server Packet: Advertise, Reply, Reconfigure
   Relay Packet: Relay-forward, Relay-reply
State Client Server Relay Total
Received 10 9 0
Sent 9 9 0
Droped 1 0 0
                                        19
18
Console#
```

IPv4 Source Guard

IPv4 Source Guard is a security feature that filters IPv4 traffic on network interfaces based on manually configured entries in the IPv4 Source Guard table, or dynamic entries in the DHCPv4 Snooping table when enabled (see "DHCPv4 Snooping" on page 330). IPv4 source guard can be used to prevent traffic attacks caused when a host tries to use the IPv4 address of a neighbor to access the network. This section describes commands used to configure IPv4 Source Guard.

Table 61: IPv4 Source Guard Commands

Command	Function	Mode
ip source-guard binding	Adds a static address to the source-guard binding table	GC
ip source-guard	Configures the switch to filter inbound traffic based on source IP address, or source IP address and corresponding MAC address	IC
ip source-guard max-binding	Sets the maximum number of entries that can be bound to an interface	IC
ip source-guard mode	Sets the source-guard learning mode to search for addresses in the ACL binding table or the MAC address binding table	IC
clear ip source-guard binding blocked	Remove all blocked records	PE
show ip source-guard	Shows whether source guard is enabled or disabled on each interface	PE
show ip source-guard binding	Shows the source guard binding table	PE

ip source-guard This command adds a static address to the source-guard binding table. Use the no **binding** form to remove a static entry.

Syntax

ip source-guard binding [mode {acl | mac}] mac-address vlan vlan-id ip-address interface ethernet unit/port-list

no ip source-guard binding [mode {acl | mac}] mac-address vlan vlan-id

mode - Specifies the binding mode.

acl - Adds binding to ACL table.

mac - Adds binding to MAC address table.

mac-address - A valid unicast MAC address.

vlan-id - ID of a configured VLAN for an ACL filtering table or a range of VLANs for a MAC address filtering table. To specify a list separate nonconsecutive VLAN identifiers with a comma and no spaces; use a hyphen to designate a range of IDs. (Range: 1-4094)

ip-address - A valid unicast IP address, including classful types A, B or C.

unit - Unit identifier. (Range: 1-8)

port-list - Physical port number or list of port numbers. Separate nonconsecutive port numbers with a comma and no spaces; or use a hyphen to designate a range of port numbers. (Range: 1-28/52)

Default Setting

No configured entries

Command Mode

Global Configuration

Command Usage

- If the binding mode is not specified in this command, the entry is bound to the ACL table by default.
- ◆ Table entries include a MAC address, IP address, lease time, entry type (Static-IP-SG-Binding, Dynamic-DHCP-Binding), VLAN identifier, and port identifier.
- ◆ All static entries are configured with an infinite lease time, which is indicated with a value of zero by the show ip source-guard command (page 359).
- When source guard is enabled, traffic is filtered based upon dynamic entries learned via DHCP snooping, or static addresses configured in the source guard binding table with this command.
- Static bindings are processed as follows:
 - A valid static IP source guard entry will be added to the binding table in ACL mode if one of the following conditions is true:
 - If there is no binding entry with the same VLAN ID and MAC address, a new entry will be added to the binding table using the type of static IP source guard binding.
 - If there is an entry with the same VLAN ID and MAC address, and the type of entry is static IP source guard binding, then the new entry will replace the old one.
 - If there is an entry with the same VLAN ID and MAC address, and the type of the entry is dynamic DHCP snooping binding, then the new entry will replace the old one and the entry type will be changed to static IP source guard binding.
 - A valid static IP source guard entry will be added to the binding table in MAC mode if one of the following conditions are true:
 - If there is no binding entry with the same IP address and MAC address, a new entry will be added to the binding table using the type of static IP source guard binding entry.
 - If there is a binding entry with same IP address and MAC address, then the new entry shall replace the old one.

Only unicast addresses are accepted for static bindings.

Example

This example configures a static source-guard binding on port 5. Since the binding mode is not specified, the entry is bound to the ACL table by default.

```
Console(config) #ip source-guard binding 11-22-33-44-55-66 vlan 1 192.168.0.99
 interface ethernet 1/5
Console(config-if)#
```

Related Commands

ip source-guard (355) ip dhcp snooping (331) ip dhcp snooping vlan (338)

ip source-guard This command configures the switch to filter inbound traffic based on source IP address, or source IP address and corresponding MAC address. Use the **no** form to disable this function.

Syntax

```
ip source-guard {sip | sip-mac}
no ip source-guard
```

sip - Filters traffic based on IP addresses stored in the binding table.

sip-mac - Filters traffic based on IP addresses and corresponding MAC addresses stored in the binding table.

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Source guard is used to filter traffic on an insecure port which receives messages from outside the network or fire wall, and therefore may be subject to traffic attacks caused by a host trying to use the IP address of a neighbor.
- Setting source guard mode to "sip" or "sip-mac" enables this function on the selected port. Use the "sip" option to check the VLAN ID, source IP address, and port number against all entries in the binding table. Use the "sip-mac" option to check these same parameters, plus the source MAC address. Use the **no ip source guard** command to disable this function on the selected port.
- When enabled, traffic is filtered based upon dynamic entries learned via DHCP snooping, or static addresses configured in the source guard binding table.

IPv4 Source Guard

- ◆ Table entries include a MAC address, IP address, lease time, entry type (Static-IP-SG-Binding, Dynamic-DHCP-Binding, VLAN identifier, and port identifier.
- Static addresses entered in the source guard binding table with the ip sourceguard binding command are automatically configured with an infinite lease time. Dynamic entries learned via DHCP snooping are configured by the DHCP server itself.
- If the IP source guard is enabled, an inbound packet's IP address (sip option) or both its IP address and corresponding MAC address (sip-mac option) will be checked against the binding table. If no matching entry is found, the packet will be dropped.
- Filtering rules are implemented as follows:
 - If DHCPv4 snooping is disabled (see page 331), IP source guard will check the VLAN ID, source IP address, port number, and source MAC address (for the sip-mac option). If a matching entry is found in the binding table and the entry type is static IP source guard binding, the packet will be forwarded.
 - If the DHCP snooping is enabled, IP source guard will check the VLAN ID, source IP address, port number, and source MAC address (for the sip-mac option). If a matching entry is found in the binding table and the entry type is static IP source guard binding, or dynamic DHCP snooping binding, the packet will be forwarded.
 - If IP source guard if enabled on an interface for which IP source bindings (dynamically learned via DHCP snooping or manually configured) are not yet configured, the switch will drop all IP traffic on that port, except for DHCP packets.
 - Only unicast addresses are accepted for static bindings.

Example

This example enables IP source guard on port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#ip source-guard sip
Console(config-if)#
```

Related Commands

ip source-guard binding (353) ip dhcp snooping (331) ip dhcp snooping vlan (338)

max-binding

ip source-guard This command sets the maximum number of entries that can be bound to an interface. Use the **no** form to restore the default setting.

Syntax

ip source-guard [mode {acl | mac}] max-binding number no ip source-guard [mode {acl | mac}] max-binding

mode - Specifies the learning mode.

acl - Searches for addresses in the ACL table.

mac - Searches for addresses in the MAC address table.

number - The maximum number of IP addresses that can be mapped to an interface in the binding table. (Range: 1-16 for ACL mode; 1-1024 for MAC mode)

Default Setting

Command Mode

Interface Configuration (Ethernet)

Command Usage

This command sets the maximum number of address entries that can be mapped to an interface in the binding table, including both dynamic entries discovered by DHCP snooping and static entries set by the ip source-guard command.

Example

This example sets the maximum number of allowed entries in the binding table for port 5 to one entry. The mode is not specified, and therefore defaults to the ACL binding table.

```
Console(config)#interface ethernet 1/5
Console(config-if) #ip source-guard max-binding 1
Console(config-if)#
```

ip source-quard mode This command sets the source-quard learning mode to search for addresses in the ACL binding table or the MAC address binding table. Use the **no** form to restore the default setting.

Syntax

ip source-guard mode {acl | mac} no ip source-guard mode

mode - Specifies the learning mode.

acl - Searches for addresses in the ACL binding table.

mac - Searches for addresses in the MAC address binding table.

IPv4 Source Guard

Default Setting

ACL

Command Mode

Interface Configuration (Ethernet)

Command Usage

There are two modes for the filtering table:

- ◆ ACL IP traffic will be forwarded if it passes the checking process in the ACL mode binding table.
- ◆ MAC A MAC entry will be added in MAC address table if IP traffic passes the checking process in MAC mode binding table.

Example

This command sets the binding table mode for the specified interface to MAC mode:

```
Console(config)#interface ethernet 1/5
Console(config-if)#ip source-guard mode mac
Console(config-if)#
```

clear ip source-guard binding blocked

clear ip source-guard This command clears source-guard binding table entries from RAM.

Syntax

clear ip source-guard binding blocked

Command Mode

Privileged Exec

Command Usage

When IP Source-Guard detects an invalid packet it creates a blocked record. These records can be viewed using the show ip source-guard binding blocked command. A maximum of 512 blocked records can be stored before the switch overwrites the oldest record with new blocked records. Use the **clear ip source-guard binding blocked** command to clear this table.

Example

This command clears the blocked record table.

```
Console(config)#clear ip source-guard binding blocked
Console(config)#
```

show ip source-guard This command shows whether source guard is enabled or disabled on each interface.

Command Mode

Privileged Exec

Example

Interface	Filter-type	Filter-table	ACL Table Max-binding	MAC Table Max-binding
Eth 1/1	DISABLED	ACL	5	1024
Eth 1/2	DISABLED	ACL	5	1024
Eth 1/3	DISABLED	ACL	5	1024
Eth 1/4	DISABLED	ACL	5	1024
Eth 1/5	DISABLED	ACL	5	1024

binding

show ip source-guard This command shows the source guard binding table.

Syntax

show ip source-guard binding [dhcp-snooping | static [acl | mac] | **blocked** [vlan vlan-id | interface interface]

dhcp-snooping - Shows dynamic entries configured with DHCP Snooping commands (see page 330)

static - Shows static entries configured with the ip source-guard binding command.

acl - Shows static entries in the ACL binding table.

mac - Shows static entries in the MAC address binding table.

blocked - Shows MAC addresses which have been blocked by IP Source Guard.

vlan-id - ID of a configured VLAN (Range: 1-4094)

interface - Specifies a port interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

Console#show ip source-guard binding							
MAC Address	IP Address	Lease(sec)	Туре	VLAN	Interface		
11-22-33-44-55-66 Console#	192.168.0.99	0	Static	1	Eth 1/5		
CONSOTEM							

IPv6 Source Guard

IPv6 Source Guard is a security feature that filters IPv6 traffic on non-routed, Layer 2 network interfaces based on manually configured entries in the IPv6 Source Guard table, or dynamic entries in the Neighbor Discovery Snooping table or DHCPv6 Snooping table when either snooping protocol is enabled (see "DHCPv6 Snooping" on page 343). IPv6 source guard can be used to prevent traffic attacks caused when a host tries to use the IPv6 address of a neighbor to access the network. This section describes commands used to configure IPv6 Source Guard.

Table 62: IPv6 Source Guard Commands

Command	Function	Mode
ipv6 source-guard binding	Adds a static address to the source-guard binding table	GC
ipv6 source-guard	Configures the switch to filter inbound traffic based on source IP address	IC
ipv6 source-guard max- binding	Sets the maximum number of entries that can be bound to an interface	IC
show ipv6 source-guard	Shows whether source guard is enabled or disabled on each interface	PE
show ipv6 source-guard binding	Shows the source guard binding table	PE

ipv6 source-guard This command adds a static address to the source-guard binding table. Use the **no binding** form to remove a static entry.

Syntax

ipv6 source-guard binding mac-address vlan vlan-id ipv6-address **interface** *interface*

no ipv6 source-guard binding mac-address vlan vlan-id

mac-address - A valid unicast MAC address.

vlan-id - ID of a configured VLAN (Range: 1-4094)

ipv6-address - Corresponding IPv6 address. This address must be entered according to RFC 2373 "IPv6 Addressing Architecture," using 8 colonseparated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) *port* - Port number. (Range: 1-28/52)

Default Setting

No configured entries

Command Mode

Global Configuration

Command Usage

- ◆ Table entries include an associated MAC address, IPv6 global unicast address, entry type (Static-IPv6-SG-Binding, Dynamic-ND-Snooping, Dynamic-DHCPv6-Snooping), VLAN identifier, and port identifier.
- Traffic filtering is based only on the source IPv6 address, VLAN ID, and port number.
- ◆ All static entries are configured with an infinite lease time, which is indicated with a value of zero by the show ipv6 source-guard command.
- When source guard is enabled, traffic is filtered based upon dynamic entries learned via ND snooping, DHCPv6 snooping, or static addresses configured in the source guard binding table with this command.
- Static bindings are processed as follows:
 - If there is no entry with same and MAC address and IPv6 address, a new entry is added to binding table using static IPv6 source guard binding.
 - If there is an entry with same MAC address and IPv6 address, and the type of entry is static IPv6 source guard binding, then the new entry will replace the old one.
 - If there is an entry with same MAC address and IPv6 address, and the type of the entry is either a dynamic ND snooping binding or DHCPv6 snooping binding, then the new entry will replace the old one and the entry type will be changed to static IPv6 source guard binding.
 - Only unicast addresses are accepted for static bindings.

IPv6 Source Guard

Example

This example configures a static source-guard binding on port 5.

```
Console(config)#ipv6 source-guard binding 00-ab-11-cd-23-45 vlan 1 2001::1
 interface ethernet 1/5
Console(config)#
```

Related Commands

ipv6 source-quard (362) ipv6 dhcp snooping (344) ipv6 dhcp snooping vlan (348)

ipv6 source-guard This command configures the switch to filter inbound traffic based on the source IP address stored in the binding table. Use the **no** form to disable this function.

Syntax

ipv6 source-guard sip no ipv6 source-guard

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Source guard is used to filter traffic on an insecure port which receives messages from outside the network or fire wall, and therefore may be subject to traffic attacks caused by a host trying to use the IP address of a neighbor.
- This command checks the VLAN ID, IPv6 global unicast source IP address, and port number against all entries in the binding table. Use the **no ipv6 source** guard command to disable this function on the selected port.
- After IPv6 source guard is enabled on an interface, the switch initially blocks all IPv6 traffic received on that interface, except for ND packets allowed by ND snooping and DHCPv6 packets allowed by DHCPv6 snooping. A port access control list (ACL) is applied to the interface. Traffic is then filtered based upon dynamic entries learned via ND snooping or DHCPv6 snooping, or static addresses configured in the source guard binding table. The port allows only IPv6 traffic with a matching entry in the binding table and denies all other IPv6 traffic.
- Table entries include a MAC address, IPv6 global unicast address, entry type (Static-IPv6-SG-Binding, Dynamic-ND-Snooping, Dynamic-DHCPv6-Snooping), VLAN identifier, and port identifier.

- Static addresses entered in the source guard binding table with the ipv6 source-guard binding command are automatically configured with an infinite lease time. Dynamic entries learned via DHCPv6 snooping are configured by the DHCPv6 server itself.
- If IPv6 source quard is enabled, an inbound packet's source IPv6 address will be checked against the binding table. If no matching entry is found, the packet will be dropped.
- Filtering rules are implemented as follows:
 - If ND snooping and DHCPv6 snooping are disabled, IPv6 source guard will check the VLAN ID, source IPv6 address, and port number. If a matching entry is found in the binding table and the entry type is static IPv6 source guard binding, the packet will be forwarded.
 - If ND snooping or DHCPv6 snooping is enabled, IPv6 source guard will check the VLAN ID, source IP address, and port number. If a matching entry is found in the binding table and the entry type is static IPv6 source guard binding, dynamic ND snooping binding, or dynamic DHCPv6 snooping binding, the packet will be forwarded.
 - If IPv6 source guard if enabled on an interface for which IPv6 source bindings (dynamically learned via ND snooping or DHCPv6 snooping, or manually configured) are not yet configured, the switch will drop all IPv6 traffic on that port, except for ND packets and DHCPv6 packets.
 - Only IPv6 global unicast addresses are accepted for static bindings.

This example enables IP source guard on port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#ipv6 source-guard sip
Console(config-if)#
```

RELATED COMMANDS

ipv6 source-guard binding (360) ipv6 dhcp snooping (344) ipv6 dhcp snooping vlan (348)

ipv6 source-guard This command sets the maximum number of entries that can be bound to an max-binding interface. Use the **no** form to restore the default setting.

Syntax

ipv6 source-guard max-binding number no ipv6 source-guard max-binding

number - The maximum number of IPv6 addresses that can be mapped to an interface in the binding table. (Range: 1-5)

IPv6 Source Guard

Default Setting

Command Mode

Interface Configuration (Ethernet)

Command Usage

- This command sets the maximum number of address entries that can be mapped to an interface in the binding table, including both dynamic entries discovered by ND snooping, DHCPv6 snooping, and static entries set by the ipv6 source-guard command.
- IPv6 source guard maximum bindings must be set to a value higher than DHCPv6 snooping maximum bindings and ND snooping maximum bindings.
- If IPv6 source guard, ND snooping, and DHCPv6 snooping are enabled on a port, the dynamic bindings used by ND snooping, DHCPv6 snooping, and IPv6 source guard static bindings cannot exceed the maximum allowed bindings set by the ipv6 source-guard max-binding command. In other words, no new entries will be added to the IPv6 source guard binding table.
- If IPv6 source guard is enabled on a port, and the maximum number of allowed bindings is changed to a lower value, precedence is given to deleting entries learned through DHCPv6 snooping, ND snooping, and then manually configured IPv6 source guard static bindings, until the number of entries in the binding table reaches the newly configured maximum number of allowed bindings.

Example

This example sets the maximum number of allowed entries in the binding table for port 5 to one entry.

```
Console(config)#interface ethernet 1/5
Console(config-if) #ipv6 source-guard max-binding 1
Console(config-if)#
```

show ipv6 This command shows whether IPv6 source guard is enabled or disabled on each **source-guard** interface, and the maximum allowed bindings.

Command Mode

Privileged Exec

```
Console#show ipv6 source-guard
Interface Filter-type Max-binding
Eth 1/1 DISABLED Eth 1/2 DISABLED
           -----
                                     5
```

```
Eth 1/3 DISABLED 5
Eth 1/4 DISABLED 5
Eth 1/5 SIP 1
Eth 1/6 DISABLED 5
:
```

show ipv6 source-guard binding

show ipv6 This command shows the IPv6 source guard binding table.

Syntax

show ipv6 source-guard binding [dynamic | static]

dynamic - Shows dynamic entries configured with ND Snooping or DHCPv6 Snooping commands (see page 343)

static - Shows static entries configured with the ipv6 source-guard binding command.

Command Mode

Privileged Exec

Example

Console#show ipv6 source-guard binding MAC Address IPv6 Address		VLAN	Interface	Туре	
00AB-11CD-2345 Console#	2001::1	1	Eth 1/5	STA	
Console#					

ARP Inspection

ARP Inspection validates the MAC-to-IP address bindings in Address Resolution Protocol (ARP) packets. It protects against ARP traffic with invalid address bindings, which forms the basis for certain "man-in-the-middle" attacks. This is accomplished by intercepting all ARP requests and responses and verifying each of these packets before the local ARP cache is updated or the packet is forwarded to the appropriate destination, dropping any invalid ARP packets.

ARP Inspection determines the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a trusted database – the DHCP snooping binding database. ARP Inspection can also validate ARP packets against user-configured ARP access control lists (ACLs) for hosts with statically configured IP addresses.

This section describes commands used to configure ARP Inspection.

Table 63: ARP Inspection Commands

Command	Function	Mode
ip arp inspection	Enables ARP Inspection globally on the switch	GC
ip arp inspection filter	Specifies an ARP ACL to apply to one or more VLANs	GC
ip arp inspection log-buffer logs	Sets the maximum number of entries saved in a log message, and the rate at these messages are sent	GC
ip arp inspection validate	Specifies additional validation of address components in an ARP packet	GC
ip arp inspection vlan	Enables ARP Inspection for a specified VLAN or range of VLANs	GC
ip arp inspection limit	Sets a rate limit for the ARP packets received on a port	IC
ip arp inspection trust	Sets a port as trusted, and thus exempted from ARP Inspection	IC
show ip arp inspection configuration	Displays the global configuration settings for ARP Inspection	PE
show ip arp inspection interface	Shows the trust status and inspection rate limit for ports	PE
show ip arp inspection log	Shows information about entries stored in the log, including the associated VLAN, port, and address components	PE
show ip arp inspection statistics	Shows statistics about the number of ARP packets processed, or dropped for various reasons	PE
show ip arp inspection vlan	Shows configuration setting for VLANs, including ARP Inspection status, the ARP ACL name, and if the DHCP Snooping database is used after ACL validation is completed	PE

ip arp inspection This command enables ARP Inspection globally on the switch. Use the no form to disable this function.

Syntax

[no] ip arp inspection

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

♦ When ARP Inspection is enabled globally with this command, it becomes active only on those VLANs where it has been enabled with the ip arp inspection vlan command.

- When ARP Inspection is enabled globally and enabled on selected VLANs, all ARP request and reply packets on those VLANs are redirected to the CPU and their switching is handled by the ARP Inspection engine.
- When ARP Inspection is disabled globally, it becomes inactive for all VLANs, including those where ARP Inspection is enabled.
- When ARP Inspection is disabled, all ARP request and reply packets bypass the ARP Inspection engine and their manner of switching matches that of all other packets.
- Disabling and then re-enabling global ARP Inspection will not affect the ARP Inspection configuration for any VLANs.
- When ARP Inspection is disabled globally, it is still possible to configure ARP Inspection for individual VLANs. These configuration changes will only become active after ARP Inspection is globally enabled again.

```
Console(config) #ip arp inspection
Console(config)#
```

ip arp inspection filter This command specifies an ARP ACL to apply to one or more VLANs. Use the no form to remove an ACL binding.

Syntax

ip arp inspection filter arp-acl-name **vlan** {vlan-id | vlan-range} [**static**]

arp-acl-name - Name of an ARP ACL. (Maximum length: 16 characters) vlan-id - VLAN ID. (Range: 1-4094)

vlan-range - A consecutive range of VLANs indicated by the use a hyphen, or a random group of VLANs with each entry separated by a comma.

static - ARP packets are only validated against the specified ACL, address bindings in the DHCP snooping database is not checked.

Default Setting

ARP ACLs are not bound to any VLAN Static mode is not enabled

Command Mode

Global Configuration

Command Usage

ARP ACLs are configured with the commands described on page 407.

- If static mode is enabled, the switch compares ARP packets to the specified ARP ACLs. Packets matching an IP-to-MAC address binding in a permit or deny rule are processed accordingly. Packets not matching any of the ACL rules are dropped. Address bindings in the DHCP snooping database are not checked.
- If static mode is not enabled, packets are first validated against the specified ARP ACL. Packets matching a deny rule are dropped. All remaining packets are validated against the address bindings in the DHCP snooping database.

```
Console(config) #ip arp inspection filter sales vlan 1
Console(config)#
```

ip arp inspection This command sets the maximum number of entries saved in a log message, and log-buffer logs the rate at which these messages are sent. Use the **no** form to restore the default settings.

Syntax

ip arp inspection log-buffer logs message-number interval seconds no ip arp inspection log-buffer logs

message-number - The maximum number of entries saved in a log message. (Range: 0-256, where 0 means no events are saved)

seconds - The interval at which log messages are sent. (Range: 0-86400)

Default Setting

Message Number: 5 Interval: 1 second

Command Mode

Global Configuration

Command Usage

- ◆ ARP Inspection must be enabled with the ip arp inspection command before this command will be accepted by the switch.
- By default, logging is active for ARP Inspection, and cannot be disabled.
- When the switch drops a packet, it places an entry in the log buffer. Each entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

- If multiple, identical invalid ARP packets are received consecutively on the same VLAN, then the logging facility will only generate one entry in the log buffer and one corresponding system message.
- The maximum number of entries that can be stored in the log buffer is determined by the *message-number* parameter. If the log buffer fills up before a message is sent, the oldest entry will be replaced with the newest one.
- The switch generates a system message on a rate-controlled basis determined by the seconds values. After the system message is generated, all entries are cleared from the log buffer.

```
Console(config) #ip arp inspection log-buffer logs 1 interval 10
Console(config)#
```

ip arp inspection This command specifies additional validation of address components in an ARP validate packet. Use the **no** form to restore the default setting.

Syntax

```
ip arp inspection validate
 {dst-mac [ip [allow-zeros] [src-mac]] |
 ip [allow-zeros] [src-mac]] | src-mac}
```

no ip arp inspection validate

dst-mac - Checks the destination MAC address in the Ethernet header against the target MAC address in the ARP body. This check is performed for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

ip - Checks the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are checked in all ARP requests and responses, while target IP addresses are checked only in ARP responses.

allow-zeros - Allows sender IP address to be 0.0.0.0.

src-mac - Checks the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

Default Setting

No additional validation is performed

Command Mode

Global Configuration

ARP Inspection

Command Usage

By default, ARP Inspection only checks the IP-to-MAC address bindings specified in an ARP ACL or in the DHCP Snooping database.

Example

```
Console(config) #ip arp inspection validate dst-mac
Console(config)#
```

ip arp inspection vlan This command enables ARP Inspection for a specified VLAN or range of VLANs. Use the **no** form to disable this function.

Syntax

[no] ip arp inspection vlan {vlan-id | vlan-range}

vlan-id - VLAN ID. (Range: 1-4094)

vlan-range - A consecutive range of VLANs indicated by the use a hyphen, or a random group of VLANs with each entry separated by a comma.

Default Setting

Disabled on all VLANs

Command Mode

Global Configuration

Command Usage

- When ARP Inspection is enabled globally with the ip arp inspection command, it becomes active only on those VLANs where it has been enabled with this command.
- When ARP Inspection is enabled globally and enabled on selected VLANs, all ARP request and reply packets on those VLANs are redirected to the CPU and their switching is handled by the ARP Inspection engine.
- When ARP Inspection is disabled globally, it becomes inactive for all VLANs, including those where ARP Inspection is enabled.
- ♦ When ARP Inspection is disabled, all ARP request and reply packets bypass the ARP Inspection engine and their manner of switching matches that of all other packets.
- Disabling and then re-enabling global ARP Inspection will not affect the ARP Inspection configuration for any VLANs.
- When ARP Inspection is disabled globally, it is still possible to configure ARP Inspection for individual VLANs. These configuration changes will only become active after ARP Inspection is globally enabled again.

```
Console(config) #ip arp inspection vlan 1,2
Console(config)#
```

ip arp inspection limit This command sets a rate limit for the ARP packets received on a port. Use the no form to restore the default setting.

Syntax

ip arp inspection limit {rate pps | none}

no ip arp inspection limit

pps - The maximum number of ARP packets that can be processed by the CPU per second. (Range: 0-2048, where 0 means that no ARP packets can be forwarded)

none - There is no limit on the number of ARP packets that can be processed by the CPU.

Default Setting

15

Command Mode

Interface Configuration (Port, Static Aggregation)

Command Usage

- This command applies to both trusted and untrusted ports.
- When the rate of incoming ARP packets exceeds the configured limit, the switch drops all ARP packets in excess of the limit.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #ip arp inspection limit rate 150
Console(config-if)#
```

ip arp inspection trust This command sets a port as trusted, and thus exempted from ARP Inspection. Use the **no** form to restore the default setting.

Syntax

[no] ip arp inspection trust

Default Setting

Untrusted

ARP Inspection

Command Mode

Interface Configuration (Port, Static Aggregation)

Command Usage

Packets arriving on untrusted ports are subject to any configured ARP Inspection and additional validation checks. Packets arriving on trusted ports bypass all of these checks, and are forwarded according to normal switching rules.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip arp inspection trust
Console(config-if)#
```

show ip arp inspection configuration

show ip arp inspection This command displays the global configuration settings for ARP Inspection.

Command Mode

Privileged Exec

Example

```
Console#show ip arp inspection configuration

ARP Inspection Global Information:

Global IP ARP Inspection Status : disabled

Log Message Interval : 1 s

Log Message Number : 5

Need Additional Validation(s) : Yes

Additional Validation Type : Destination MAC address

Console#
```

show ip arp inspection interface

show ip arp inspection This command shows the trust status and ARP Inspection rate limit for ports.

Syntax

show ip arp inspection interface [interface]

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)
```

Command Mode

Privileged Exec

```
Console#show ip arp inspection interface ethernet 1/1
           Trust Status
                             Rate Limit (pps)
_____
                          _____
Eth 1/1
           Trusted
                              150
Console#
```

show ip arp inspection This command shows information about entries stored in the log, including the log associated VLAN, port, and address components.

Command Mode

Privileged Exec

Example

```
Console#show ip arp inspection log
Total log entries number is 1
Num VLAN Port Src IP Address Dst IP Address Src MAC Address Dst MAC Address
--- ---- ----
                       -----
1 1 11 192.168.2.2 192.168.2.1 00-04-E2-A0-E2-7C FF-FF-FF-FF-FF
Console#
```

show ip arp inspection This command shows statistics about the number of ARP packets processed, or statistics dropped for various reasons.

Command Mode

Privileged Exec

```
Console#show ip arp inspection statistics
ARP packets received
                                                                     : 150
ARP packets dropped due to rate limt
                                                                     : 5
Total ARP packets processed by ARP Inspection
                                                                    : 150
ARP packets dropped by additional validation (source MAC address)
ARP packets dropped by additional validation (destination MAC address): 0
ARP packets dropped by additional validation (IP address)
                                                             : 0
ARP packets dropped by ARP ACLs
                                                                     : 0
ARP packets dropped by DHCP snooping
                                                                     : 0
Console#
```

Denial of Service Protection

show ip arp inspection This command shows the configuration settings for VLANs, including ARP vlan Inspection status, the ARP ACL name, and if the DHCP Snooping database is used after ARP ACL validation is completed.

Syntax

show ip arp inspection vlan [vlan-id | vlan-range]

vlan-id - VLAN ID. (Range: 1-4094)

vlan-range - A consecutive range of VLANs indicated by the use a hyphen, or a random group of VLANs with each entry separated by a comma.

Command Mode

Privileged Exec

Command Usage

Enter this command to display the configuration settings for all VLANs, or display the settings for a specific VLAN by entering the VLAN identifier.

Example

Console#show ip arp inspection vlan 1 VLAN ID DAI Status ACL Name ACL Status _____ 1 sales disabled static Console#

Denial of Service Protection

A denial-of-service attack (DoS attack) is an attempt to block the services provided by a computer or network resource. This kind of attack tries to prevent an Internet site or service from functioning efficiently or at all. In general, DoS attacks are implemented by either forcing the target to reset, to consume most of its resources so that it can no longer provide its intended service, or to obstruct the communication media between the intended users and the target so that they can no longer communicate adequately.

This section describes commands used to protect against DoS attacks.

Table 64: DoS Protection Commands

Command	Function	Mode
dos-protection echo-chargen	Protects against DoS echo/chargen attacks	GC
dos-protection smurf	Protects against DoS smurf attacks	GC
dos-protection tcp-flooding	Protects against DoS TCP-flooding attacks	GC
dos-protection tcp-null-scan	Protects against DoS TCP-null-scan attacks	GC
dos-protection tcp-syn-fin-scan	Protects against DoS TCP-SYN/FIN-scan attacks	GC

Table 64: DoS Protection Commands (Continued)

Command	Function	Mode
dos-protection tcp-udp-port-zero	Protects against attacks which set the Layer 4 source or destination port to zero	GC
dos-protection tcp-xmas-scan	Protects against DoS TCP-XMAS-scan attacks	GC
dos-protection udp-flooding	Protects against DoS UDP-flooding attacks	GC
dos-protection win-nuke	Protects against DoS WinNuke attacks	GC
show dos-protection	Shows the configuration settings for DoS protection	PE

dos-protection This command protects against DoS echo/chargen attacks in which the echo echo-chargen service repeats anything sent to it, and the chargen (character generator) service generates a continuous stream of data. When used together, they create an infinite loop and result in a denial-of-service. Use the **no** form to disable this feature.

Syntax

dos-protection echo-chargen [bit-rate-in-kilo rate] no dos-protection echo-chargen

rate – Maximum allowed rate. (Range: 64-2000 kbits/second)

Default Setting

Disabled, 1000 kbits/second

Command Mode

Global Configuration

Example

Console(config) #dos-protection echo-chargen 65 Console(config)#

dos-protection smurf This command protects against DoS smurf attacks in which a perpetrator generates a large amount of spoofed ICMP Echo Request traffic to the broadcast destination IP address (255.255.255.255), all of which uses a spoofed source address of the intended victim. The victim should crash due to the many interrupts required to send ICMP Echo response packets. Use the **no** form to disable this feature.

Syntax

[no] dos-protection smurf

Default Setting

Enabled

Denial of Service Protection

Command Mode

Global Configuration

Example

```
Console(config) #dos-protection smurf
Console(config)#
```

tcp-flooding

dos-protection This command protects against DoS TCP-flooding attacks in which a perpetrator sends a succession of TCP SYN requests (with or without a spoofed-Source IP) to a target and never returns ACK packets. These half-open connections will bind resources on the target, and no new connections can be made, resulting in a denial of service. Use the **no** form to disable this feature.

Syntax

dos-protection tcp-flooding [bit-rate-in-kilo rate] no dos-protection tcp-flooding

rate – Maximum allowed rate. (Range: 64-2000 kbits/second)

Default Setting

Disabled, 1000 kbits/second

Command Mode

Global Configuration

Example

```
Console(config) #dos-protection tcp-flooding 65
Console(config)#
```

tcp-null-scan

dos-protection This command protects against DoS TCP-null-scan attacks in which a TCP NULL scan message is used to identify listening TCP ports. The scan uses a series of strangely configured TCP packets which contain a sequence number of 0 and no flags. If the target's TCP port is closed, the target replies with a TCP RST (reset) packet. If the target TCP port is open, it simply discards the TCP NULL scan. Use the **no** form to disable this feature.

Syntax

[no] dos-protection tcp-null-scan

Default Setting

Enabled

Command Mode

Global Configuration

```
Console(config) #dos-protection tcp-null-scan
Console(config)#
```

tcp-syn-fin-scan

dos-protection This command protects against DoS TCP-SYN/FIN-scan attacks in which a TCP SYN/ FIN scan message is used to identify listening TCP ports. The scan uses a series of strangely configured TCP packets which contain SYN (synchronize) and FIN (finish) flags. If the target's TCP port is closed, the target replies with a TCP RST (reset) packet. If the target TCP port is open, it simply discards the TCP SYN FIN scan. Use the **no** form to disable this feature.

Syntax

[no] dos-protection syn-fin-scan

Default Setting

Enabled

Command Mode

Global Configuration

Example

```
Console(config) #dos-protection syn-fin-scan
Console(config)#
```

tcp-udp-port-zero

dos-protection This command protects against DoS attacks in which the TCP or UDP source port or destination port is set to zero. This technique may be used as a form of DoS attack, or it may just indicate a problem with the source device. When this command is enabled, the switch will drop these packets. Use the **no** form to restore the default setting.

Syntax

[no] dos-protection tcp-udp-port-zero

Default Setting

Enabled

Command Mode

Global Configuration

```
Console(config) #dos-protection tcp-udp-port-zero
Console(config)#
```

Denial of Service Protection

tcp-xmas-scan

dos-protection This command protects against DoS TCP-xmas-scan in which a so-called TCP XMAS scan message is used to identify listening TCP ports. This scan uses a series of strangely configured TCP packets which contain a sequence number of 0 and the URG, PSH and FIN flags. If the target's TCP port is closed, the target replies with a TCP RST packet. If the target TCP port is open, it simply discards the TCP XMAS scan. Use the **no** form to disable this feature.

Syntax

[no] dos-protection tcp-xmas-scan

Default Setting

Enabled

Command Mode

Global Configuration

Example

```
Console(config) #dos-protection tcp-xmas-scan
Console(config)#
```

udp-flooding

dos-protection This command protects against DoS UDP-flooding attacks in which a perpetrator sends a large number of UDP packets (with or without a spoofed-Source IP) to random ports on a remote host. The target will determine that application is listening at that port, and reply with an ICMP Destination Unreachable packet. It will be forced to send many ICMP packets, eventually leading it to be unreachable by other clients. Use the **no** form to disable this feature.

Syntax

dos-protection udp-flooding [bit-rate-in-kilo rate] no dos-protection udp-flooding

rate – Maximum allowed rate. (Range: 64-2000 kbits/second)

Default Setting

Disabled, 1000 kbits/second

Command Mode

Global Configuration

```
Console(config) #dos-protection udp-flooding 65
Console(config)#
```

win-nuke

dos-protection This command protects against DoS WinNuke attacks in which affected the Microsoft Windows 3.1x/95/NT operating systems. In this type of attack, the perpetrator sends the string of OOB out-of-band (OOB) packets contained a TCP URG flag to the target computer on TCP port 139 (NetBIOS), casing it to lock up and display a "Blue Screen of Death." This did not cause any damage to, or change data on, the computer's hard disk, but any unsaved data would be lost. Microsoft made patches to prevent the WinNuke attack, but the OOB packets still put the service in a tight loop that consumed all available CPU time. Use the **no** form to disable this feature.

Syntax

dos-protection win-nuke [bit-rate-in-kilo rate] no dos-protection udp-flooding

rate – Maximum allowed rate. (Range: 64-2000 kbits/second)

Default Setting

Disabled, 1000 kbits/second

Command Mode

Global Configuration

Example

```
Console(config) #dos-protection win-nuke 65
Console(config)#
```

show dos-protection This command shows the configuration settings for the DoS protection commands.

Command Mode

Privileged Exec

```
Console#show dos-protection
Global DoS Protection:
Echo/Chargen Attack : Disabled, 1000 kilobits per second Smurf Attack : Enabled TCP Flooding Attack : Disabled, 1000 kilobits per second TCP Null Scan : Enabled
TCP SYN/FIN Scan
                                 : Enabled
TCP/UDP Packets with Port 0 : Enabled
TCP XMAS Scan : Enabled
UDP Flooding Attack
                                : Disabled, 1000 kilobits per second
WinNuke Attack
                                  : Disabled, 1000 kilobits per second
Console#
```

Port-based Traffic Segmentation

If tighter security is required for passing traffic from different clients through downlink ports on the local network and over uplink ports to the service provider, port-based traffic segmentation can be used to isolate traffic for individual clients.

Traffic belonging to each client is isolated to the allocated downlink ports. But the switch can be configured to either isolate traffic passing across a client's allocated uplink ports from the uplink ports assigned to other clients, or to forward traffic through the uplink ports used by other clients, allowing different clients to share access to their uplink ports where security is less likely to be compromised.

Table 65: Commands for Configuring Traffic Segmentation

Command	Function	Mode
traffic-segmentation	Enables traffic segmentation	GC
traffic-segmentation session	Creates a client session	GC
traffic-segmentation uplink/downlink	Configures uplink/downlink ports for client sessions	GC
traffic-segmentation uplink-to-uplink	Specifies whether or not traffic can be forwarded between uplink ports assigned to different client sessions	GC
show traffic-segmentation	Displays the configured traffic segments	PE

traffic-segmentation This command enables traffic segmentation. Use the **no** form to disable traffic segmentation.

Syntax

[no] traffic-segmentation

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Traffic segmentation provides port-based security and isolation between ports within the VLAN. Data traffic on the downlink ports can only be forwarded to, and from, the designated uplink port(s). Data cannot pass between downlink ports in the same segmented group, nor to ports which do not belong to the same group.
- Traffic segmentation and normal VLANs can exist simultaneously within the same switch. Traffic may pass freely between uplink ports in segmented groups and ports in normal VLANs.

• When traffic segmentation is enabled, the forwarding state for the uplink and downlink ports assigned to different client sessions is shown below.

Table 66: Traffic Segmentation Forwarding

Destination Source	Session #1 Downlinks	Session #1 Uplinks	Session #2 Downlinks	Session #2 Uplinks	Normal Ports
Session #1 Downlink Ports	Blocking	Forwarding	Blocking	Blocking	Blocking
Session #1 Uplink Ports	Forwarding	Forwarding	Blocking	Blocking/ Forwarding*	Forwarding
Session #2 Downlink Ports	Blocking	Blocking	Blocking	Forwarding	Blocking
Session #2 Uplink Ports	Blocking	Blocking/ Forwarding*	Forwarding	Forwarding	Forwarding
Normal Ports	Forwarding	Forwarding	Forwarding	Forwarding	Forwarding

The forwarding state for uplink-to-uplink ports is configured by the trafficsegmentation uplink-to-uplink command.

- When traffic segmentation is disabled, all ports operate in normal forwarding mode based on the settings specified by other functions such as VLANs and spanning tree protocol.
- Enter the **traffic-segmentation** command without any parameters to enable traffic segmentation. Then set the interface members for segmented groups using the traffic-segmentation uplink/downlink command.
- Enter **no traffic-segmentation** to disable traffic segmentation and clear the configuration settings for segmented groups.

Example

This example enables traffic segmentation globally on the switch.

```
Console(config) #traffic-segmentation
Console(config)#
```

traffic-segmentation This command creates a traffic-segmentation client session. Use the **no** form to session remove a client session.

Syntax

[no] pvlan session session-id

session-id – Traffic segmentation session. (Range: 1-4)

Default Setting

None

Port-based Traffic Segmentation

Command Mode

Global Configuration

Command Usage

- Use this command to create a new traffic-segmentation client session.
- Using the **no** form of this command will remove any assigned uplink or downlink ports, restoring these interfaces to normal operating mode.

Example

```
Console(config) #traffic-segmentation session 1
Console(config)#
```

traffic-segmentation This command configures the uplink and down-link ports for a segmented group of uplink/downlink ports. Use the **no** form to remove a port from the segmented group.

Syntax

```
[no] traffic-segmentation [session session-id] {uplink interface-list
  [downlink interface-list] | downlink interface-list}
   session-id – Traffic segmentation session. (Range: 1-4)
   uplink – Specifies an uplink interface.
   downlink - Specifies a downlink interface.
   interface
        ethernet unit/port
            unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
        port-channel channel-id (Range: 1-16)
```

Default Setting

Session 1 if not defined No segmented port groups are defined.

Command Mode

Global Configuration

Command Usage

- A port cannot be configured in both an uplink and downlink list.
- A port can only be assigned to one traffic-segmentation session.
- When specifying an uplink or downlink, a list of ports may be entered by using a hyphen or comma in the port field. Note that lists are not supported for the channel-id field.

- A downlink port can only communicate with an uplink port in the same session. Therefore, if an uplink port is not configured for a session, the assigned downlink ports will not be able to communicate with any other ports.
- If a downlink port is not configured for the session, the assigned uplink ports will operate as normal ports.

This example enables traffic segmentation, and then sets port 10 as the uplink and ports 5-8 as downlinks.

```
Console(config) #traffic-segmentation
Console(config) #traffic-segmentation uplink ethernet 1/10
 downlink ethernet 1/5-8
Console(config)#
```

traffic-segmentation This command specifies whether or not traffic can be forwarded between uplink uplink-to-uplink ports assigned to different client sessions. Use the **no** form to restore the default.

Syntax

[no] traffic-segmentation uplink-to-uplink {blocking | forwarding}

blocking – Blocks traffic between uplink ports assigned to different sessions.

forwarding – Forwards traffic between uplink ports assigned to different sessions.

Default Setting

Blocking

Command Mode

Global Configuration

Example

This example enables forwarding of traffic between uplink ports assigned to different client sessions.

```
Console(config) #traffic-segmentation uplink-to-uplink forwarding
Console(config)#
```

Chapter 9 | General Security Measures Port-based Traffic Segmentation

traffic-segmentation

show This command displays the configured traffic segments.

Command Mode

Privileged Exec

Console#show traffic-segmentation			
	/LAN Status : o-Uplink Mode :	Enabled Forwarding	
Session	Uplink Ports	Downlink Ports	
1	Ethernet 1/1	Ethernet 1/2 Ethernet 1/3 Ethernet 1/4	
Console#			

Access Control Lists

Access Control Lists (ACL) provide packet filtering for IPv4 frames (based on address, protocol, Layer 4 protocol port number or TCP control code), IPv6 frames (based on address, DSCP traffic class, or next header type), or any frames (based on MAC address or Ethernet type). To filter packets, first create an access list, add the required rules, and then bind the list to a specific port. This section describes the Access Control List commands.

Table 67: Access Control List Commands

Command Group	Function
IPv4 ACLs	Configures ACLs based on IPv4 addresses, TCP/UDP port number, protocol type, and TCP control code
IPv6 ACLs	Configures ACLs based on IPv6 addresses, DSCP traffic class, or next header type
MAC ACLs	Configures ACLs based on hardware addresses, packet format, and Ethernet type
ARP ACLs	Configures ACLs based on ARP messages addresses
ACL Information	Displays ACLs and associated rules; shows ACLs assigned to each port

IPv4 ACLs

The commands in this section configure ACLs based on IPv4 addresses, TCP/UDP port number, protocol type, and TCP control code. To configure IPv4 ACLs, first create an access list containing the required permit or deny rules, and then bind the access list to one or more ports.

Table 68: IPv4 ACL Commands

Command	Function	Mode
access-list ip	Creates an IP ACL and enters configuration mode for standard or extended IPv4 ACLs	GC
ip access-group	Binds an IPv4 ACL to all ports for ingress traffic	GC
permit, deny	Filters packets matching a specified source IPv4 address	IPv4-STD-ACL
permit, deny	Filters packets meeting the specified criteria, including source and destination IPv4 address, TCP/UDP port number, protocol type, and TCP control code	IPv4-EXT-ACL
ip access-group	Binds an IPv4 ACL to a port	IC
show ip access-group	Shows port assignments for IPv4 ACLs	PE
show ip access-list	Displays the rules for configured IPv4 ACLs	PE

access-list ip This command adds an IP access list and enters configuration mode for standard or extended IPv4 ACLs. Use the **no** form to remove the specified ACL.

Syntax

[no] access-list ip {standard | extended} acl-name

standard – Specifies an ACL that filters packets based on the source IP address.

extended – Specifies an ACL that filters packets based on the source or destination IP address, and other more specific criteria.

acl-name - Name of the ACL. (Maximum length: 32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- When you create a new ACL or enter configuration mode for an existing ACL, use the **permit** or **deny** command to add new rules to the bottom of the list.
- ◆ To remove a rule, use the **no permit** or **no deny** command followed by the exact text of a previously configured rule.
- ◆ An ACL can contain up to 64 rules.

Example

```
Console(config) #access-list ip standard david
Console(config-std-acl)#
```

Related Commands

permit, deny (388) ip access-group (Interface Configuration) (391) show ip access-list (392)

(Global Configuration) remove the port.

ip access-group This command binds an IPv4 ACL to all ports for ingress traffic. Use the **no** form to

Syntax

```
ip access-group acl-name in
 [time-range time-range-name] [counter]
no ip access-group acl-name in
   acl-name - Name of the ACL. (Maximum length: 32 characters)
   in – Indicates that this list applies to ingress packets.
   time-range-name - Name of the time range. (Range: 1-16 characters)
```

counter - Enables counter for ACL statistics.

Default Setting

None

Command Mode

Global Configuration

Command Usage

If an ACL is already bound to a port and you bind a different ACL to it, the switch will replace the old binding with the new one.

Example

```
Console(config) #ip access-group david in
Console(config)#
```

Related Commands

show ip access-list (392) Time Range (186)

(Standard IP ACL)

permit, deny This command adds a rule to a Standard IPv4 ACL. The rule sets a filter condition for packets emanating from the specified source. Use the **no** form to remove a rule.

Syntax

```
{permit | deny} {any | source bitmask | host source}
 [time-range time-range-name]
no {permit | deny} {any | source bitmask | host source}
   any – Any source IP address.
   source - Source IP address.
   bitmask – Dotted decimal number representing the address bits to match.
   host – Keyword followed by a specific IP address.
   time-range-name - Name of the time range. (Range: 1-16 characters)
```

Default Setting

None

Command Mode

Standard IPv4 ACL

Command Usage

- New rules are appended to the end of the list.
- Address bit masks are similar to a subnet mask, containing four integers from 0 to 255, each separated by a period. The binary mask uses 1 bits to indicate "match" and 0 bits to indicate "ignore." The bitmask is bitwise ANDed with the specified source IP address, and then compared with the address for each IP packet entering the port(s) to which this ACL has been assigned.

Example

This example configures one permit rule for the specific address 10.1.1.21 and another rule for the address range 168.92.16.x – 168.92.31.x using a bitmask.

```
Console(config-std-acl)#permit host 10.1.1.21
Console(config-std-acl) #permit 168.92.16.0 255.255.240.0
Console(config-std-acl)#
```

Related Commands

access-list ip (386) Time Range (186)

permit, deny This command adds a rule to an Extended IPv4 ACL. The rule sets a filter condition (Extended IPv4 ACL) for packets with specific source or destination IP addresses, protocol types, source or destination protocol ports, or TCP control codes. Use the **no** form to remove a rule.

Syntax

```
{permit | deny} [protocol-number | udp]
 {any | source address-bitmask | host source}
 {any | destination address-bitmask | host destination}
 [precedence precedence] [dscp dscp]
 [source-port sport [bitmask]]
 [destination-port dport [port-bitmask]]
 [time-range time-range-name]
no {permit | deny} [protocol-number | udp]
 {any | source address-bitmask | host source}
 {any | destination address-bitmask | host destination}
 [precedence precedence] [dscp dscp]
 [source-port sport [bitmask]]
 [destination-port dport [port-bitmask]]
{permit | deny} tcp
 {any | source address-bitmask | host source}
 {any | destination address-bitmask | host destination}
 [precedence precedence] [dscp dscp]
 [source-port sport [bitmask]]
 [destination-port dport [port-bitmask]]
 [control-flag control-flags flag-bitmask]
 [time-range time-range-name]
no {permit | deny} tcp
 {any | source address-bitmask | host source}
 {any | destination address-bitmask | host destination}
 [precedence precedence] [dscp dscp]
 [source-port sport [bitmask]]
 [destination-port dport [port-bitmask]]
 [control-flag control-flags flag-bitmask]
   protocol-number – A specific protocol number. (Range: 0-255)
   source - Source IP address.
   destination - Destination IP address.
   address-bitmask – Decimal number representing the address bits to match.
   host – Keyword followed by a specific IP address.
   precedence – IP precedence level. (Range: 0-7)
   dscp – DSCP priority level. (Range: 0-63)
   sport – Protocol<sup>4</sup> source port number. (Range: 0-65535)
   dport – Protocol<sup>4</sup> destination port number. (Range: 0-65535)
```

^{4.} Includes TCP, UDP or other protocol types.

port-bitmask – Decimal number representing the port bits to match. (Range: 0-65535)

control-flags – Decimal number (representing a bit string) that specifies flag bits in byte 14 of the TCP header. (Range: 0-63)

flag-bitmask – Decimal number representing the code bits to match.

time-range-name - Name of the time range. (Range: 1-16 characters)

Default Setting

None

Command Mode

Extended IPv4 ACL

Command Usage

- ◆ All new rules are appended to the end of the list.
- Address bit masks are similar to a subnet mask, containing four integers from 0 to 255, each separated by a period. The binary mask uses 1 bits to indicate "match" and 0 bits to indicate "ignore." The bit mask is bitwise ANDed with the specified source IP address, and then compared with the address for each IP packet entering the port(s) to which this ACL has been assigned.
- ◆ You can specify both Precedence and ToS in the same rule. However, if DSCP is used, then neither Precedence nor ToS can be specified.
- ◆ The control-code bitmask is a decimal number (representing an equivalent bit mask) that is applied to the control code. Enter a decimal number, where the equivalent binary bit "1" means to match a bit and "0" means to ignore a bit. The following bits may be specified:
 - 1 (fin) Finish
 - 2 (syn) Synchronize
 - 4 (rst) Reset
 - 8 (psh) Push
 - 16 (ack) Acknowledgement
 - 32 (urg) Urgent pointer

For example, use the code value and mask below to catch packets with the following flags set:

- SYN flag valid, use "control-code 2 2"
- Both SYN and ACK valid, use "control-code 18 18"
- SYN valid and ACK invalid, use "control-code 2 18"

This example accepts any incoming packets if the source address is within subnet 10.7.1.x. For example, if the rule is matched; i.e., the rule (10.7.1.0 & 255.255.255.0) equals the masked address (10.7.1.2 & 255.255.255.0), the packet passes through.

```
Console(config-ext-acl) #permit 10.7.1.1 255.255.255.0 any Console(config-ext-acl) #
```

This allows TCP packets from class C addresses 192.168.1.0 to any destination address when set for destination TCP port 80 (i.e., HTTP).

```
Console(config-ext-acl) #permit 192.168.1.0 255.255.255.0 any destination-port 80
Console(config-ext-acl)#
```

This permits all TCP packets from class C addresses 192.168.1.0 with the TCP control code set to "SYN."

```
Console(config-ext-acl) #permit tcp 192.168.1.0 255.255.255.0 any control-
flag 2 2
Console(config-ext-acl) #
```

Related Commands

access-list ip (386) Time Range (186)

ip access-group (Interface Configuration)

This command binds an IPv4 ACL to a port. Use the **no** form to remove the port.

Syntax

```
ip access-group acl-name {in | out}
  [time-range time-range-name] [counter]

no ip access-group acl-name {in | out}

acl-name - Name of the ACL. (Maximum length: 32 characters)

in - Indicates that this list applies to ingress packets.

out - Indicates that this list applies to egress packets.

time-range-name - Name of the time range. (Range: 1-16 characters)

counter - Enables counter for ACL statistics.
```

Default Setting

None

Command Mode

Interface Configuration (Ethernet)

Command Usage

If an ACL is already bound to a port and you bind a different ACL to it, the switch will replace the old binding with the new one.

Example

```
Console(config) #int eth 1/2
Console(config-if) #ip access-group david in
Console(config-if)#
```

Related Commands

show ip access-list (392) Time Range (186)

show ip access-group This command shows the ports assigned to IP ACLs.

Command Mode

Privileged Exec

Example

```
Console#show ip access-group
Interface ethernet 1/2
IP access-list david in
Global
IP access-list david in
Console#
```

Related Commands

ip access-group (Interface Configuration) (391)

show ip access-list This command displays the rules for configured IPv4 ACLs.

Syntax

```
show ip access-list {standard | extended} [acl-name]
   standard - Specifies a standard IP ACL.
   extended - Specifies an extended IP ACL.
   acl-name - Name of the ACL. (Maximum length: 32 characters)
```

Command Mode

Privileged Exec

```
Console#show ip access-list standard
IP standard access-list david:
  permit host 10.1.1.21
  permit 168.92.0.0 255.255.15.0
Console#
```

Related Commands

permit, deny (388) ip access-group (Interface Configuration) (391)

IPv6 ACLs

The commands in this section configure ACLs based on IPv6 addresses, DSCP traffic class, or next header type. To configure IPv6 ACLs, first create an access list containing the required permit or deny rules, and then bind the access list to one or more ports.

Table 69: IPv6 ACL Commands

Command	Function	Mode
access-list ipv6	Creates an IPv6 ACL and enters configuration mode for standard or extended IPv6 ACLs	GC
ipv6 access-group	Binds an IPv6 ACL to all ports for ingress traffic	GC
permit, deny	Filters packets matching a specified source IPv6 address	IPv6- STD-ACL
permit, deny	Filters packets meeting the specified criteria, including source or destination IPv6 address, DSCP traffic class, or next header type	IPv6- EXT-ACL
ipv6 access-group	Binds an IPv6 ACL to a port	IC
show ipv6 access-group	Shows port assignments for IPv6 ACLs	PE
show ipv6 access-list	Displays the rules for configured IPv6 ACLs	PE

access-list ipv6 This command adds an IP access list and enters configuration mode for standard or extended IPv6 ACLs. Use the **no** form to remove the specified ACL.

Syntax

[no] access-list ipv6 {standard | extended} acl-name

standard - Specifies an ACL that filters packets based on the source IP address.

extended – Specifies an ACL that filters packets based on the destination IP address, and other more specific criteria.

acl-name - Name of the ACL. (Maximum length: 32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- When you create a new ACL or enter configuration mode for an existing ACL, use the **permit** or **deny** command to add new rules to the bottom of the list. To create an ACL, you must add at least one rule to the list.
- ◆ To remove a rule, use the **no permit** or **no deny** command followed by the exact text of a previously configured rule.
- An ACL can contain up to 64 rules.

Example

```
Console(config) #access-list ipv6 standard david
Console(config-std-ipv6-acl)#
```

Related Commands

permit, deny (Standard Pv6 ACL) (395) permit, deny (Extended IPv6 ACL) (396) ipv6 access-group (Interface Configuration) (398) show ipv6 access-list (399)

(Global Configuration)

ipv6 access-group This command binds an IPv6 ACL to all ports for ingress traffic. Use the **no** form to remove the port.

Syntax

```
ipv6 access-group acl-name in
 [time-range time-range-name] [counter]
```

no ipv6 access-group acl-name in

```
acl-name – Name of the ACL. (Maximum length: 32 characters)
```

in – Indicates that this list applies to ingress packets.

time-range-name - Name of the time range. (Range: 1-16 characters)

counter - Enables counter for ACL statistics.

Default Setting

None

Command Mode

Global Configuration

Command Usage

If a port is already bound to an ACL and you bind it to a different ACL, the switch will replace the old binding with the new one.

Example

```
Console(config)#ipv6 access-group standard david in
Console(config)#
```

Related Commands

show ipv6 access-list (399) Time Range (186)

permit, deny This command adds a rule to a Standard IPv6 ACL. The rule sets a filter condition for (Standard Pv6 ACL) packets emanating from the specified source. Use the no form to remove a rule.

Syntax

```
{permit | deny} {any | host source-ipv6-address |
  source-ipv6-address[/prefix-length]}
  [time-range time-range-name]
no {permit | deny} {any | host source-ipv6-address |
  source-ipv6-address[/prefix-length]}
    any – Any source IP address.
```

host - Keyword followed by a specific IP address.

source-ipv6-address - An IPv6 source address or network class. The address must be formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix; i.e., the network portion of the address. (Range: 0-128)

time-range-name - Name of the time range. (Range: 1-16 characters)

Default Setting

None

Command Mode

Standard IPv6 ACL

Command Usage

New rules are appended to the end of the list.

This example configures one permit rule for the specific address 2009:DB9:2229::79 and another rule for the addresses with the network prefix 2009:DB9:2229:5::/64.

```
Console(config-std-ipv6-acl) #permit host 2009:DB9:2229::79
Console(config-std-ipv6-acl) #permit 2009:DB9:2229:5::/64
Console(config-std-ipv6-acl)#
```

Related Commands

access-list ipv6 (393) Time Range (186)

(Extended IPv6 ACL)

permit, deny This command adds a rule to an Extended IPv6 ACL. The rule sets a filter condition for packets with specific source or destination IP addresses, or next header type. Use the **no** form to remove a rule.

Syntax

```
{permit | deny} {any | host source-ipv6-address |
 source-ipv6-address[/prefix-length]}
 {any | destination-ipv6-address[/prefix-length]}
 [dscp dscp] [next-header next-header]
 [time-range time-range-name]
no {permit | deny} {any | host source-ipv6-address |
 source-ipv6-address[/prefix-length]}
 {any | destination-ipv6-address[/prefix-length]}
 [dscp dscp] [next-header next-header]
   any – Any IP address (an abbreviation for the IPv6 prefix ::/0).
```

host – Keyword followed by a specific source IP address.

source-ipv6-address - An IPv6 source address or network class. The address must be formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

destination-ipv6-address - An IPv6 destination address or network class. The address must be formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix; i.e., the network portion of the address. (Range: 0-128 for source prefix, 0-8 for destination prefix)

```
dscp – DSCP traffic class. (Range: 0-63)
```

next-header – Identifies the type of header immediately following the IPv6 header. (Range: 0-255)

time-range-name - Name of the time range. (Range: 1-16 characters)

Default Setting

None

Command Mode

Extended IPv6 ACL

Command Usage

- All new rules are appended to the end of the list.
- Optional internet-layer information is encoded in separate headers that may be placed between the IPv6 header and the upper-layer header in a packet. There are a small number of such extension headers, each identified by a distinct Next Header value. IPv6 supports the values defined for the IPv4 Protocol field in RFC 1700, including these commonly used headers:

0	: Hop-by-Hop Options	(RFC 2460)
6	: TCP Upper-layer Header	(RFC 1700)
17	: UDP Upper-layer Header	(RFC 1700)
43	: Routing	(RFC 2460)
44	: Fragment	(RFC 2460)
51	: Authentication	(RFC 2402)
50	: Encapsulating Security Payload	(RFC 2406)
60	: Destination Options	(RFC 2460)

Example

This example accepts any incoming packets if the destination address is 2009:DB9:2229::79/8.

```
Console(config-ext-ipv6-acl) #permit 2009:DB9:2229::79/8
Console(config-ext-ipv6-acl)#
```

This allows packets to any destination address when the DSCP value is 5.

```
Console(config-ext-ipv6-acl)#permit any dscp 5
Console(config-ext-ipv6-acl)#
```

This allows any packets sent to the destination 2009:DB9:2229::79/48 when the next header is 43."

```
Console(config-ext-ipv6-acl) #permit 2009:DB9:2229::79/48 next-header 43 Console(config-ext-ipv6-acl)#
```

Related Commands

access-list ipv6 (393) Time Range (186)

ipv6 access-group (Interface Configuration)

This command binds an IPv6 ACL to a port. Use the **no** form to remove the port.

Syntax

```
ipv6 access-group acl-name {in | out}
  [time-range time-range-name] [counter]
```

no ipv6 access-group acl-name {in | out}

acl-name - Name of the ACL. (Maximum length: 32 characters)

in – Indicates that this list applies to ingress packets.

out – Indicates that this list applies to egress packets.

time-range-name - Name of the time range. (Range: 1-16 characters)

counter - Enables counter for ACL statistics.

Default Setting

None

Command Mode

Interface Configuration (Ethernet)

Command Usage

If a port is already bound to an ACL and you bind it to a different ACL, the switch will replace the old binding with the new one.

Example

```
Console(config)#interface ethernet 1/2
Console(config-if)#ipv6 access-group standard david in
Console(config-if)#
```

Related Commands

show ipv6 access-list (399) Time Range (186)

show ipv6 access-group

show ipv6 This command shows the ports assigned to IPv6 ACLs.

Command Mode

Privileged Exec

```
Console#show ipv6 access-group
Interface ethernet 1/2
IPv6 standard access-list david in
Global
IPv6 standard access-list david in
Console#
```

Related Commands

ipv6 access-group (Interface Configuration) (398)

show ipv6 access-list This command displays the rules for configured IPv6 ACLs.

Syntax

show ipv6 access-list {standard | extended} [acl-name]

standard - Specifies a standard IPv6 ACL.

extended – Specifies an extended IPv6 ACL.

acl-name – Name of the ACL. (Maximum length: 32 characters)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 access-list standard IPv6 standard access-list david: permit host 2009:DB9:2229::79 permit 2009:DB9:2229:5::/64 Console#
```

Related Commands

permit, deny (Standard Pv6 ACL) (395) permit, deny (Extended IPv6 ACL) (396) ipv6 access-group (Interface Configuration) (398)

MAC ACLs

The commands in this section configure ACLs based on hardware addresses, packet format, and Ethernet type. The ACLs can further specify optional IP and IPv6 addresses including protocol type and upper layer ports. To configure MAC ACLs, first create an access list containing the required permit or deny rules, and then bind the access list to one or more ports.

Table 70: MAC ACL Commands

Command	Function	Mode
access-list mac	Creates a MAC ACL and enters configuration mode	GC
mac access-group	Binds a MAC ACL to all ports for ingress traffic	GC
permit, deny	Filters packets matching a specified source and destination address, packet format, and Ethernet type. They can be further specified using optional IP and IPv6 addresses including protocol type and upper layer ports.	MAC-ACL
mac access-group	Binds a MAC ACL to a port	IC

Table 70: MAC ACL Commands (Continued)

Command	Function	Mode
show mac access-group	Shows port assignments for MAC ACLs	PE
show mac access-list	Displays the rules for configured MAC ACLs	PE

access-list mac This command enters MAC ACL configuration mode. Rules can be added to filter packets matching a specified MAC source or destination address (i.e., physical layer address), or Ethernet protocol type. Rules can also be used to filter packets based on IPv4/v6 addresses, including Layer 4 ports and protocol types. Use the **no** form to remove the specified ACL.

Syntax

[no] access-list mac acl-name

acl-name - Name of the ACL. (Maximum length: 32 characters,)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- When you create a new ACL or enter configuration mode for an existing ACL, use the **permit** or **deny** command to add new rules to the bottom of the list.
- ◆ To remove a rule, use the **no permit** or **no deny** command followed by the exact text of a previously configured rule.
- ◆ An ACL can contain up to 2048 rules.

Example

Console(config) #access-list mac jerry Console(config-mac-acl)#

Related Commands

permit, deny (401) mac access-group (Interface Configuration) (405) show mac access-list (406)

mac access-group This command binds a MAC ACL to all ports for ingress traffic. Use the **no** form to (Global Configuration) remove this binding.

Syntax

```
mac access-group acl-name in
 [time-range time-range-name] [counter]
no mac access-group acl-name in
   acl-name – Name of the ACL. (Maximum length: 32 characters)
   in – Indicates that this list applies to ingress packets.
   time-range-name - Name of the time range. (Range: 1-16 characters)
   counter - Enables counter for ACL statistics.
```

Default Setting

None

Command Mode

Global Configuration

Command Usage

If an ACL is already bound to a port and you bind a different ACL to it, the switch will replace the old binding with the new one.

Example

```
Console(config) #mac access-group jerry in
Console(config)#
```

Related Commands

show mac access-list (406) Time Range (186)

permit, deny (MAC ACL) This command adds a rule to a MAC ACL. The rule filters packets matching a specified MAC source or destination address (i.e., physical layer address), or Ethernet protocol type. Rules can also filter packets based on IPv4/v6 addresses, including Layer 4 ports and protocol types. Use the **no** form to remove a rule.

Syntax

```
{permit | deny}
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask] [ethertype ethertype [ethertype-bitmask]]
 {{ip {any | host source-ip | source-ip network-mask}
      {any | host destination-ip | destination-ip network-mask}
```

```
{ipv6 {any | host source-ipv6 | source-ipv6/prefix-length}
      {any | host destination-ipv6 | destination-ipv6/prefix-length}}
 [protocol protocol]
 [I4-source-port sport [port-bitmask]]
 [I4-destination-port dport [port-bitmask]}]
 [time-range time-range-name]
no {permit | deny}
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask] [ethertype ethertype [ethertype-bitmask]]
 {{ip {any | host source-ip | source-ip network-mask}
      {any | host destination-ip | destination-ip network-mask}
 {ipv6 {any | host source-ipv6 | source-ipv6/prefix-length}
      {any | host destination-ipv6 | destination-ipv6/prefix-length}}
 [protocol protocol]
 [I4-source-port sport [port-bitmask]]
 [I4-destination-port dport [port-bitmask]}]
```


Note: The default is for Ethernet II packets.

```
{permit | deny} tagged-eth2
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask] [ethertype ethertype [ethertype-bitmask]]
 {{ip {any | host source-ip | source-ip network-mask}
      {any | host destination-ip | destination-ip network-mask}
 {ipv6 {any | host source-ipv6 | source-ipv6/prefix-length}
      {any | host destination-ipv6 | destination-ipv6/prefix-length}}
 [protocol protocol]
 [I4-source-port sport [port-bitmask]]
 [I4-destination-port dport [port-bitmask]}]
 [time-range time-range-name]
no {permit | deny} tagged-eth2
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask] [ethertype ethertype [ethertype-bitmask]]
 {{ip {any | host source-ip | source-ip network-mask}
      {any | host destination-ip | destination-ip network-mask}
 {ipv6 {any | host source-ipv6 | source-ipv6/prefix-length}
      {any | host destination-ipv6 | destination-ipv6/prefix-length}}
 [protocol protocol]
 [I4-source-port sport [port-bitmask]]
 [I4-destination-port dport [port-bitmask]}]
```

```
{permit | deny} untagged-eth2
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [ethertype ethertype [ethertype-bitmask]]
 {{ip {any | host source-ip | source-ip network-mask}
     {any | host destination-ip | destination-ip network-mask}
 {ipv6 {any | host source-ipv6 | source-ipv6/prefix-length}
     {any | host destination-ipv6 | destination-ipv6/prefix-length}}
 [protocol protocol]
 [I4-source-port sport [port-bitmask]]
 [I4-destination-port dport [port-bitmask]}
 [time-range time-range-name]
no {permit | deny} untagged-eth2
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [ethertype ethertype [ethertype-bitmask]]
 {{ip {any | host source-ip | source-ip network-mask}
     {any | host destination-ip | destination-ip network-mask}
 {ipv6 {any | host source-ipv6 | source-ipv6/prefix-length}
     {any | host destination-ipv6 | destination-ipv6/prefix-length}}
 [protocol protocol]
 [I4-source-port sport [port-bitmask]]
 [I4-destination-port dport [port-bitmask]}]
{permit | deny} tagged-802.3
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask] [time-range time-range-name]
no {permit | deny} tagged-802.3
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask]
{permit | deny} untagged-802.3
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [time-range time-range-name]
no {permit | deny} untagged-802.3
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
   tagged-eth2 – Tagged Ethernet II packets.
   untagged-eth2 – Untagged Ethernet II packets.
   tagged-802.3 – Tagged Ethernet 802.3 packets.
   untagged-802.3 – Untagged Ethernet 802.3 packets.
   any – Any MAC, IPv4 or IPv6 source or destination address.
   host – A specific MAC, IPv4 or IPv6 address.
   source - Source MAC, IPv4 or IPv6 address.
```

destination – Destination MAC, IPv4 or IPv6 address.

address-bitmask⁵ – Bitmask for MAC address (in hexadecimal format).

network-mask – Network mask for IP subnet. This mask identifies the host address bits used for routing to specific subnets.

prefix-length - Length of IPv6 prefix. A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix; i.e., the network portion of the address. (Range: 0-128)

vid – VLAN ID. (Range: 1-4094)

*vid-bitmask*⁵ – VLAN bitmask. (Range: 1-4095)

ethertype – A specific Ethernet protocol number. (Range: 0-ffff hex)

ethertype-bitmask⁵ – Protocol bitmask. (Range: 0-ffff hex)

protocol - IP protocol or IPv6 next header. (Range: 0-255)

For information on next headers, see permit, deny (Extended IPv6 ACL).

sport⁶ – Protocol source port number. (Range: 0-65535)

*dport*⁶ – Protocol destination port number. (Range: 0-65535)

 ${\it port-bit mask}-{\it Decimal number representing the port bits to match}.$

(Range: 0-65535)

time-range-name - Name of the time range. (Range: 1-16 characters)

Default Setting

None

Command Mode

MAC ACL

Command Usage

- New rules are added to the end of the list.
- The ethertype option can only be used to filter Ethernet II formatted packets.
- ◆ A detailed listing of Ethernet protocol types can be found in RFC 1060. A few of the more common types include the following:
 - 0800 IP
 - 0806 ARP
 - 8137 IPX

^{5.} For all bitmasks, "1" means relevant and "0" means ignore.

^{6.} Includes TCP, UDP or other protocol types.

Example

This rule permits packets from any source MAC address to the destination address 00-e0-29-94-34-de where the Ethernet type is 0800.

```
Console(config-mac-acl) #permit any host 00-e0-29-94-34-de ethertype 0800 Console(config-mac-acl)#
```

Related Commands

access-list mac (400) Time Range (186)

mac access-group (Interface Configuration)

mac access-group This command binds a MAC ACL to a port. Use the **no** form to remove the port.

Syntax

```
mac access-group acl-name {in | out}

[time-range time-range-name] [counter]

no mac access-group acl-name {in | out}

acl-name – Name of the ACL. (Maximum length: 32 characters)

in – Indicates that this list applies to ingress packets.

out – Indicates that this list applies to egress packets.

time-range-name - Name of the time range. (Range: 1-16 characters)
```

counter – Enables counter for ACL statistics.

Default Setting

None

Command Mode

Interface Configuration (Ethernet)

Command Usage

If an ACL is already bound to a port and you bind a different ACL to it, the switch will replace the old binding with the new one.

Example

```
Console(config) #interface ethernet 1/2
Console(config-if) #mac access-group jerry in
Console(config-if)#
```

Related Commands

show mac access-list (406) Time Range (186)

access-group

show mac This command shows the ports assigned to MAC ACLs.

Command Mode

Privileged Exec

Example

```
Console#show mac access-group
Interface ethernet 1/5
MAC access-list M5 in
Global
MAC access-list M5 in
Console#
```

Related Commands

mac access-group (Interface Configuration) (405)

show mac access-list This command displays the rules for configured MAC ACLs.

Syntax

```
show mac access-list [acl-name]
```

acl-name – Name of the ACL. (Maximum length: 32 characters)

Command Mode

Privileged Exec

Example

```
Console#show mac access-list
MAC access-list jerry:
 permit any 00-e0-29-94-34-de ethertype 0800
Console#
```

Related Commands

permit, deny (401)

mac access-group (Interface Configuration) (405)

ARP ACLs

The commands in this section configure ACLs based on the IP or MAC address contained in ARP request and reply messages. To configure ARP ACLs, first create an access list containing the required permit or deny rules, and then bind the access list to one or more VLANs using the ip arp inspection vlan command.

Table 71: ARP ACL Commands

Command	Function	Mode
access-list arp	Creates a ARP ACL and enters configuration mode	GC
permit, deny	Filters packets matching a specified source or destination address in ARP messages	ARP-ACL
show access-list arp	Displays the rules for configured ARP ACLs	PE

access-list arp This command adds an ARP access list and enters ARP ACL configuration mode. Use the **no** form to remove the specified ACL.

Syntax

[no] access-list arp acl-name

acl-name – Name of the ACL. (Maximum length: 32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- When you create a new ACL or enter configuration mode for an existing ACL, use the **permit** or **deny** command to add new rules to the bottom of the list. To create an ACL, you must add at least one rule to the list.
- To remove a rule, use the **no permit** or **no deny** command followed by the exact text of a previously configured rule.
- An ACL can contain up to 128 rules.

Example

Console(config) #access-list arp factory Console(config-arp-acl)#

Related Commands

permit, deny (408) show access-list arp (409)

permit, deny (ARPACL) This command adds a rule to an ARP ACL. The rule filters packets matching a specified source or destination address in ARP messages. Use the **no** form to remove a rule.

Syntax

```
[no] {permit | deny}
 ip {any | host source-ip | source-ip ip-address-bitmask}
 mac {any | host source-mac | source-mac mac-address-bitmask} [log]
This form indicates either request or response packets.
[no] {permit | deny} request
 ip {any | host source-ip | source-ip ip-address-bitmask}
 mac {any | host source-mac | source-mac mac-address-bitmask} [log]
[no] {permit | deny} response
 ip {any | host source-ip | source-ip ip-address-bitmask}
 {any | host destination-ip | destination-ip ip-address-bitmask}
 mac {any | host source-mac | source-mac mac-address-bitmask}
 [any | host destination-mac | destination-mac mac-address-bitmask] [log]
   source-ip - Source IP address.
   destination-ip – Destination IP address with bitmask.
   ip-address-bitmask<sup>7</sup> – IPv4 number representing the address bits to match.
   source-mac – Source MAC address.
   destination-mac – Destination MAC address range with bitmask.
   mac-address-bitmask<sup>7</sup> – Bitmask for MAC address (in hexadecimal format).
   log - Logs a packet when it matches the access control entry.
```

Default Setting

None

Command Mode

ARP ACL

Command Usage

New rules are added to the end of the list.

Example

This rule permits packets from any source IP and MAC address to the destination subnet address 192.168.0.0.

```
Console(config-arp-acl) #$permit response ip any 192.168.0.0 255.255.0.0 mac
 any any
Console(config-mac-acl)#
```

^{7.} For all bitmasks, binary "1" means relevant and "0" means ignore.

Related Commands

access-list arp (407)

show access-list arp This command displays the rules for configured ARP ACLs.

Syntax

show access-list arp [acl-name]

acl-name – Name of the ACL. (Maximum length: 32 characters)

Command Mode

Privileged Exec

Example

```
Console#show access-list arp
ARP access-list factory:
 permit response ip any 192.168.0.0 255.255.0.0 mac any any
Console#
```

Related Commands

permit, deny (408)

ACL Information

This section describes commands used to display ACL information.

Table 72: ACL Information Commands

Command	Function	Mode
clear access-list hardware counters	Clears hit counter for rules in all ACLs, or in a specified ACL.	PE
show access-group	Shows the ACLs assigned to each port	PE
show access-list	Show all ACLs and associated rules	PE

hardware counters specified ACL.

clear access-list This command clears the hit counter for the rules in all ACLs, or for the rules in a

Syntax

clear access-list hardware counters [direction {in | out} [interface interface]] | [interface interface] | [name acl-name]

in – Clears counter for ingress rules.

out - Clears counter for egress rules.

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

acl-name – Name of the ACL. (Maximum length: 32 characters)

Command Mode

Privileged Exec

Example

Console#clear access-list hardware counters Console#

show access-group This command shows the port assignments of ACLs.

Command Mode

Privileged Executive

Example

Console#show access-group Interface ethernet 1/2 IP access-list david MAC access-list jerry Console#

show access-list This command shows all ACLs and associated rules.

Syntax

show access-list

[[arp [acl-name]] | [ip [extended [acl-name] | standard [acl-name]] | [ipv6 [extended [acl-name] | standard [acl-name]] | [mac [acl-name]] | [tcam-utilization] | [hardware counters]]

arp - Shows ingress or egress rules for ARP ACLs.

hardware counters - Shows statistics for all ACLs.8

ip extended – Shows ingress or egress rules for Extended IPv4 ACLs.

ip standard - Shows ingress or egress rules for Standard IPv4 ACLs.

ipv6 extended – Shows ingress or egress rules for Extended IPv6 ACLs.

ipv6 standard – Shows ingress or egress rules for Standard IPv6 ACLs.

^{8.} Due to a hardware limitation, this option only displays statistics for permit rules.

mac – Shows ingress or egress rules for MAC ACLs.

tcam-utilization – Shows the percentage of user configured ACL rules as a percentage of total ACL rules

acl-name - Name of the ACL. (Maximum length: 32 characters)

Command Mode

Privileged Exec

```
Console#show access-list
IP standard access-list david:
   permit host 10.1.1.21
   permit 168.92.0.0 255.255.15.0
IP extended access-list bob:
   permit 10.7.1.1 255.255.255.0 any
   permit 192.168.1.0 255.255.255.0 any destination-port 80 80
   permit 192.168.1.0 255.255.255.0 any protocol tcp control-code 2 2
MAC access-list jerry:
   permit any host 00-30-29-94-34-de ethertype 800 800
IP extended access-list A6:
   deny tcp any any control-flag 2 2
   permit any any
Console#
```

Chapter 10 | Access Control Lists ACL Information

11

Interface Commands

These commands are used to display or set communication parameters for an Ethernet port, aggregated link, or VLAN; or perform cable diagnostics on the specified interface.

Table 73: Interface Commands

Command	Function	Mode
Interface Configuration		
interface	Configures an interface type and enters interface configuration mode	GC
alias	Configures an alias name for the interface	IC
capabilities	Advertises the capabilities of a given interface for use in autonegotiation	IC
description	Adds a description to an interface configuration	IC
discard	Discards CDP or PVST packets	IC
flowcontrol	Enables flow control on a given interface	IC
media-type	Forces transceiver mode to use for SFP/SFP+ ports, or the port type to use for combination RJ-45/SFP ports	IC
negotiation	Enables autonegotiation of a given interface	IC
shutdown	Disables an interface	IC
speed-duplex	Configures the speed and duplex operation of a given interface when autonegotiation is disabled	IC
clear counters	Clears statistics on an interface	PE
show discard	Displays if CDP and PVST packets are being discarded	PE
show interfaces brief	Displays a summary of key information, including operational status, native VLAN ID, default priority, speed/duplex mode, and port type	PE
show interfaces counters	Displays statistics for the specified interfaces	NE, PE
show interfaces status	Displays status for the specified interface	NE, PE
show interfaces switchport	Displays the administrative and operational status of an interface	NE, PE
Transceiver Threshold Config	uration	
transceiver-monitor	Sends a trap when any of the transceiver's operational values fall outside specified thresholds	IC
transceiver-threshold-auto	Uses default threshold settings obtained from the transceiver to determine when an alarm or trap message should be sent	IC

Table 73: Interface Commands (Continued)

Command	Function	Mode
transceiver-threshold current	Sets thresholds for transceiver current which can be used to trigger an alarm or warning message	IC
transceiver-threshold rx-power	Sets thresholds for the transceiver power level of the received signal which can be used to trigger an alarm or warning message	IC
transceiver-threshold temperature	Sets thresholds for the transceiver temperature which can be used to trigger an alarm or warning message	IC
transceiver-threshold tx-power	Sets thresholds for the transceiver power level of the transmitted signal which can be used to trigger an alarm or warning message	IC
transceiver-threshold voltage	Sets thresholds for the transceiver voltage which can be used to trigger an alarm or warning message	IC
show interfaces transceiver	Displays the temperature, voltage, bias current, transmit power, and receive power	PE
show interfaces transceiver-threshold	Displays the alarm/warning thresholds for temperature, voltage, bias current, transmit power, and receive power	PE
Cable Diagnostics		
test cable-diagnostics	Performs cable diagnostics on the specified port	PE
show cable-diagnostics	Shows the results of a cable diagnostics test	PE
Power Savings		
power-save	Enables power savings mode on the specified port	IC
show power-save	Shows the configuration settings for power savings	PE

Interface Configuration

interface This command configures an interface type and enters interface configuration mode. Use the **no** form with a trunk to remove an inactive interface. Use the no form with a Layer 3 VLAN (normal type) to change it back to a Layer 2 interface.

Syntax

[no] interface interface

interface

ethernet unit/port-list

unit - Unit identifier. (Range: 1-8)

port-list - Physical port number or list of port numbers. Separate nonconsecutive port numbers with a comma and no spaces; or use a hyphen to designate a range of port numbers. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

vlan vlan-id (Range: 1-4094)

Default Setting

None

Command Mode

Global Configuration

Example

To specify several different ports, enter the following command:

```
Console(config)#interface ethernet 1/17-20,23
Console(config-if)#
```

alias This command configures an alias name for the interface. Use the **no** form to remove the alias name.

Syntax

alias string

no alias

string - A mnemonic name to help you remember what is attached to this interface. (Range: 1-64 characters)

Default Setting

None

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

The alias is displayed in the running-configuration file. An example of the value which a network manager might store in this object for a WAN interface is the (Telco's) circuit number/identifier of the interface.

Example

The following example adds an alias to port 4.

```
Console(config)#interface ethernet 1/4
Console(config-if)#alias finance
Console(config-if)#
```

capabilities This command advertises the port capabilities of a given interface during autonegotiation. Use the **no** form with parameters to remove an advertised capability, or the **no** form without parameters to restore the default values.

Syntax

```
[no] capabilities {1000full | 100full | 100half | 10full | 10half | flowcontrol}
```

1000full - Supports 1 Gbps full-duplex operation

100full - Supports 100 Mbps full-duplex operation

100half - Supports 100 Mbps half-duplex operation

10full - Supports 10 Mbps full-duplex operation

10half - Supports 10 Mbps half-duplex operation

flowcontrol - Supports flow control

Default Setting

100BASE-FX: 100full (SFP9)

1000BASE-T: 10half, 10full, 100half, 100full, 1000full

1000BASE-SX/LX/ZX (SFP9/ SFP+): 1000full

10GBASE-SR/LR/ER (SFP+): 10Gfull

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- 10GBASE-SFP+ connections are fixed at 10G, full duplex. When autonegotiation is enabled, the only attribute which can be advertised is flow control.
- The 1000BASE-T standard does not support forced mode. Auto-negotiation should always be used to establish a connection over any 1000BASE-T port or trunk.
- When auto-negotiation is enabled with the negotiation command, the switch will negotiate the best settings for a link based on the capabilities command. When auto-negotiation is disabled, you must manually specify the link attributes with the speed-duplex and flowcontrol commands.

Example

The following example configures Ethernet port 5 capabilities to include 100half and 100full.

```
Console(config) #interface ethernet 1/5
Console(config-if) #capabilities 100half
Console(config-if) #capabilities 100full
Console(config-if) #capabilities flowcontrol
Console(config-if)#
```

ECS4620-28F and ECS4620-28F-DC

Related Commands

negotiation (420) speed-duplex (421) flowcontrol (418)

description This command adds a description to an interface. Use the **no** form to remove the description.

Syntax

description string

no description

string - Comment or a description to help you remember what is attached to this interface. (Range: 1-64 characters)

Default Setting

None

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

The description is displayed by the show interfaces status command and in the running-configuration file. An example of the value which a network manager might store in this object is the name of the manufacturer, and the product name.

Example

The following example adds a description to port 4.

```
Console(config)#interface ethernet 1/4
Console(config-if) #description RD-SW#3
Console(config-if)#
```

discard This command discards CDP or PVST packets. Use the no form to forward the specified packet type to other ports configured the same way.

Syntax

```
[no] discard {cdp | pvst}
   cdp – Cisco Discovery Protocol
   pvst - Per-VLAN Spanning Tree
```

Default Setting

Default - Forward CDP and PVST packets

Interface Configuration

Command Mode

Interface Configuration (Ethernet)

Command Usage

Use the no discard command to allow CDP or PVST packets to be forwarded to other ports in the same VLAN which are also configured to forward the specified packet type.

Example

The following example forwards CDP packets entering port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if) #no discard cdp
Console(config-if)#
```

flowcontrol This command enables flow control. Use the **no** form to disable flow control.

Syntax

[no] flowcontrol

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- 1000BASE-T does not support forced mode. Auto-negotiation should always be used to establish a connection over any 1000BASE-T port or trunk.
- ♦ Flow control can eliminate frame loss by "blocking" traffic from end stations or segments connected directly to the switch when its buffers fill. When enabled, back pressure is used for half-duplex operation and IEEE 802.3-2002 (formally IEEE 802.3x) for full-duplex operation.
- To force flow control on or off (with the **flowcontrol** or **no flowcontrol** command), use the **no negotiation** command to disable auto-negotiation on the selected interface.
- When using the negotiation command to enable auto-negotiation, the optimal settings will be determined by the capabilities command. To enable flow control under auto-negotiation, "flowcontrol" must be included in the capabilities list for any port

Example

The following example enables flow control on port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#flowcontrol
Console(config-if) #no negotiation
Console(config-if)#
```

Related Commands

negotiation (420) capabilities (416)

media-type This command forces the transceiver mode to use for SFP/SFP+ ports, or the port type to use for combination RJ-45/SFP ports. Use the **no** form to restore the default mode.

Syntax

```
media-type {copper-forced | sfp-forced [mode] | sfp-preferred-auto}
no media-type
```

none - Mode is not forced.

copper-forced¹⁰ - Always uses the built-in RJ-45 port.

sfp-forced - Forces transceiver mode for the SFP/SFP+ port.

sfp-preferred-auto¹⁰ - Uses SFP port if both combination types are functioning and the SFP port has a valid link.

mode

1000sfp - Always uses 1000BASE SFP mode. **100fx**¹⁰ - Always uses 100BASE-FX mode.

Default Setting

SFP/SFP+ ports: None

Combination ports¹⁰: sfp-preferred-auto

Command Mode

Interface Configuration (Ethernet)

Command Usage

Available sfp-forced modes include:

ECS4620-52T/P: Ports 49-52 (10G SFP+) support 1000sfp ECS4620-28T/P: Ports 25-28 (10G SFP+) support 1000sfp ECS4620-28F/28F-DC: Ports 25-28 (10G SFP+) support 1000sfp

Ports 1-24 (1000BASE SFP) support 1000sfp or 100fx

^{10.} ECS4620-28F and ECS4620-28F-DC

Interface Configuration

Example

This forces the switch to use the 1000sfp mode for SFP port 28.

```
Console(config)#interface ethernet 1/28
Console(config-if) #media-type sfp-forced 1000sfp
Console(config-if)#
```

negotiation This command enables auto-negotiation for a given interface. Use the **no** form to disable auto-negotiation.

Syntax

[no] negotiation

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- 1000BASE-T does not support forced mode. Auto-negotiation should always be used to establish a connection over any 1000BASE-T port or trunk.
- ♦ When auto-negotiation is enabled the switch will negotiate the best settings for a link based on the capabilities command. When auto-negotiation is disabled, you must manually specify the link attributes with the speed-duplex and flowcontrol commands.
- If auto-negotiation is disabled, auto-MDI/MDI-X pin signal configuration will also be disabled for the RJ-45 ports.

Note: Auto-negotiation is not supported for 1000BASE SFP transceivers used in 10G SFP+ Ports 25-28/49-52.

Example

The following example configures port 10 to use auto-negotiation.

```
Console(config) #interface ethernet 1/10
Console(config-if) #negotiation
Console(config-if)#
```

Related Commands

capabilities (416) speed-duplex (421)

shutdown This command disables an interface. To restart a disabled interface, use the **no** form.

Syntax

[no] shutdown

Default Setting

All interfaces are enabled.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This command allows you to disable a port due to abnormal behavior (e.g., excessive collisions), and then re-enable it after the problem has been resolved. You may also want to disable a port for security reasons.

Example

The following example disables port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if) #shutdown
Console(config-if)#
```

speed-duplex This command configures the speed and duplex mode of a given interface when auto-negotiation is disabled. Use the **no** form to restore the default.

Syntax

```
speed-duplex {100full | 100half | 10full | 10half}
no speed-duplex
```

100full - Forces 100 Mbps full-duplex operation

100half - Forces 100 Mbps half-duplex operation

10full - Forces 10 Mbps full-duplex operation

10half - Forces 10 Mbps half-duplex operation

Default Setting

- Auto-negotiation is enabled by default.
- When auto-negotiation is disabled, the default speed-duplex setting is 100full for 1000BASE-T ports

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- ◆ The 1000BASE-T standard does not support forced mode. Auto-negotiation should always be used to establish a connection over any 1000BASE-T port or trunk. If not used, the success of the link process cannot be guaranteed when connecting to other types of switches.
- ◆ To force operation to the speed and duplex mode specified in a **speed-duplex** command, use the no negotiation command to disable auto-negotiation on the selected interface.
- When using the negotiation command to enable auto-negotiation, the optimal settings will be determined by the capabilities command. To set the speed/ duplex mode under auto-negotiation, the required mode must be specified in the capabilities list for an interface.

Example

The following example configures port 5 to 100 Mbps, half-duplex operation.

```
Console(config)#interface ethernet 1/5
Console(config-if)#speed-duplex 100half
Console(config-if)#no negotiation
Console(config-if)#
```

Related Commands

negotiation (420) capabilities (416)

clear counters This command clears statistics on an interface.

Syntax

clear counters interface

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Statistics are only initialized for a power reset. This command sets the base value for displayed statistics to zero for the current management session. However, if you log out and back into the management interface, the statistics displayed will show the absolute value accumulated since the last power reset.

Example

The following example clears statistics on port 5.

```
Console#clear counters ethernet 1/5
Console#
```

show discard This command displays whether or not CDP and PVST packets are being discarded.

Command Mode

Privileged Exec

Example

In this example, "Default" means that the packets are not discarded.

```
Console#show discard
Port CDP PVST
Eth 1/ 1 Default Default
Eth 1/ 2 Default Default
Eth 1/ 3 Default Default
Eth 1/ 4 Default Default
Eth 1/ 5 Default Default
Eth 1/ 6 Default Default
```

show interfaces brief This command displays a summary of key information, including operational status, native VLAN ID, default priority, speed/duplex mode, and port type for all ports.

Command Mode

Privileged Exec

Console#show interfaces	brief					
Interface Name	Status	PVID Pr	ri :	Speed/Duplex	Туре	Trunk
Eth 1/ 1	Down	1	0	Auto	1000BASE-T	None
Eth 1/ 2	Down	1	0	Auto	1000BASE-T	None
Eth 1/ 3	Down	1	0	Auto	1000BASE-T	None
Eth 1/ 4	Down	1	0	Auto	1000BASE-T	None
Eth 1/ 5	Down	1	0	Auto	1000BASE-T	None
Eth 1/ 6	Down	1	0	Auto	1000BASE-T	None

counters

show interfaces This command displays interface statistics.

Syntax

show interfaces counters [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

Shows the counters for all interfaces.

Command Mode

Normal Exec, Privileged Exec

Command Usage

If no interface is specified, information on all interfaces is displayed.

```
Console#show interfaces counters ethernet 1/1
Ethernet 1/1
 ===== IF table Stats =====
                 2166458 Octets Input
                14734059 Octets Output
                   14707 Unicast Input
                   19806 Unicast Output
                       0 Discard Input
                       0 Discard Output
                       0 Error Input
                       0 Error Output
                       0 Unknown Protocols Input
                       0 QLen Output
 ==== Extended Iftable Stats =====
                     23 Multi-cast Input
                    5525 Multi-cast Output
                    170 Broadcast Input
                     11 Broadcast Output
 ===== Ether-like Stats =====
                       0 Alignment Errors
                       0 FCS Errors
                       0 Single Collision Frames
                       0 Multiple Collision Frames
                       0 SQE Test Errors
                       0 Deferred Transmissions
                       0 Late Collisions
                       0 Excessive Collisions
                       0 Internal Mac Transmit Errors
                       O Internal Mac Receive Errors
```

```
0 Frames Too Long
                       O Carrier Sense Errors
                       0 Symbol Errors
                       0 Pause Frames Input
                       O Pause Frames Output
 ===== RMON Stats =====
                       0 Drop Events
                16900558 Octets
                   40243 Packets
                     170 Broadcast PKTS
                      23 Multi-cast PKTS
                       0 Undersize PKTS
                       0 Oversize PKTS
                       0 Fragments
                       0 Jabbers
                       0 CRC Align Errors
                       0 Collisions
                   21065 Packet Size <= 64 Octets
                    3805 Packet Size 65 to 127 Octets
                    2448 Packet Size 128 to 255 Octets
                     797 Packet Size 256 to 511 Octets
                    2941 Packet Size 512 to 1023 Octets
                    9187 Packet Size 1024 to 1518 Octets
 ==== Port Utilization =====
                     111 Octets Input in kbits per second
                       0 Packets Input per second
                    0.00 % Input Utilization
                     606 Octets Output in kbits per second
                       1 Packets Output per second
                    0.00 % Output Utilization
Console#
```

Table 74: show interfaces counters - display description

Parameter	Description
IF Table Stats	
Octets Input	The total number of octets received on the interface, including framing characters.
Octets Output	The total number of octets transmitted out of the interface, including framing characters.
Unicast Input	The number of subnetwork-unicast packets delivered to a higher-layer protocol. $ \\$
Unicast Output	The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent.
Discard Input	The number of inbound packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space.
Discard Output	The number of outbound packets which were chosen to be discarded even though no errors had been detected to prevent their being transmitted. One possible reason for discarding such a packet could be to free up buffer space.
Error Input	The number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol.
Error Output	The number of outbound packets that could not be transmitted because of errors.

Table 74: show interfaces counters - display description (Continued)

Parameter	Description
Unknown Protocols Input	The number of packets received which were discarded because of an unknown or unsupported protocol.
QLen Output	The length of the output packet queue (in packets).
Extended IF Table Stats	
Multicast Input	The number of packets, delivered by this sub-layer to a higher (sub-)layer, which were addressed to a multicast address at this sub-layer.
Multicast Output	The total number of packets that higher-level protocols requested be transmitted, and which were addressed to a multicast address at this sub-layer, including those that were discarded or not sent.
Broadcast Input	The number of packets, delivered by this sub-layer to a higher (sub-)layer, which were addressed to a broadcast address at this sub-layer.
Broadcast Output	The total number of packets that higher-level protocols requested be transmitted, and which were addressed to a broadcast address at this sub-layer, including those that were discarded or not sent.
Etherlike Statistics	
Alignment Errors	The number of alignment errors (missynchronized data packets).
FCS Errors	A count of frames received on a particular interface that are an integral number of octets in length but do not pass the FCS check. This count does not include frames received with frame-too-long or frame-too-short error.
Single Collision Frames	The number of successfully transmitted frames for which transmission is inhibited by exactly one collision.
Multiple Collision Frames	A count of successfully transmitted frames for which transmission is inhibited by more than one collision.
SQE Test Errors	A count of times that the SQE TEST ERROR message is generated by the PLS sublayer for a particular interface.
Deferred Transmissions	A count of frames for which the first transmission attempt on a particular interface is delayed because the medium was busy.
Late Collisions	The number of times that a collision is detected later than 512 bit-times into the transmission of a packet.
Excessive Collisions	A count of frames for which transmission on a particular interface fails due to excessive collisions. This counter does not increment when the interface is operating in full-duplex mode.
Internal MAC Transmit Errors	A count of frames for which transmission on a particular interface fails due to an internal MAC sublayer transmit error.
Internal MAC Receive Errors	A count of frames for which reception on a particular interface fails due to an internal MAC sublayer receive error.
Frames Too Long	A count of frames received on a particular interface that exceed the maximum permitted frame size.
Carrier Sense Errors	The number of times that the carrier sense condition was lost or never asserted when attempting to transmit a frame.

Table 74: show interfaces counters - display description (Continued)

Parameter	Description
Symbol Errors	For an interface operating at 100 Mb/s, the number of times there was an invalid data symbol when a valid carrier was present.
	For an interface operating in half-duplex mode at 1000 Mb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than slotTime, and during which there was at least one occurrence of an event that causes the PHY to indicate
	'Data reception error' or 'carrier extend error' on the GMII.
	For an interface operating in full-duplex mode at 1000 Mb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than minFrameSize, and during which there was at least one occurrence of an event that causes the PHY to indicate 'Data reception error' on the GMII
RMON Statistics	
Octets	Total number of octets of data received on the network. This statistic can be used as a reasonable indication of Ethernet utilization.
Packets	The total number of packets (bad, broadcast and multicast) received.
Broadcast Packets	The total number of good packets received that were directed to the broadcast address. Note that this does not include multicast packets.
Multicast Packets	The total number of good packets received that were directed to this multicast address.
Undersize Packets	The total number of packets received that were less than 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed.
Oversize Packets	The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets) and were otherwise well formed.
Fragments	The total number of frames received that were less than 64 octets in length (excluding framing bits, but including FCS octets) and had either an FCS or alignment error.
Jabbers	The total number of frames received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS or alignment error.
CRC Align Errors	
Collisions	The best estimate of the total number of collisions on this Ethernet segment.
64 Octets	The total number of packets (including bad packets) received and transmitted that were less than 64 octets in length (excluding framing bits but including FCS octets).
65-127 Octets 128-255 Octets 256-511 Octets 512-1023 Octets 1024-1518 Octets 1519-1536 Octets	The total number of packets (including bad packets) received and transmitted where the number of octets fall within the specified range (excluding framing bits but including FCS octets).
Utilization Statistics	
Octets input per second	Number of octets entering this interface in kbits per second.
Packets input per second	Number of packets entering this interface in packets per second.

Table 74: show interfaces counters - display description (Continued)

Parameter	Description
Input utilization	The input utilization rate for this interface.
Octets output per second	Number of octets leaving this interface in kbits per second.
Packets output per second	Number of packets leaving this interface in packets per second.
Output utilization	The output utilization rate for this interface.

show interfaces status This command displays the status for an interface.

Syntax

```
show interfaces status [interface]
```

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

vlan vlan-id (Range: 1-4094)

Default Setting

Shows the status for all interfaces.

Command Mode

Normal Exec, Privileged Exec

Command Usage

If no interface is specified, information on all interfaces is displayed.

```
Console#show interfaces status ethernet 1/1
Information of Eth 1/1
 Basic Information:
MAC Address : 1000BASE-T

Configuration:
 Name
 Port Admin : Up
Speed-duplex : Auto
Capabilities : 10hal
Broadcast Storm : Enabl
                         : 10half, 10full, 100half, 100full, 1000full
                          : Enabled
  Broadcast Storm Limit : 500 packets/second
 Multicast Storm : Disabled
Multicast Storm Limit : 500 packets/second
 Unknown Unicast Storm
                               : Disabled
 Unknown Unicast Storm Limit: 500 packets/second
 Flow Control : Disabled
  VLAN Trunking
                          : Disabled
```

```
LACP
                          : Disabled
 MAC Learning
                         : Enabled
 Media Type
                         : None
 Current Status:
 Link Status
  Port Operation Status : Up
  Operation Speed-duplex : 100full
                : 0w 0d 1h 11m 2s (4262 seconds)
  Up Time
 Flow Control Type : None
Max Frame Size : 1518 bytes (1522 bytes for tagged frames)
MAC Learning Status : Enabled
Console#
```

show interfaces This command displays the administrative and operational status of the specified switchport interfaces.

Syntax

```
show interfaces switchport [interface]
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
```

port-channel channel-id (Range: 1-16)

Default Setting

Shows all interfaces.

Command Mode

Normal Exec, Privileged Exec

Command Usage

If no interface is specified, information on all interfaces is displayed.

Example

This example shows the configuration setting for port 1.

```
Console#show interfaces switchport ethernet 1/1
Information of Eth 1/1
Broadcast Threshold : Enabled, 500 packets/second Multicast Threshold : Disabled
Unknown Unicast Threshold : Disabled
LACP Status
                                 : Disabled
Ingress Rate Limit
Egress Rate Limit
VLAN Membership Mode
Ingress Rule
Acceptable Frame Type
                                 : Disabled, 1000M bits per second
                                 : Disabled, 1000M bits per second
                                  : Hybrid
                                  : Disabled
                                  : All frames
Native VLAN
                                   : 1
Priority for Untagged Traffic : 0
GVRP Status
                                  : Disabled
```

Interface Configuration

Allowed VLAN : 1(u)
Forbidden VLAN :
802.1Q Tunnel Status : Disabled
802.1Q Tunnel Mode : Normal
802.1Q Tunnel TPID : 8100 (Hex)
Layer 2 Protocol Tunnel : None
Console#

Table 75: show interfaces switchport - display description

Field	Description
Broadcast Threshold	Shows if broadcast storm suppression is enabled or disabled; if enabled it also shows the threshold level (page 475).
Multicast Threshold	Shows if multicast storm suppression is enabled or disabled; if enabled it also shows the threshold level (page 475).
Unknown-unicast Threshold	Shows if unknown unicast storm suppression is enabled or disabled; if enabled it also shows the threshold level (page 475).
LACP Status	Shows if Link Aggregation Control Protocol has been enabled or disabled (page 447).
Ingress/Egress Rate Limit	Shows if rate limiting is enabled, and the current rate limit (page 1023).
VLAN Membership Mode	Indicates membership mode as Trunk or Hybrid (page 587).
Ingress Rule	Shows if ingress filtering is enabled or disabled (page 586).
Acceptable Frame Type	Shows if acceptable VLAN frames include all types or tagged frames only (page 584).
Native VLAN	Indicates the default Port VLAN ID (page 588).
Priority for Untagged Traffic	Indicates the default priority for untagged frames (page 624).
GVRP Status	Shows if GARP VLAN Registration Protocol is enabled or disabled (page 578).
Allowed VLAN	Shows the VLANs this interface has joined, where "(u)" indicates untagged and "(t)" indicates tagged (page 585).
Forbidden VLAN	Shows the VLANs this interface can not dynamically join via GVRP (page 578).
802.1Q-tunnel Status	Shows if 802.1Q tunnel is enabled on this interface (page 592).
802.1Q-tunnel Mode	Shows the tunnel mode as Normal, 802.1Q Tunnel or 802.1Q Tunnel Uplink (page 593).
802.1Q-tunnel TPID	Shows the Tag Protocol Identifier used for learning and switching packets (page 596).
Layer 2 Protocol Tunnel	Shows if L2 Protocol Tunnel is enabled for spanning tree protocol (page 601).

Transceiver Threshold Configuration

transceiver-monitor This command sends a trap when any of the transceiver's operational values fall outside of specified thresholds. Use the **no** form to disable trap messages.

Syntax

transceiver-monitor

Default Setting

Disabled

Command Mode

Interface Configuration (SFP/SFP+ Ports)

Example

```
Console(config)interface ethernet 1/1
Console(config-if) #transceiver-monitor
Console#
```

transceiver-threshold- This command uses default threshold settings obtained from the transceiver to auto determine when an alarm or warning message should be sent. Use the no form to disable this feature.

Syntax

transceiver-threshold-auto

Default Setting

Enabled

Command Mode

Interface Configuration (SFP/SFP+ Ports)

```
Console(config)interface ethernet 1/1
Console(config-if) #transceiver-threshold-auto
Console#
```

transceiver-threshold This command sets thresholds for transceiver current which can be used to trigger current an alarm or warning message.

Syntax

transceiver-threshold current {high-alarm | high-warning | low-alarm | **low-warning**} threshold-value

high-alarm – Sets the high current threshold for an alarm message.

high-warning – Sets the high current threshold for a warning message.

low-alarm – Sets the low current threshold for an alarm message.

low-warning – Sets the low current threshold for a warning message.

threshold-value – The threshold of the transceiver current. (Range: 0-13100 in units of 0.01 mA)

Default Setting

High Alarm: 100 mA HIgh Warning: 90 mA Low Warning: 7 mA Low Alarm: 6 mA

Command Mode

Interface Configuration (SFP/SFP+ Ports)

Command Usage

- If trap messages are enabled with the transceiver-monitor command, and a high-threshold alarm or warning message is sent if the current value is greater than or equal to the threshold, and the last sample value was less than the threshold. After a rising event has been generated, another such event will not be generated until the sampled value has fallen below the high threshold and reaches the low threshold.
- If trap messages are enabled with the transceiver-monitor command, and a low-threshold alarm or warning message is sent if the current value is less than or equal to the threshold, and the last sample value was greater than the threshold. After a falling event has been generated, another such event will not be generated until the sampled value has risen above the low threshold and reaches the high threshold.
- Threshold events are triggered as described above to avoid a hysteresis effect which would continuously trigger event messages if the power level were to fluctuate just above and below either the high threshold or the low threshold.
- Trap messages enabled by the transceiver-monitor command are sent to any management station configured by the snmp-server host command.

Example

The following example sets alarm thresholds for the transceiver current at port 1.

```
Console(config)interface ethernet 1/1
Console(config-if) #transceiver-threshold current low-alarm 100
Console(config-if) #transceiver-threshold rx-power high-alarm 700
Console#
```

transceiver-threshold This command sets thresholds for the transceiver power level of the received signal **rx-power** which can be used to trigger an alarm or warning message.

Syntax

transceiver-threshold rx-power {high-alarm | high-warning | low-alarm | **low-warning**} threshold-value

high-alarm – Sets the high power threshold for an alarm message.

high-warning – Sets the high power threshold for a warning message.

low-alarm – Sets the low power threshold for an alarm message.

low-warning – Sets the low power threshold for a warning message.

threshold-value – The power threshold of the received signal. (Range: -4000 - 820 in units of 0.01 dBm)

Default Setting

High Alarm: -3.00 dBm HIgh Warning: -3.50 dBm Low Warning: -21.00 dBm Low Alarm: -21.50 dBm

Command Mode

Interface Configuration (SFP/SFP+ Ports)

- The threshold value is the power ratio in decibels (dB) of the measured power referenced to one milliwatt (mW).
- ◆ Refer to the Command Usage section under the transceiver-threshold current command for more information on configuring transceiver thresholds.
- ◆ Trap messages enabled by the transceiver-monitor command are sent to any management station configured by the snmp-server host command.

Transceiver Threshold Configuration

Example

The following example sets alarm thresholds for the signal power received at port

```
Console(config)interface ethernet 1/1
Console(config-if) #transceiver-threshold rx-power low-alarm -21
Console(config-if) #transceiver-threshold rx-power high-alarm -3
Console#
```

transceiver-threshold This command sets thresholds for the transceiver temperature which can be used temperature to trigger an alarm or warning message.

Syntax

transceiver-threshold temperature {high-alarm | high-warning | low-alarm | **low-warning**} threshold-value

high-alarm – Sets the high temperature threshold for an alarm message.

high-warning – Sets the high temperature threshold for a warning message.

low-alarm – Sets the low temperature threshold for an alarm message.

low-warning – Sets the low temperature threshold for a warning message.

threshold-value – The threshold of the transceiver temperature. (Range: -12800 - 12800 in units of 0.01 Celsius)

Default Setting

High Alarm: 75.00 °C HIgh Warning: 70.00 °C Low Alarm: -123.00 °C Low Warning: 0.00 °C

Command Mode

Interface Configuration (SFP/SFP+ Ports)

- Refer to the Command Usage section under the transceiver-threshold current command for more information on configuring transceiver thresholds.
- ◆ Trap messages enabled by the transceiver-monitor command are sent to any management station configured by the snmp-server host command.

Example

The following example sets alarm thresholds for the transceiver temperature at port 1.

```
Console(config)interface ethernet 1/1
Console(config-if) #transceiver-threshold temperature low-alarm 97
Console(config-if) #transceiver-threshold temperature high-alarm -83
Console#
```

transceiver-threshold This command sets thresholds for the transceiver power level of the transmitted **tx-power** signal which can be used to trigger an alarm or warning message.

Syntax

transceiver-threshold tx-power {high-alarm | high-warning | low-alarm | low-warning} threshold-value

high-alarm – Sets the high power threshold for an alarm message.

high-warning – Sets the high power threshold for a warning message.

low-alarm – Sets the low power threshold for an alarm message.

low-warning – Sets the low power threshold for a warning message.

threshold-value – The power threshold of the transmitted signal. (Range: -4000 - 820 in units of 0.01 dBm)

Default Setting

High Alarm: -9.00 dBm HIgh Warning: -9.50 dBm Low Warning: -21.00 dBm Low Alarm: -21.50 dBm

Command Mode

Interface Configuration (SFP/SFP+ Ports)

- The threshold value is the power ratio in decibels (dB) of the measured power referenced to one milliwatt (mW).
- ◆ Refer to the Command Usage section under the transceiver-threshold current command for more information on configuring transceiver thresholds.
- Trap messages enabled by the transceiver-monitor command are sent to any management station configured by the snmp-server host command.

Transceiver Threshold Configuration

Example

The following example sets alarm thresholds for the signal power transmitted at port 1.

```
Console(config)interface ethernet 1/1
Console(config-if) #transceiver-threshold tx-power low-alarm 8
Console(config-if) #transceiver-threshold tx-power high-alarm -3
Console#
```

transceiver-threshold This command sets thresholds for the transceiver voltage which can be used to voltage trigger an alarm or warning message.

Syntax

transceiver-threshold voltage {high-alarm | high-warning | low-alarm | low-warning} threshold-value

high-alarm – Sets the high voltage threshold for an alarm message.

high-warning – Sets the high voltage threshold for a warning message.

low-alarm – Sets the low voltage threshold for an alarm message.

low-warning – Sets the low voltage threshold for a warning message.

threshold-value – The threshold of the transceiver voltage. (Range: 0-655 in units of 0.01 Volt)

Default Setting

High Alarm: 3.50 Volts HIgh Warning: 3.45 Volts Low Warning: 3.15 Volts Low Alarm: 3.10 Volts

Command Mode

Interface Configuration (SFP/SFP+ Ports)

- Refer to the Command Usage section under the transceiver-threshold current command for more information on configuring transceiver thresholds.
- Trap messages enabled by the transceiver-monitor command are sent to any management station configured by the snmp-server host command.

Example

The following example sets alarm thresholds for the transceiver voltage at port 1.

```
Console(config)interface ethernet 1/1
Console(config-if) #transceiver-threshold voltage low-alarm 4
Console(config-if) #transceiver-threshold voltage high-alarm 2
Console#
```

show interfaces This command displays identifying information for the specified transceiver, transceiver including connector type and vendor-related parameters, as well as the temperature, voltage, bias current, transmit power, and receive power.

Syntax

```
show interfaces transceiver [interface]
   interface
       ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
port - Port number. (ECS4620-28F/28F-DC: 1-28,
Other models: SFP+ ports 25-28 / 49-52)
```

Default Setting

Shows all SFP interfaces.

Command Mode

Privileged Exec

Command Usage

The switch can display diagnostic information for SFP modules which support the SFF-8472 Specification for Diagnostic Monitoring Interface for Optical Transceivers. This information allows administrators to remotely diagnose problems with optical devices. This feature, referred to as Digital Diagnostic Monitoring (DDM) in the command display, provides information on transceiver parameters including temperature, supply voltage, laser bias current, laser power, and received optical power, and related alarm thresholds.

```
Console#show interfaces transceiver ethernet 1/49
Information of Eth 1/49
Connector Type : LC Fiber Type : [0x00]
Eth Compliance Codes : 1000BASE-ZX
Baud Rate : 1300 MBd
Vendor OUI : 00-00-5F
                     : SumitomoElectric
Vendor Name
Vendor PN
                     : SCP6G94-FN-BWH
Vendor Rev
                     : Z
Vendor SN
                      : SE08T712Z00006
Date Code
                       : 10-09-14
```

Chapter 11 | Interface Commands

Transceiver Threshold Configuration

DDM Info				
Temperature :	35.64 degree	C		
Vcc :	3.25 V			
Bias Current :	12.13 mA			
TX Power :	2.36 dBm			
RX Power :	-24.20 dBm			
DDM Thresholds				
	Low Alarm	Low Warning	High Warning	High Alarm
Temperature(Celsius)	-45.00	-40.00	85.00	90.00
Voltage(Volts)	2.90	3.00	3.60	3.70
Current (mA)	1.00	3.00	50.00	60.00
TxPower(dBm)	-11.50	-10.50	-2.00	-1.00
RxPower(dBm)	-23.98	-23.01	-1.00	0.00
a 1 "				

show interfaces
transceiver-threshold

This command Displays the alarm/warning thresholds for temperature, voltage, bias current, transmit power, and receive power. Syntax

Syntax

show interfaces transceiver-threshold [interface]

interface

Console#

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (ECS4620-28F/28F-DC: 1-28,

Other models: SFP+ ports 25-28 / 49-52)

Default Setting

Shows all SFP interfaces.

Command Mode

Privileged Exec

Command Usage

- The switch can display diagnostic information for SFP modules which support the SFF-8472 Specification for Diagnostic Monitoring Interface for Optical Transceivers. This information allows administrators to remotely diagnose problems with optical devices. This feature, referred to as Digital Diagnostic Monitoring (DDM) in the command display, provides information on transceiver parameters including temperature, supply voltage, laser bias current, laser power, received optical power, and related alarm thresholds.
- The DDM thresholds displayed by this command only apply to ports which have a DDM-compliant transceiver inserted.

```
Console#show interfaces transceiver-threshold ethernet 1/25
Information of Eth 1/25
DDM Thresholds
Transceiver-monitor
                         : Disabled
```

Transceiver-threshold-a	uto : Enabled			
	Low Alarm	Low Warning	High Warning	High Alarm
Temperature(Celsius)	-123.00	0.00	70.00	75.00
Voltage(Volts)	3.10	3.15	3.45	3.50
Current (mA)	6.00	7.00	90.00	100.00
TxPower(dBm)	-12.00	-11.50	-9.50	-9.00
RxPower(dBm)	-21.50	-21.00	-3.50	-3.00
Console#				

Cable Diagnostics

test cable-diagnostics This command performs cable diagnostics on the specified port to diagnose any cable faults (short, open, etc.) and report the cable length.

Syntax

test cable-diagnostics interface interface

interface

ethernet *unit/port*

unit - Unit identifier. (Range: 1-8) port - Port number. (ECS4620-28F/28F-DC: 23-24, Other models: 1-24/48)

Command Mode

Privileged Exec

Command Usage

- Cable diagnostics are performed using Digital Signal Processing (DSP) test methods. DSP analyses the cable by sending a pulsed signal into the cable, and then examining the reflection of that pulse.
- This cable test is only accurate for Ethernet cables 7 100 meters long.
- The test takes approximately 5 seconds. Use the show cable-diagnostics command to display the results of the test, including common cable failures, as well as the status and approximate length of each cable pair.
- Ports are linked down while running cable diagnostics.
- To ensure more accurate measurement of the length to a fault, first disable power-saving mode (using the no power-save command) on the link partner before running cable diagnostics.

Example

Console#test cable-diagnostics interface ethernet 1/24 Console#

show cable-diagnostics

show This command shows the results of a cable diagnostics test.

Syntax

show cable-diagnostics interface [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (ECS4620-28F/28F-DC: 23-24,
Other models: 1-24/48)

Command Mode

Privileged Exec

Command Usage

- The results include common cable failures, as well as the status and approximate distance to a fault, or the approximate cable length if no fault is found.
- ◆ For link-down ports, the reported distance to a fault is accurate to within +/- 2 meters. For link-up ports, the accuracy is +/- 10 meters.
- Potential conditions which may be listed by the diagnostics include:
 - OK: Correctly terminated pair
 - Open: Open pair, no link partner
 - Short: Shorted pair
 - Not Supported: This message is displayed for any Gigabit Ethernet ports linked up at a speed lower than 1000 Mbps.
 - Impedance mismatch: Terminating impedance is not in the reference range.

```
Console#show cable-diagnostics interface ethernet 1/48

Port Type Link Status Pair A (meters) Pair B (meters) Last Update

Eth 1/48 GE Up OK (1) OK (1) 2012-08-09 10:24:49

Console#
```

Power Savings

power-save This command enables power savings mode on the specified port. Use the **no** form to disable this feature.

Syntax

[no] power-save

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

- IEEE 802.3 defines the Ethernet standard and subsequent power requirements based on cable connections operating at 100 meters. Enabling power saving mode can reduce power used for cable lengths of 60 meters or less, with more significant reduction for cables of 20 meters or less, and continue to ensure signal integrity.
- Power saving mode only applies to the Gigabit Ethernet ports using copper media.
- ◆ Power savings can be enabled on Gigabit Ethernet RJ-45 ports.
- ◆ The power-saving methods provided by this switch include:
 - Power saving when there is no link partner:

Under normal operation, the switch continuously auto-negotiates to find a link partner, keeping the MAC interface powered up even if no link connection exists. When using power-savings mode, the switch checks for energy on the circuit to determine if there is a link partner. If none is detected, the switch automatically turns off the transmitter, and most of the receive circuitry (entering Sleep Mode). In this mode, the low-power energy-detection circuit continuously checks for energy on the cable. If none is detected, the MAC interface is also powered down to save additional energy. If energy is detected, the switch immediately turns on both the transmitter and receiver functions, and powers up the MAC interface.

• Power saving when there is a link partner:

Traditional Ethernet connections typically operate with enough power to support at least 100 meters of cable even though average network cable length is shorter. When cable length is shorter, power consumption can be reduced since signal attenuation is proportional to cable length. When power-savings mode is enabled, the switch analyzes cable length to

determine whether or not it can reduce the signal amplitude used on a particular link.

Note: Power-savings mode on a active link only works when the connection speed is 100 Mbps or higher at linkup, and line length is less than 60 meters.

Note: Power savings can only be implemented on Gigabit Ethernet ports using twisted-pair cabling. Power-savings mode on a active link only works when connection speed is 1 Gbps, and line length is less than 60 meters.

Example

```
Console(config) #interface ethernet 1/24
Console(config-if) #power-save
Console(config-if) #
```

show power-save This command shows the configuration settings for power savings.

Syntax

show power-save [interface interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (ECS4620-28F/28F-DC: 23-24, Other models: 1-24/48)

Command Mode

Privileged Exec

```
Console#show power-save interface ethernet 1/24
Power Saving Status:
Ethernet 1/24 : Enabled
Console#
```

Link Aggregation Commands

Ports can be statically grouped into an aggregate link (i.e., trunk) to increase the bandwidth of a network connection or to ensure fault recovery. Or you can use the Link Aggregation Control Protocol (LACP) to automatically negotiate a trunk link between this switch and another network device. For static trunks, the switches have to comply with the Cisco EtherChannel standard. For dynamic trunks, the switches have to comply with LACP. This switch supports up to 16 trunks, and up to 32 for the stack. For example, a trunk consisting of two 1000 Mbps ports can support an aggregate bandwidth of 4 Gbps when operating at full duplex.

Table 76: Link Aggregation Commands

Command	Function	Mode	
Manual Configuration Commands			
interface port-channel	Configures a trunk and enters interface configuration mode for the trunk	GC	
port channel load-balance	Sets the load-distribution method among ports in aggregated links	GC	
channel-group	Adds a port to a trunk	IC (Ethernet)	
Dynamic Configuration Co	ommands		
lacp	Configures LACP for the current interface	IC (Ethernet)	
lacp admin-key	Configures a port's administration key	IC (Ethernet)	
lacp port-priority	Configures a port's LACP port priority	IC (Ethernet)	
lacp system-priority	Configures a port's LACP system priority	IC (Ethernet)	
lacp admin-key	Configures an port channel's administration key	IC (Port Channel)	
lacp timeout	Configures the timeout to wait for next LACPDU	IC (Port Channel)	
Trunk Status Display Commands			
show interfaces status port-channel	Shows trunk information	NE, PE	
show lacp	Shows LACP information	PE	
show port-channel load- balance	Shows the load-distribution method used on aggregated links	PE	

Manual Configuration Commands

Guidelines for Creating Trunks

General Guidelines –

- Finish configuring trunks before you connect the corresponding network cables between switches to avoid creating a loop.
- A trunk can have up to 8 ports.
- The ports at both ends of a connection must be configured as trunk ports.
- All ports in a trunk must be configured in an identical manner, including communication mode (i.e., speed and duplex mode), VLAN assignments, and CoS settings.
- Any of the Gigabit ports on the front panel can be trunked together, including ports of different media types.
- ◆ All the ports in a trunk have to be treated as a whole when moved from/to, added or deleted from a VLAN via the specified port-channel.
- ◆ STP, VLAN, and IGMP settings can only be made for the entire trunk via the specified port-channel.

Dynamically Creating a Port Channel –

Ports assigned to a common port channel must meet the following criteria:

- Ports must have the same LACP system priority.
- Ports must have the same port admin key (Ethernet Interface).
- ◆ If the port channel admin key (lacp admin key Port Channel) is not set when a channel group is formed (i.e., it has the null value of 0), this key is set to the same value as the port admin key (lacp admin key - Ethernet Interface) used by the interfaces that joined the group.
- However, if the port channel admin key is set, then the port admin key must be set to the same value for a port to be allowed to join a channel group.
- If a link goes down, LACP port priority is used to select the backup link.

Manual Configuration Commands

port channel This command sets the load-distribution method among ports in aggregated links **load-balance** (for both static and dynamic trunks). Use the **no** form to restore the default setting.

Syntax

port channel load-balance {dst-ip | dst-mac | src-dst-ip | src-dst-mac | src-ip | src-mac}

no port channel load-balance

dst-ip - Load balancing based on destination IP address.

dst-mac - Load balancing based on destination MAC address.

src-dst-ip - Load balancing based on source and destination IP address.

src-dst-mac - Load balancing based on source and destination MAC address.

src-ip - Load balancing based on source IP address.

src-mac - Load balancing based on source MAC address.

Default Setting

src-dst-ip

Command Mode

Global Configuration

- This command applies to all static and dynamic trunks on the switch.
- ◆ To ensure that the switch traffic load is distributed evenly across all links in a trunk, select the source and destination addresses used in the load-balance calculation to provide the best result for trunk connections:
 - dst-ip: All traffic with the same destination IP address is output on the same link in a trunk. This mode works best for switch-to-router trunk links where traffic through the switch is destined for many different hosts. Do not use this mode for switch-to-server trunk links where the destination IP address is the same for all traffic.
 - dst-mac: All traffic with the same destination MAC address is output on the same link in a trunk. This mode works best for switch-to-switch trunk links where traffic through the switch is destined for many different hosts. Do not use this mode for switch-to-router trunk links where the destination MAC address is the same for all traffic.
 - src-dst-ip: All traffic with the same source and destination IP address is output on the same link in a trunk. This mode works best for switch-torouter trunk links where traffic through the switch is received from and destined for many different hosts.
 - src-dst-mac: All traffic with the same source and destination MAC address
 is output on the same link in a trunk. This mode works best for switch-toswitch trunk links where traffic through the switch is received from and
 destined for many different hosts.
 - **src-ip**: All traffic with the same source IP address is output on the same link in a trunk. This mode works best for switch-to-router or switch-to-server trunk links where traffic through the switch is received from many different hosts.

Manual Configuration Commands

src-mac: All traffic with the same source MAC address is output on the same link in a trunk. This mode works best for switch-to-switch trunk links where traffic through the switch is received from many different hosts.

Example

```
Console(config) #port-channel load-balance dst-ip
Console(config)#
```

channel-group This command adds a port to a trunk. Use the **no** form to remove a port from a trunk.

Syntax

channel-group channel-id

no channel-group

channel-id - Trunk index (Range: 1-16)

Default Setting

The current port will be added to this trunk.

Command Mode

Interface Configuration (Ethernet)

Command Usage

- When configuring static trunks, the switches must comply with the Cisco EtherChannel standard.
- Use **no channel-group** to remove a port group from a trunk.
- ◆ Use no interface port-channel to remove a trunk from the switch.

Example

The following example creates trunk 1 and then adds port 10:

```
Console(config) #interface port-channel 1
Console(config-if)#exit
Console(config)#interface ethernet 1/10
Console(config-if)#channel-group 1
Console(config-if)#
```

Dynamic Configuration Commands

lacp This command enables 802.3ad Link Aggregation Control Protocol (LACP) for the current interface. Use the **no** form to disable it.

Syntax

[no] lacp

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

- The ports on both ends of an LACP trunk must be configured for full duplex, either by forced mode or auto-negotiation.
- ◆ A trunk formed with another switch using LACP will automatically be assigned the next available port-channel ID.
- If the target switch has also enabled LACP on the connected ports, the trunk will be activated automatically.
- If more than eight ports attached to the same target switch have LACP enabled, the additional ports will be placed in standby mode, and will only be enabled if one of the active links fails.

Example

The following shows LACP enabled on ports 1-3. Because LACP has also been enabled on the ports at the other end of the links, the show interfaces status portchannel 1 command shows that Trunk1 has been established.

```
Console(config) #interface ethernet 1/1
Console(config-if) #lacp
Console(config-if)#interface ethernet 1/2
Console(config-if) #lacp
Console(config-if) #interface ethernet 1/3
Console(config-if) #lacp
Console(config-if)#end
Console#show interfaces status port-channel 1
Information of Trunk 1
Basic Information:
  Port Type
                         : 1000BASE-T
                         : 12-34-12-34-12-3F
 MAC Address
Configuration:
 Name
  Port Admin
                        : Up
 Speed-duplex
Capabilities
                        : Auto
 capabilities : 10half, 10full, 100half, 100full, 1000full
Broadcast Storm : Enabled
  Broadcast Storm Limit : 500 packets/second
```

Chapter 12 | Link Aggregation Commands

Dynamic Configuration Commands

Multicast Storm : Disabled

Multicast Storm Limit : 500 packets/second Unknown Unicast Storm : Disabled

Unknown Unicast Storm Limit: 500 packets/second

Flow Control : Disabled VLAN Trunking : Disabled

Current status:

Created By : LACP Link Status : Up Port Operation Status : Up Operation Speed-duplex : 1000full

Up Time : 0w 0d 0h 0m 53s (53 seconds)

Flow Control Type : None

Max Frame Size : 1518 bytes (1522 bytes for tagged frames)

MAC Learning Status : Enabled

Member Ports : Eth1/1, Eth1/2, Eth1/3, Active Member Ports : Eth1/1, Eth1/2, Eth1/3,

Console#

lacp admin-key This command configures a port's LACP administration key. Use the no form to (Ethernet Interface) restore the default setting.

Syntax

lacp {actor | partner} admin-key key

no lacp {actor | partner} admin-key

actor - The local side an aggregate link.

partner - The remote side of an aggregate link.

key - The port admin key must be set to the same value for ports that belong to the same link aggregation group (LAG). (Range: 0-65535)

Default Setting

Actor: 1, Partner: 0

Command Mode

Interface Configuration (Ethernet)

- Ports are only allowed to join the same LAG if (1) the LACP system priority matches, (2) the LACP port admin key matches, and (3) the LACP port channel key matches (if configured).
- If the port channel admin key (lacp admin key Port Channel) is not set when a channel group is formed (i.e., it has the null value of 0), this key is set to the same value as the port admin key (lacp admin key - Ethernet Interface) used by the interfaces that joined the group.
- Once the remote side of a link has been established, LACP operational settings are already in use on that side. Configuring LACP settings for the partner only applies to its administrative state, not its operational state.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #lacp actor admin-key 120
Console(config-if)#
```

lacp port-priority This command configures LACP port priority. Use the **no** form to restore the default setting.

Syntax

```
lacp {actor | partner} port-priority priority
no lacp {actor | partner} port-priority
    actor - The local side an aggregate link.
    partner - The remote side of an aggregate link.
    priority - LACP port priority is used to select a backup link. (Range: 0-65535)
```

Default Setting

32768

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Setting a lower value indicates a higher effective priority.
- If an active port link goes down, the backup port with the highest priority is selected to replace the downed link. However, if two or more ports have the same LACP port priority, the port with the lowest physical port number will be selected as the backup port.
- If an LAG already exists with the maximum number of allowed port members, and LACP is subsequently enabled on another port using a higher priority than an existing member, the newly configured port will replace an existing port member that has a lower priority.
- Once the remote side of a link has been established, LACP operational settings are already in use on that side. Configuring LACP settings for the partner only applies to its administrative state, not its operational state, and will only take effect the next time an aggregate link is established with the partner.

```
Console(config)#interface ethernet 1/5
Console(config-if) #lacp actor port-priority 128
```

Dynamic Configuration Commands

lacp system-priority This command configures a port's LACP system priority. Use the **no** form to restore the default setting.

Syntax

```
lacp {actor | partner} system-priority priority
no lacp {actor | partner} system-priority
```

actor - The local side an aggregate link.

partner - The remote side of an aggregate link.

priority - This priority is used to determine link aggregation group (LAG) membership, and to identify this device to other switches during LAG negotiations. (Range: 0-65535)

Default Setting

32768

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Port must be configured with the same system priority to join the same LAG.
- System priority is combined with the switch's MAC address to form the LAG identifier. This identifier is used to indicate a specific LAG during LACP negotiations with other systems.
- Once the remote side of a link has been established, LACP operational settings are already in use on that side. Configuring LACP settings for the partner only applies to its administrative state, not its operational state, and will only take effect the next time an aggregate link is established with the partner.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #lacp actor system-priority 3
Console(config-if)#
```

lacp admin-key This command configures a port channel's LACP administration key string. Use the (Port Channel) **no** form to restore the default setting.

Syntax

```
lacp admin-key key
no lacp admin-key
```

key - The port channel admin key is used to identify a specific link aggregation group (LAG) during local LACP setup on this switch. (Range: 0-65535)

Default Setting

Command Mode

Interface Configuration (Port Channel)

Command Usage

- Ports are only allowed to join the same LAG if (1) the LACP system priority matches, (2) the LACP port admin key matches, and (3) the LACP port channel key matches (if configured).
- If the port channel admin key (lacp admin key Port Channel) is not set when a channel group is formed (i.e., it has the null value of 0), this key is set to the same value as the port admin key (lacp admin key - Ethernet Interface) used by the interfaces that joined the group. Note that when the LAG is no longer used, the port channel admin key is reset to 0.

Example

```
Console(config) #interface port-channel 1
Console(config-if) #lacp admin-key 3
Console(config-if)#
```

lacp timeout This command configures the timeout to wait for the next LACP data unit (LACPDU). Use the no form to restore the default setting.

Syntax

```
lacp timeout {long | short}
no lacp timeout
   long - Specifies a slow timeout of 90 seconds.
   short - Specifies a fast timeout of 3 seconds.
```

Default Setting

long

Command Mode

Interface Configuration (Port Channel)

Command Usage

The timeout configured by this command is set in the LACP timeout bit of the Actor State field in transmitted LACPDUs. When the partner switch receives an LACPDU set with a short timeout from the actor switch, the partner adjusts the transmit LACPDU interval to 1 second. When it receives an LACPDU set with a long timeout from the actor, it adjusts the transmit LACPDU interval to 30 seconds.

Trunk Status Display Commands

- ◆ If the actor does not receive an LACPDU from its partner before the configured timeout expires, the partner port information will be deleted from the LACP group.
- When a dynamic port-channel member leaves a port-channel, the default timeout value will be restored on that port.
- When a dynamic port-channel is torn down, the configured timeout value will be retained. When the dynamic port-channel is constructed again, that timeout value will be used.

Example

```
Console(config)#interface port-channel 1
Console(config-if)#lacp timeout short
Console(config-if)#
```

Trunk Status Display Commands

show lacp This command displays LACP information.

Syntax

```
show lacp [port-channel] {counters | internal | neighbors | sys-id}
```

port-channel - Local identifier for a link aggregation group. (Range: 1-16)

counters - Statistics for LACP protocol messages.

internal - Configuration settings and operational state for local side.

neighbors - Configuration settings and operational state for remote side.

sys-id - Summary of system priority and MAC address for all channel groups.

Default Setting

Port Channel: all

Command Mode

Privileged Exec

```
Console#show lacp 1 counters
Port Channel: 1

Eth 1/ 2

LACPDUS Sent : 12
LACPDUS Received : 6
Marker Sent : 0
Marker Received : 0
LACPDUS Unknown Pkts : 0
LACPDUS Illegal Pkts : 0
```

:

Table 77: show lacp counters - display description

Field	Description
LACPDUs Sent	Number of valid LACPDUs transmitted from this channel group.
LACPDUs Received	Number of valid LACPDUs received on this channel group.
Marker Sent	Number of valid Marker PDUs transmitted from this channel group.
Marker Received	Number of valid Marker PDUs received by this channel group.
LACPDUs Unknown Pkts	Number of frames received that either (1) Carry the Slow Protocols Ethernet Type value, but contain an unknown PDU, or (2) are addressed to the Slow Protocols group MAC Address, but do not carry the Slow Protocols Ethernet Type.
LACPDUs Illegal Pkts	Number of frames that carry the Slow Protocols Ethernet Type value, but contain a badly formed PDU or an illegal value of Protocol Subtype.

```
Console#show lacp 1 internal
Port Channel: 1
Oper Key : 3
Admin Key : 0
Timeout : long
Eth 1/ 1
 LACPDUs Internal : 30 seconds
 LACP System Priority: 32768
 LACP Port Priority : 32768
 Admin Key
                    : 3
                   : 3
  Oper Key
                : defaulted, aggregation, long timeout, LACP-activity
 Admin State
                   : distributing, collecting, synchronization,
  Oper State
                      aggregation, long timeout, LACP-activity
:
```

Table 78: show lacp internal - display description

Field	Description
Oper Key	Current operational value of the key for the aggregation port.
Admin Key	Current administrative value of the key for the aggregation port.
Timeout	Time to wait for the next LACPDU before deleting partner port information.
LACPDUs Internal	Number of seconds before invalidating received LACPDU information.
LACP System Priority	LACP system priority assigned to this port channel.
LACP Port Priority	LACP port priority assigned to this interface within the channel group.

Table 78: show lacp internal - display description (Continued)

Field	Description
Admin State,	Administrative or operational values of the actor's state parameters:
Oper State	 Expired – The actor's receive machine is in the expired state;
	 Defaulted – The actor's receive machine is using defaulted operational partner information, administratively configured for the partner.
	 Distributing – If false, distribution of outgoing frames on this link is disabled; i.e., distribution is currently disabled and is not expected to be enabled in the absence of administrative changes or changes in received protocol information.
	 Collecting – Collection of incoming frames on this link is enabled; i.e., collection is currently enabled and is not expected to be disabled in the absence of administrative changes or changes in received protocol information.
	 Synchronization – The System considers this link to be IN_SYNC; i.e., it has been allocated to the correct Link Aggregation Group, the group has been associated with a compatible Aggregator, and the identity of the Link Aggregation Group is consistent with the System ID and operational Key information transmitted.
	 Aggregation – The system considers this link to be aggregatable; i.e., a potential candidate for aggregation.
	 Long timeout – Periodic transmission of LACPDUs uses a slow transmission rate.
	 LACP-Activity – Activity control value with regard to this link. (0: Passive; 1: Active)

```
Console#show lacp 1 neighbors
Port Channel 1 neighbors
Eth 1/ 1
 Partner Admin System ID : 32768, 00-00-00-00-00
 Partner Oper System ID : 32768, 00-12-CF-61-24-2F
 Partner Admin Port Number: 1
 Partner Oper Port Number : 1
 Port Admin Priority : 32768
 Port Oper Priority
                          : 32768
 Admin Key
                           : 0
                           : 3
 Oper Key
 Admin State:
                           defaulted, distributing, collecting,
                           synchronization, long timeout,
 Oper State:
                           distributing, collecting, synchronization,
                           aggregation, long timeout, LACP-activity
```

Table 79: show lacp neighbors - display description

Field	Description
Partner Admin System ID	LAG partner's system ID assigned by the user.
Partner Oper System ID	LAG partner's system ID assigned by the LACP protocol.
Partner Admin Port Number	Current administrative value of the port number for the protocol Partner.
Partner Oper Port Number	Operational port number assigned to this aggregation port by the port's protocol partner.

Table 79: show lacp neighbors - display description (Continued)

Field	Description
Port Admin Priority	Current administrative value of the port priority for the protocol partner.
Port Oper Priority	Priority value assigned to this aggregation port by the partner.
Admin Key	Current administrative value of the Key for the protocol partner.
Oper Key	Current operational value of the Key for the protocol partner.
Admin State	Administrative values of the partner's state parameters. (See preceding table.)
Oper State	Operational values of the partner's state parameters. (See preceding table.)

Console#show la Port Channel	cp sysid System Priority	System MAC Address	
1	32768	00-30-F1-8F-2C-A7	
2	32768	00-30-F1-8F-2C-A7	
3	32768	00-30-F1-8F-2C-A7	
4	32768	00-30-F1-8F-2C-A7	
5	32768	00-30-F1-8F-2C-A7	
6	32768	00-30-F1-8F-2C-A7	
7	32768	00-30-F1-D4-73-A0	
8	32768	00-30-F1-D4-73-A0	
9	32768	00-30-F1-D4-73-A0	
10	32768	00-30-F1-D4-73-A0	
11	32768	00-30-F1-D4-73-A0	
12	32768	00-30-F1-D4-73-A0	

Table 80: show lacp sysid - display description

Field	Description
Channel group	A link aggregation group configured on this switch.
System Priority*	LACP system priority for this channel group.
System MAC Address*	System MAC address.

^{*} The LACP system priority and system MAC address are concatenated to form the LAG system ID.

load-balance

show port-channel This command shows the load-distribution method used on aggregated links.

Command Mode

Privileged Exec

Example

Console#show port-channel load-balance Trunk Load Balance Mode: Destination IP address Console#

Chapter 12 | Link Aggregation Commands Trunk Status Display Commands

Power over Ethernet Commands

The commands in this group control the power that can be delivered to attached PoE devices through the RJ-45 ports 1-24/48 on the ECS4620-28P/52P.

The switch's power management enables total switch power and individual port power to be controlled within a configured power budget. Port power can be automatically turned on and off for connected devices, and a per-port power priority can be set so that the switch never exceeds its allocated power budget. When a device is connected to a switch port, its power requirements are detected by the switch before power is supplied. If the power required by a device exceeds the power budget of the port or the whole switch, power is not supplied.

Table 81: PoE Commands

Command	Function	Mode
power inline	Turns power on and off for specific ports	IC
power inline maximum allocation	Sets the maximum power available to specific switch ports	IC
power inline priority	Sets the priority for power supplied to specific ports	IC
show power inline status	Displays the current status of power management on specific ports or all ports	PE
show power mainpower	Displays the current status of power management for switch	PE

power inline

This command instructs the switch to automatically detect if a PoE-compliant device is connected to the specified port, and turn power on or off accordingly. Use the **no** form to turn off power for a port.

Syntax

[no] power inline

Default Setting

Detection is enabled for PoE-compliant devices.

Command Mode

Interface Configuration (ECS4620-28P/52P Ethernet ports 1-24/48)

Command Usage

◆ The switch only provides power to the Gigabit Ethernet RJ-45 ports.

When detection is enabled for PoE-compliant devices, power is automatically supplied when a device is detected on the port, providing that the power demanded does not exceed the port's power budget or the switch's power budget.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #power inline
Console(config-if)#exit
Console(config)#interface ethernet 1/2
Console(config-if) #no power inline
Console(config-if)#
```

power inline This command limits the power allocated to specific ports. Use the **no** form to maximum allocation restore the default setting.

Syntax

power inline maximum allocation milliwatts

no power inline maximum allocation

milliwatts - The maximum power budget for the port. (Range: 3000 - 30000 milliwatts)

Default Setting

30000 milliwatts

Command Mode

Interface Configuration (ECS4620-28P/52P Ethernet ports 1-24/48)

Command Usage

- ◆ The ECS4620-28P can supply up to 30W of power for 13 ports (based on IEEE 802.3at), or up to 15.4W to 24 ports (based on IEEE 802.3af).
- The ECS4620-52P can supply up to 30W of power for 23 ports (based on IEEE 802.3at) when power is provided from the RPS, or up to 15.4W to 48 ports (based on IEEE 802.3af).
- If a device is connected to a switch port and the switch detects that it requires more than the maximum power allocated to the port or to the overall switch, no power is supplied to the device (i.e., port power remains off).

```
Console(config)#interface ethernet 1/1
Console(config-if) #power inline maximum allocation 8000
Console(config-if)#
```

power inline priority This command sets the power priority for specific ports. Use the **no** form to restore the default setting.

Syntax

```
power inline priority priority
no power inline priority
```

priority - The power priority for the port. Options: 1 (critical), 2 (high), or 3 (low)

Default Setting

3 (low)

Command Mode

Interface Configuration (ECS4620-28P/52P Ethernet ports 1-24/48)

Command Usage

- If the power demand from devices connected to the switch exceeds the power budget setting as determined during bootup, the switch uses port power priority settings to control the supplied power. For example:
 - A device connected to a low-priority port that causes the switch to exceed its budget is not supplied power.
 - If a device is connected to a critical or high-priority port and causes the switch to exceed its budget, port power is still be turned on if the switch can drop power to one or more lower-priority ports and keep within its budget.
 - Power will be dropped from lower-priority ports starting in reverse sequence from ECS4620-28P/52P port number 24/48.
 - If sufficient power cannot be freed up for a critical or high-priority port by turning off power to lower-priority ports, power will not be supplied to the newly connected device.
- If a device is connected to a port after the switch has finished booting up and would cause the switch to exceed its budget, power will not be provided to that port regardless of its priority setting.

```
Console(config)#interface ethernet 1/1
Console(config-if) #power inline priority 2
Console(config-if)#
```

status

show power inline This command displays the current power status for all ports or for specific ports.

Syntax

show power inline status [interface]

interface

ethernet

unit - Unit identifier. (Range: 1-8) port - Port number. (ECS4620-28P/52P Ethernet ports 1-24/48)

Command Mode

Privileged Exec

Example

```
Console#show power inline status
Compatible mode : Enabled
                         Max
                                  Used
Interface Admin
                  Oper Power
                                  Power
                                            Priority
                                   0 mW Low
0 mW Low
Eth 1/1 Enabled Off
                         30000 mW
Eth 1/2 Enabled Off 30000 mW
Eth 1/3 Enabled Off 30000 mW 7505 mW Low
Eth 1/4 Enabled Off 30000 mW
                                     0 mW Low
Eth 1/5 Enabled Off 30000 mW
                                     0 mW Low
Eth 1/6 Enabled Off 30000 mW
                                     0 mW Low
Eth 1/7 Enabled Off 15400~\text{mW} 8597~\text{mW} Low
Eth 1/ 8 Enabled Off 15400~\text{mW} 0 mW Low
Eth 1/9 Enabled Off 15400 mW
Eth 1/10 Enabled Off 15400 mW
Eth 1/11 Enabled Off 15400 mW
                                      0 mW Low
                                      0 mW
                                            Low
                                      0 mW Low
Eth 1/12 Enabled Off 15400 mW
                                      0 mW Low
```

Table 82: show power inline status - display description

Field	Description
Admin	The power mode set on the port (see power inline)
Oper	The current operating power status (displays on or off)
Power (mWatt)	The maximum power allocated to this port (see power inline maximum allocation)
Power (used)	The current power consumption on the port in milliwatts
Priority	The port's power priority setting (see power inline priority)

show power mainpower

show power Use this command to display the current power status for the switch.

Command Mode

Privileged Exec

Example

```
Console#show power mainpower
Unit 1 Main Power Status
PoE Maximum Available Power : 780.0 Watts (using main power)
PoE Maximum Allocation Power : 780.0 Watts
System Operation Status : On
PoE Power Consumption : 0 Watts
Software Version : Version 0148 (Hex), Build 66 (Hex)
Console#
```

Table 83: show power mainpower - display description

Field	Description
PoE Maximum Available Power	The available power budget for the switch
PoE Maximum Allocation Power	The power budget for the switch. If devices connected to the switch require more power than the switch
	budget, the port power priority settings are used to control the supplied power.
System Operation Status	The current operating power status (displays on or off)
PoE Power Consumption	The current power consumption on the switch in watts
Software Version	The version of software running on the PoE controller subsystem in the switch.

Port Mirroring Commands

Data can be mirrored from a local port on the same switch or from a remote port on another switch for analysis at the target port using software monitoring tools or a hardware probe. This switch supports the following mirroring modes.

Table 84: Port Mirroring Commands

Command	Function
Local Port Mirroring	Mirrors data to another port for analysis without affecting the data passing through or the performance of the monitored port
RSPAN Mirroring	Mirrors data from remote switches over a dedicated VLAN

Local Port Mirroring Commands

This section describes how to mirror traffic from a source port to a target port.

Table 85: Mirror Port Commands

Command	Function	Mode
port monitor	Configures a mirror session	IC
show port monitor	Shows the configuration for a mirror port	PE

port monitor This command configures a mirror session. Use the **no** form to clear a mirror session.

Syntax

```
port monitor {interface [rx | tx | both] | vlan vlan-id |
    mac-address mac-address | access-list acl-name}
no port monitor {interface | vlan vlan-id |
    mac-address mac-address | access-list acl-name}
   interface - ethernet unit/port (source port)
        unit - Unit identifier. (Range: 1-8)
       port - Port number. (Range: 1-28/52)
   rx - Mirror received packets.
   tx - Mirror transmitted packets.
   both - Mirror both received and transmitted packets.
```

vlan-id - VLAN ID (Range: 1-4094)

mac-address - MAC address in the form of xx-xx-xx-xx-xx or xxxxxxxxxxx.

acl-name – Name of the ACL. (Maximum length: 16 characters, no spaces or other special characters)

Default Setting

- No mirror session is defined.
- When enabled for an interface, default mirroring is for both received and transmitted packets.
- When enabled for a VLAN or a MAC address, mirroring is restricted to received packets.

Command Mode

Interface Configuration (Ethernet, destination port)

- You can mirror traffic from any source port to a destination port for real-time analysis. You can then attach a logic analyzer or RMON probe to the destination port and study the traffic crossing the source port in a completely unobtrusive manner.
- ◆ Set the destination port by specifying an Ethernet interface with the interface configuration command, and then use the port monitor command to specify the source of the traffic to mirror.
- ◆ All VLAN mirror sessions must share the same target port, preferably one that is not a member of the source VLAN.
- When mirroring traffic from a port, the mirror port and monitor port speeds should match, otherwise traffic may be dropped from the monitor port. When mirroring traffic from a VLAN, traffic may also be dropped under heavy loads.
- When VLAN mirroring and port mirroring are both enabled, the target port can receive a mirrored packet twice; once from the source mirror port and again from the source mirror VLAN.
- When mirroring traffic from a MAC address, ingress traffic with the specified source address entering any port in the switch, other than the target port, will be mirrored to the destination port.
- Spanning Tree BPDU packets are not mirrored to the target port.
- When mirroring VLAN traffic or packets based on a source MAC address, the target port cannot be set to the same target port as that used for basic port mirroring.

- You can create multiple mirror sessions, but all sessions must share the same destination port.
- The destination port cannot be a trunk or trunk member port.
- ◆ ACL-based mirroring is only used for ingress traffic. To mirror an ACL, follow these steps:
 - 1. Use the access-list command (page 385) to add an ACL.
 - Use the access-group command to add a mirrored port to access control list.
 - **3.** Use the **port monitor access-list** command to specify the destination port to which traffic matching the ACL will be mirrored.

Example

The following example configures the switch to mirror all packets from port 6 to 5:

```
Console(config) #interface ethernet 1/5
Console(config-if) #port monitor ethernet 1/6 both
Console(config-if) #
```

This example configures port 2 to monitor packets matching the MAC address 00-12-CF-XX-XX received by port 1:

```
Console(config) #access-list mac m1
Console(config-mac-acl) #permit 00-12-cf-00-00 ff-ff-ff-00-00-00 any
Console(config-mac-acl) #exit
Console(config) #interface ethernet 1/1
Console(config-if) #mac access-group m1 in
Console(config-if) #interface ethernet 1/2
Console(config-if) #port monitor access-list m1
Console(config-if) #
```

show port monitor This command displays mirror information.

Syntax

show port monitor [interface | **vlan** vlan-id | **mac-address** mac-address]

Default Setting

Shows all sessions.

Command Mode

Privileged Exec

Command Usage

This command displays the currently configured source port, destination port, and mirror mode (i.e., RX, TX, RX/TX).

Example

The following shows mirroring configured from port 6 to port 5:

```
Console(config) #interface ethernet 1/5
Console(config-if) #port monitor ethernet 1/6
Console(config-if) #end
Console#show port monitor
Port Mirroring
-----
Destination Port (listen port):Eth1/5
Source Port (monitored port) :Eth1/6
Mode :RX/TX
Console#
```

RSPAN Mirroring Commands

Remote Switched Port Analyzer (RSPAN) allows you to mirror traffic from remote switches for analysis on a local destination port.

Table 86: RSPAN Commands

Command	Function	Mode
vlan rspan	Creates a VLAN dedicated to carrying RSPAN traffic	VC
rspan source	Specifies the source port and traffic type to be mirrored	GC
rspan destination	Specifies the destination port to monitor the mirrored traffic	GC
rspan remote vlan	Specifies the RSPAN VLAN, switch role (source, intermediate or destination), and the uplink ports	GC
no rspan session	Deletes a configured RSPAN session	GC
show rspan	Displays the configuration settings for an RSPAN session	PE

Configuration Guidelines

Take the following steps to configure an RSPAN session:

- 1. Use the vlan rspan command to configure a VLAN to use for RSPAN. (Default VLAN 1 is prohibited.)
- **2.** Use the rspan source command to specify the interfaces and the traffic type (RX, TX or both) to be monitored.
- **3.** Use the rspan destination command to specify the destination port for the traffic mirrored by an RSPAN session.
- **4.** Use the rspan remote vlan command to specify the VLAN to be used for an RSPAN session, to specify the switch's role as a source, intermediate relay, or destination of the mirrored traffic, and to configure the uplink ports designated to carry this traffic.

RSPAN Limitations

The following limitations apply to the use of RSPAN on this switch:

- RSPAN Ports Only ports can be configured as an RSPAN source, destination, or uplink; static and dynamic trunks are not allowed. A port can only be configured as one type of RSPAN interface – source, destination, or uplink. Also, note that the source port and destination port cannot be configured on the same switch.
 - Only 802.1Q trunk or hybrid (i.e., general use) ports can be configured as an RSPAN uplink or destination port access ports are not allowed (see switchport mode).
- ◆ Local/Remote Mirror The destination of a local mirror session (created with the port monitor command) cannot be used as the destination for RSPAN traffic.
 - Only one mirror session is allowed, including both local and remote mirroring. If local mirroring is enabled, then no session can be configured for RSPAN.
- Spanning Tree If the spanning tree is disabled, BPDUs will not be flooded onto the RSPAN VLAN.
 - MAC address learning is not supported on RSPAN uplink ports when RSPAN is enabled on the switch. Therefore, even if spanning tree is enabled after RSPAN has been configured, MAC address learning will still not be re-started on the RSPAN uplink ports.
- ◆ IEEE 802.1X RSPAN and 802.1X are mutually exclusive functions. When 802.1X is enabled globally, RSPAN uplink ports cannot be configured, even though RSPAN source and destination ports can still be configured. When RSPAN uplink ports are enabled on the switch, 802.1X cannot be enabled globally.

RSPAN uplink ports cannot be configured to use IEEE 802.1X Port Authentication, but RSPAN source ports and destination ports can be configured to use it

Port Security – If port security is enabled on any port, that port cannot be set as an RSPAN uplink port, even though it can still be configured as an RSPAN source or destination port. Also, when a port is configured as an RSPAN uplink port, port security cannot be enabled on that port.

rspan source Use this command to specify the source port and traffic type to be mirrored remotely. Use the **no** form to disable RSPAN on the specified port, or with a traffic type keyword to disable mirroring for the specified type.

Syntax

```
[no] rspan session session-id source interface interface-list
    [rx | tx | both]
```

session-id – A number identifying this RSPAN session. (Range: 1)

Only one mirror session is allowed, including both local and remote mirroring. If local mirroring is enabled with the port monitor command, then no session can be configured for RSPAN.

interface-list – One or more source ports. Use a hyphen to indicate a consecutive list of ports or a comma between non-consecutive ports.

ethernet *unit/port*

```
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
```

rx - Mirror received packets.

tx - Mirror transmitted packets.

both - Mirror both received and transmitted packets.

Default Setting

Both TX and RX traffic is mirrored

Command Mode

Global Configuration

- One or more source ports can be assigned to the same RSPAN session, either on the same switch or on different switches.
- ◆ Only ports can be configured as an RSPAN source static and dynamic trunks are not allowed.
- The source port and destination port cannot be configured on the same switch.

Example

The following example configures the switch to mirror received packets from port 2 and 3:

```
Console(config) #rspan session 1 source interface ethernet 1/2
Console(config) #rspan session 1 source interface ethernet 1/3
Console(config)#
```

rspan destination Use this command to specify the destination port to monitor the mirrored traffic. Use the **no** form to disable RSPAN on the specified port.

Syntax

rspan session session-id destination interface interface [tagged | untagged] no rspan session session-id destination interface interface

session-id – A number identifying this RSPAN session. (Range: 1)

Only one mirror session is allowed, including both local and remote mirroring. If local mirroring is enabled with the port monitor command, then no session can be configured for RSPAN.

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
```

tagged - Traffic exiting the destination port carries the RSPAN VLAN tag.

untagged - Traffic exiting the destination port is untagged.

Default Setting

Traffic exiting the destination port is untagged.

Command Mode

Global Configuration

Command Usage

- Only one destination port can be configured on the same switch per session, but a destination port can be configured on more than one switch for the same session.
- Only 802.1Q trunk or hybrid (i.e., general use) ports can be configured as an RSPAN destination port – access ports are not allowed (see switchport mode).
- Only ports can be configured as an RSPAN destination static and dynamic trunks are not allowed.
- The source port and destination port cannot be configured on the same switch.

 A destination port can still send and receive switched traffic, and participate in any Layer 2 protocols to which it has been assigned.

Example

The following example configures port 4 to receive mirrored RSPAN traffic:

```
Console(config) #rspan session 1 destination interface ethernet 1/2
Console(config)#
```

rspan remote vlan Use this command to specify the RSPAN VLAN, switch role (source, intermediate or destination), and the uplink ports. Use the **no** form to disable the RSPAN on the specified VLAN.

Syntax

[no] rspan session session-id remote vlan vlan-id {source | intermediate | destination} uplink interface

session-id – A number identifying this RSPAN session. (Range: 1)

Only one mirror session is allowed, including both local and remote mirroring. If local mirroring is enabled with the port monitor command, then no session can be configured for RSPAN.

vlan-id - ID of configured RSPAN VLAN. (Range: 2-4092) Use the vlan rspan command to reserve a VLAN for RSPAN mirroring before enabling RSPAN with this command.

source - Specifies this device as the source of remotely mirrored traffic.

intermediate - Specifies this device as an intermediate switch, transparently passing mirrored traffic from one or more sources to one or more destinations.

destination - Specifies this device as a switch configured with a destination port which is to receive mirrored traffic for this session.

uplink - A port configured to receive or transmit remotely mirrored traffic.

interface - ethernet unit/port

ethernet *unit/port*

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Only 802.1Q trunk or hybrid (i.e., general use) ports can be configured as an RSPAN uplink port – access ports are not allowed (see switchport mode).
- Only one uplink port can be configured on a source switch, but there is no limitation on the number of uplink ports configured on an intermediate or destination switch.
- Only destination and uplink ports will be assigned by the switch as members of this VLAN. Ports cannot be manually assigned to an RSPAN VLAN with the switchport allowed vlan command. Nor can GVRP dynamically add port members to an RSPAN VLAN. Also, note that the show vlan command will not display any members for an RSPAN VLAN, but will only show configured RSPAN VLAN identifiers.

Example

The following example enables RSPAN on VLAN 2, specifies this device as an RSPAN destination switch, and the uplink interface as port 3:

```
Console(config) #rspan session 1 remote vlan 2 destination uplink ethernet 1/3
Console(config)#
```

no rspan session Use this command to delete a configured RSPAN session.

Syntax

no rspan session session-id

session-id – A number identifying this RSPAN session. (Range: 1)

Only one mirror session is allowed, including both local and remote mirroring. If local mirroring is enabled with the port monitor command, then no session can be configured for RSPAN.

Command Mode

Global Configuration

Command Usage

The no rspan session command must be used to disable an RSPAN VLAN before it can be deleted from the VLAN database (see the vlan command).

```
Console(config) #no rspan session 1
Console(config)#
```

show rspan Use this command to displays the configuration settings for an RSPAN session.

Syntax

show rspan session [session-id]

session-id – A number identifying this RSPAN session. (Range: 1)

Only one mirror session is allowed, including both local and remote mirroring. If local mirroring is enabled with the port monitor command, then no session can be configured for RSPAN.

Command Mode

Privileged Exec

```
Console#show rspan session
RSPAN Session ID
                           : 1
Source Ports (mirrored ports) : None
                           : None
 RX Only
 TX Only
                            : None
 BOTH
                            : None
Destination Port (monitor port) : Eth 1/2
Destination Tagged Mode : Untagged
Switch Role
                           : Destination
RSPAN VLAN
                           : 2
RSPAN Uplink Ports
                           : Eth 1/3
Operation Status
                            : Up
Console#
```


Congestion Control Commands

The switch can set the maximum upload or download data transfer rate for any port. It can control traffic storms by setting a maximum threshold for broadcast traffic or multicast traffic. It can also set bounding thresholds for broadcast and multicast storms which can be used to automatically trigger rate limits or to shut down a port.

Table 87: Congestion Control Commands

Command Group	Function
Rate Limiting	Sets the input and output rate limits for a port.
Storm Control	Sets the traffic storm threshold for each port.
Automatic Traffic Control	Sets thresholds for broadcast and multicast storms which can be used to trigger configured rate limits or to shut down a port.

Rate Limit Commands

Rate limit commands allow the network manager to control the maximum rate for traffic transmitted or received on an interface. Rate limiting is configured on interfaces at the edge of a network to limit traffic into or out of the network. Packets that exceed the acceptable amount of traffic are dropped.

Rate limiting can be applied to individual ports or trunks. When an interface is configured with this feature, the traffic rate will be monitored by the hardware to verify conformity. Non-conforming traffic is dropped.

Table 88: Rate Limit Commands

Command	Function	Mode
rate-limit	Configures the maximum input or output rate for an interface \ensuremath{T}	IC

Rate Limit Commands

rate-limit This command defines the rate limit for a specific interface. Use this command without specifying a rate to enable rate limiting. Use the **no** form to disable rate limiting.

Syntax

```
rate-limit {input | output} [rate]
no rate-limit (input | output)
    input – Input rate for specified interface
   output – Output rate for specified interface
   rate – Maximum value in kbps.
    (Range: 64 - 1,000,000 kbits per second for Gigabit Ethernet ports;
   64 - 10,000,000 kbits per second for 10 Gigabit Ethernet ports)
```

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

Using both rate limiting and storm control on the same interface may lead to unexpected results. It is therefore not advisable to use both of these commands on the same interface.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #rate-limit input 64
Console(config-if)#
```

Related Command

show interfaces switchport (429)

Storm Control Commands

Storm control commands can be used to configure broadcast, multicast, and unknown unicast storm control thresholds. Traffic storms may occur when a device on your network is malfunctioning, or if application programs are not well designed or properly configured. If there is too much traffic on your network, performance can be severely degraded or everything can come to complete halt.

You can protect your network from traffic storms by setting a threshold for broadcast, multicast or unknown unicast traffic. Any packets exceeding the specified threshold will then be dropped.

Table 89: Rate Limit Commands

Command	Function	Mode
switchport packet-rate*	Configures broadcast, multicast, and unknown unicast storm control thresholds	IC
show interfaces switchport	Displays the administrative and operational status of an interface	NE, PE

Enabling hardware-level storm control with this command on a port will disable software-level automatic storm control on the same port if configured by the auto-traffic-control command.

switchport This command configures broadcast, multicast and unknown unicast storm packet-rate control. Use the **no** form to restore the default setting.

Syntax

switchport {broadcast | multicast | unknown-unicast} packet-rate rate no switchport {broadcast | multicast | unknown-unicast}

broadcast - Specifies storm control for broadcast traffic.

multicast - Specifies storm control for multicast traffic.

unknown-unicast - Specifies storm control for unknown unicast traffic.

rate - Threshold level as a rate; i.e., packets per second.

(Range: 500-14881000 pps)

Default Setting

Broadcast Storm Control: Enabled, 500 pps

Multicast Storm Control: Disabled

Unknown Unicast Storm Control: Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- When traffic exceeds the threshold specified for broadcast and multicast or unknown unicast traffic, packets exceeding the threshold are dropped until the rate falls back down beneath the threshold.
- ◆ Traffic storms can be controlled at the hardware level using this command or at the software level using the auto-traffic-control command. However, only one of these control types can be applied to a port. Enabling hardware-level storm control on a port will disable automatic storm control on that port.
- ◆ The rate limits set by this command are also used by automatic storm control when the control response is set to rate limiting by the auto-traffic-control action command.
- Using both rate limiting and storm control on the same interface may lead to unexpected results. It is therefore not advisable to use both of these commands on the same interface.

Example

The following shows how to configure broadcast storm control at 600 packets per second:

```
Console(config) #interface ethernet 1/5
Console(config-if) #switchport broadcast packet-rate 600
Console(config-if)#
```

Related Commands

show interfaces switchport (429)

Automatic Traffic Control Commands

Automatic Traffic Control (ATC) configures bounding thresholds for broadcast and multicast storms which can be used to trigger configured rate limits or to shut down a port.

Table 90: ATC Commands

Command	Function	Mode
Threshold Commands		
auto-traffic-control apply-timer	Sets the time at which to apply the control response after ingress traffic has exceeded the upper threshold	GC
auto-traffic-control release-timer	Sets the time at which to release the control response after ingress traffic has fallen beneath the lower threshold	GC
auto-traffic-control*	Enables automatic traffic control for broadcast or multicast storms	IC (Port)

Table 90: ATC Commands (Continued)

Command	Function	Mode
auto-traffic-control action	Sets the control action to limit ingress traffic or shut down the offending port	IC (Port)
auto-traffic-control alarm-clear-threshold	Sets the lower threshold for ingress traffic beneath which a cleared storm control trap is sent	IC (Port)
auto-traffic-control alarm-fire-threshold	Sets the upper threshold for ingress traffic beyond which a storm control response is triggered after the apply timer expires	IC (Port)
auto-traffic-control auto- control-release	Automatically releases a control response	IC (Port)
auto-traffic-control control-release	Manually releases a control response	PE
SNMP Trap Commands		
snmp-server enable port-traps atc broadcast-alarm-clear	Sends a trap when broadcast traffic falls beneath the lower threshold after a storm control response has been triggered	IC (Port)
snmp-server enable port-traps atc broadcast-alarm-fire	Sends a trap when broadcast traffic exceeds the upper threshold for automatic storm control	IC (Port)
snmp-server enable port-traps atc broadcast-control-apply	Sends a trap when broadcast traffic exceeds the upper threshold for automatic storm control and the apply timer expires	IC (Port)
snmp-server enable port-traps atc broadcast-control- release	Sends a trap when broadcast traffic falls beneath the lower threshold after a storm control response has been triggered and the release timer expires	IC (Port)
snmp-server enable port-traps atc multicast-alarm-clear	Sends a trap when multicast traffic falls beneath the lower threshold after a storm control response has been triggered	IC (Port)
snmp-server enable port-traps atc multicast-alarm-fire	Sends a trap when multicast traffic exceeds the upper threshold for automatic storm control	IC (Port)
snmp-server enable port-traps atc multicast-control-apply	Sends a trap when multicast traffic exceeds the upper threshold for automatic storm control and the apply timer expires	IC (Port)
snmp-server enable port-traps atc multicast-control- release	Sends a trap when multicast traffic falls beneath the lower threshold after a storm control response has been triggered and the release timer expires	IC (Port)
ATC Display Commands		
show auto-traffic-control	Shows global configuration settings for automatic storm control	PE
showauto-traffic-control interface	Shows interface configuration settings and storm control status for the specified port	PE

^{*} Enabling automatic storm control on a port will disable hardware-level storm control on the same port if configured by the switchport packet-rate command.

Usage Guidelines

ATC includes storm control for broadcast or multicast traffic. The control response for either of these traffic types is the same, as shown in the following diagrams.

• Traffic without storm control TrafficControl ApplyTrap Traffic with storm control Storm Alarm Storm Alarm Traffic Fire TRAP **FireTRAP** [kpps] StromAlarm ClearTRAP StromAlarm Alarm Fire ClearTRAP Threshold TrafficControl (1~255kpps) Release Trap Release Time expired (0~300se AlarmClear Threshold (1~255kpp♦) Apply Time expired (0~300sec Auto Storm Control

Figure 1: Storm Control by Limiting the Traffic Rate

The key elements of this diagram are described below:

- Alarm Fire Threshold The highest acceptable traffic rate. When ingress traffic exceeds the threshold, ATC sends a Storm Alarm Fire Trap and logs it.
- When traffic exceeds the alarm fire threshold and the apply timer expires, a traffic control response is applied, and a Traffic Control Apply Trap is sent and logged.
- Alarm Clear Threshold The lower threshold beneath which a control response can be automatically terminated after the release timer expires. When ingress traffic falls below this threshold, ATC sends a Storm Alarm Clear Trap and logs it.
- When traffic falls below the alarm clear threshold after the release timer expires, traffic control (for rate limiting) will be stopped and a Traffic Control Release Trap sent and logged. Note that if the control action has shut down a port, it can only be manually re-enabled using the auto-traffic-control controlrelease command).
- The traffic control response of rate limiting can be released automatically or manually. The control response of shutting down a port can only be released manually.

Traffic without storm control Traffic with storm control Clear TRAP Alarm Fire (1~255 kpps) Manually Alarm Clear (1~255kpps)

Figure 2: Storm Control by Shutting Down a Port

The key elements of this diagram are the same as that described in the preceding diagram, except that automatic release of the control response is not provided. When traffic control is applied, you must manually re-enable the port.

Functional Limitations

Automatic storm control is a software level control function. Traffic storms can also be controlled at the hardware level using the switchport packet-rate command. However, only one of these control types can be applied to a port. Enabling automatic storm control on a port will disable hardware-level storm control on that port.

Threshold Commands

auto-traffic-control This command sets the time at which to apply the control response after ingress apply-timer traffic has exceeded the upper threshold. Use the **no** form to restore the default setting.

Syntax

auto-traffic-control {broadcast | multicast} apply-timer seconds no auto-traffic-control {broadcast | multicast} apply-timer

broadcast - Specifies automatic storm control for broadcast traffic.

multicast - Specifies automatic storm control for multicast traffic.

seconds - The interval after the upper threshold has been exceeded at which to apply the control response. (Range: 1-300 seconds)

Default Setting

300 seconds

Command Mode

Global Configuration

Command Usage

After the apply timer expires, a control action may be triggered as specified by the auto-traffic-control action command and a trap message sent as specified by the snmp-server enable port-traps atc broadcast-control-apply command or snmpserver enable port-traps atc multicast-control-apply command.

Example

This example sets the apply timer to 200 seconds for all ports.

```
Console(config) #auto-traffic-control broadcast apply-timer 200
Console(config)#
```

auto-traffic-control This command sets the time at which to release the control response after ingress release-timer traffic has fallen beneath the lower threshold. Use the **no** form to restore the default setting.

Syntax

auto-traffic-control {broadcast | multicast} release-timer seconds no auto-traffic-control {broadcast | multicast} release-timer

broadcast - Specifies automatic storm control for broadcast traffic.

multicast - Specifies automatic storm control for multicast traffic.

seconds - The time at which to release the control response after ingress traffic has fallen beneath the lower threshold. (Range: 1-900 seconds)

Default Setting

900 seconds

Command Mode

Global Configuration

Command Usage

This command sets the delay after which the control response can be terminated. The auto-traffic-control auto-control-release command must be used to enable or disable the automatic release of a control response of rate-limiting. To re-enable a port which has been shut down by automatic traffic control, you must manually reenable the port using the auto-traffic-control control-release command.

Example

This example sets the release timer to 800 seconds for all ports.

```
Console(config) #auto-traffic-control broadcast release-timer 800
Console(config)#
```

auto-traffic-control This command enables automatic traffic control for broadcast or multicast storms. Use the **no** form to disable this feature.

Syntax

[no] auto-traffic-control {broadcast | multicast}

broadcast - Specifies automatic storm control for broadcast traffic. multicast - Specifies automatic storm control for multicast traffic.

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Automatic storm control can be enabled for either broadcast or multicast traffic. It cannot be enabled for both of these traffic types at the same time.
- Automatic storm control is a software level control function. Traffic storms can also be controlled at the hardware level using the switchport packet-rate command. However, only one of these control types can be applied to a port. Enabling automatic storm control on a port will disable hardware-level storm control on that port.

Example

This example enables automatic storm control for broadcast traffic on port 1.

```
Console(config)#interface ethernet 1/1
Console(config-if) #auto-traffic-control broadcast
Console(config-if)#
```

auto-traffic-control This command sets the control action to limit ingress traffic or shut down the action offending port. Use the **no** form to restore the default setting.

Syntax

auto-traffic-control {broadcast | multicast} action {rate-control | shutdown} no auto-traffic-control {broadcast | multicast} action

broadcast - Specifies automatic storm control for broadcast traffic.

multicast - Specifies automatic storm control for multicast traffic.

rate-control - If a control response is triggered, the rate of ingress traffic is limited based on the threshold configured by the auto-traffic-control alarm-clear-threshold command.

Automatic Traffic Control Commands

shutdown - If a control response is triggered, the port is administratively disabled. A port disabled by automatic traffic control can only be manually re-enabled.

Default Setting

rate-control

Command Mode

Interface Configuration (Ethernet)

Command Usage

- When the upper threshold is exceeded and the apply timer expires, a control response will be triggered based on this command.
- When the control response is set to rate limiting by this command, the rate limits are determined by the auto-traffic-control alarm-clear-threshold command.
- If the control response is to limit the rate of ingress traffic, it can be automatically terminated once the traffic rate has fallen beneath the lower threshold and the release timer has expired.
- If a port has been shut down by a control response, it will not be re-enabled by automatic traffic control. It can only be manually re-enabled using the autotraffic-control control-release command.

Example

This example sets the control response for broadcast traffic on port 1.

```
Console(config) #interface ethernet 1/1
Console(config-if) #auto-traffic-control broadcast action shutdown
Console(config-if)#
```

auto-traffic-control This command sets the lower threshold for ingress traffic beneath which a control alarm-clear-threshold response for rate limiting will be released after the Release Timer expires, if so configured by the auto-traffic-control auto-control-release command. Use the **no** form to restore the default setting.

Syntax

auto-traffic-control {broadcast | multicast} alarm-clear-threshold threshold no auto-traffic-control {broadcast | multicast} alarm-clear-threshold

broadcast - Specifies automatic storm control for broadcast traffic.

multicast - Specifies automatic storm control for multicast traffic.

threshold - The lower threshold for ingress traffic beneath which a cleared storm control trap is sent. (Range: 1-255 kilo-packets per second)

Default Setting

128 kilo-packets per second

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Once the traffic rate falls beneath the lower threshold, a trap message may be sent if configured by the snmp-server enable port-traps atc broadcast-alarmclear command or snmp-server enable port-traps atc multicast-alarm-clear command.
- If rate limiting has been configured as a control response, it will be discontinued after the traffic rate has fallen beneath the lower threshold, and the release timer has expired. Note that if a port has been shut down by a control response, it will not be re-enabled by automatic traffic control. It can only be manually re-enabled using the auto-traffic-control control-release command.

Example

This example sets the clear threshold for automatic storm control for broadcast traffic on port 1.

```
Console(config) #interface ethernet 1/1
Console(config-if) #auto-traffic-control broadcast alarm-clear-threshold 155
Console(config-if)#
```

auto-traffic-control This command sets the upper threshold for ingress traffic beyond which a storm alarm-fire-threshold control response is triggered after the apply timer expires. Use the **no** form to restore the default setting.

Syntax

auto-traffic-control {broadcast | multicast} alarm-fire-threshold threshold no auto-traffic-control {broadcast | multicast} alarm-fire-threshold

broadcast - Specifies automatic storm control for broadcast traffic.

multicast - Specifies automatic storm control for multicast traffic.

threshold - The upper threshold for ingress traffic beyond which a storm control response is triggered after the apply timer expires. (Range: 1-255 kilo-packets per second)

Default Setting

128 kilo-packets per second

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Once the upper threshold is exceeded, a trap message may be sent if configured by the snmp-server enable port-traps atc broadcast-alarm-fire command or snmp-server enable port-traps atc multicast-alarm-fire command.
- After the upper threshold is exceeded, the control timer must first expire as configured by the auto-traffic-control apply-timer command before a control response is triggered if configured by the auto-traffic-control action command.

Example

This example sets the trigger threshold for automatic storm control for broadcast traffic on port 1.

```
Console(config) #interface ethernet 1/1
Console(config-if) #auto-traffic-control broadcast alarm-fire-threshold 255
Console(config-if)#
```

auto-traffic-control This command automatically releases a control response of rate-limiting after the auto-control-release time specified in the auto-traffic-control release-timer command has expired.

Syntax

auto-traffic-control {broadcast | multicast} auto-control-release

broadcast - Specifies automatic storm control for broadcast traffic.

multicast - Specifies automatic storm control for multicast traffic.

Command Mode

Interface Configuration (Ethernet)

Command Usage

- This command can be used to automatically stop a control response of ratelimiting after the specified action has been triggered and the release timer has expired.
- To release a control response which has shut down a port after the specified action has been triggered and the release timer has expired, use the autotraffic-control control-release command.

```
Console(config)#interface ethernet 1/1
Console(config-if) #auto-traffic-control broadcast auto-control-release
Console(config-if)#
```

control-release

auto-traffic-control This command manually releases a control response.

Syntax

auto-traffic-control {broadcast | multicast} control-release **interface** *interface*

broadcast - Specifies automatic storm control for broadcast traffic.

multicast - Specifies automatic storm control for multicast traffic.

interface

ethernet unit/port-list

unit - Unit identifier. (Range: 1-8)

port-list - Physical port number or list of port numbers. Separate nonconsecutive port numbers with a comma and no spaces; or use a hyphen to designate a range of port numbers. (Range: 1-28/52)

Command Mode

Privileged Exec

Command Usage

This command can be used to manually stop a control response of rate-limiting or port shutdown any time after the specified action has been triggered.

Example

Console#auto-traffic-control broadcast control-release interface ethernet 1/1 Console#

SNMP Trap Commands

broadcast-alarm-clear disable this trap.

snmp-server This command sends a trap when broadcast traffic falls beneath the lower enable port-traps atc threshold after a storm control response has been triggered. Use the no form to

Syntax

[no] snmp-server enable port-traps atc broadcast-alarm-clear

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Automatic Traffic Control Commands

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #snmp-server enable port-traps atc broadcast-alarm-clear
Console(config-if)#
```

Related Commands

auto-traffic-control action (481) auto-traffic-control alarm-clear-threshold (482)

broadcast-alarm-fire

snmp-server This command sends a trap when broadcast traffic exceeds the upper threshold for enable port-traps atc automatic storm control. Use the **no** form to disable this trap.

Syntax

[no] snmp-server enable port-traps atc broadcast-alarm-fire

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Example

```
Console(config) #interface ethernet 1/1
Console(config-if)#snmp-server enable port-traps atc broadcast-alarm-fire
Console(config-if)#
```

Related Commands

auto-traffic-control alarm-fire-threshold (483)

broadcast-controlapply

snmp-server This command sends a trap when broadcast traffic exceeds the upper threshold for enable port-traps atc automatic storm control and the apply timer expires. Use the **no** form to disable this trap.

Syntax

[no] snmp-server enable port-traps atc broadcast-control-apply

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #snmp-server enable port-traps atc broadcast-control-apply
Console(config-if)#
```

Related Commands

auto-traffic-control alarm-fire-threshold (483) auto-traffic-control apply-timer (479)

release

snmp-server This command sends a trap when broadcast traffic falls beneath the lower enable port-traps atc threshold after a storm control response has been triggered and the release timer broadcast-control- expires. Use the **no** form to disable this trap.

Syntax

[no] snmp-server enable port-traps atc broadcast-control-release

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #snmp-server enable port-traps atc broadcast-control-
 release
Console(config-if)#
```

Related Commands

auto-traffic-control alarm-clear-threshold (482) auto-traffic-control action (481) auto-traffic-control release-timer (480)

multicast-alarm-clear trap.

snmp-server This command sends a trap when multicast traffic falls beneath the lower threshold enable port-traps atc after a storm control response has been triggered. Use the no form to disable this

Syntax

[no] snmp-server enable port-traps atc multicast-alarm-clear

Default Setting

Disabled

Automatic Traffic Control Commands

Command Mode

Interface Configuration (Ethernet)

Example

```
Console(config) #interface ethernet 1/1
{\tt Console(config-if)\#snmp-server\ enable\ port-traps\ atc\ multicast-alarm-clear}
Console(config-if)#
```

Related Commands

auto-traffic-control action (481) auto-traffic-control alarm-clear-threshold (482)

multicast-alarm-fire

snmp-server This command sends a trap when multicast traffic exceeds the upper threshold for enable port-traps atc automatic storm control. Use the **no** form to disable this trap.

Syntax

[no] snmp-server enable port-traps atc multicast-alarm-fire

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #snmp-server enable port-traps atc multicast-alarm-fire
Console(config-if)#
```

Related Commands

auto-traffic-control alarm-fire-threshold (483)

multicast-control- this trap. apply

snmp-server This command sends a trap when multicast traffic exceeds the upper threshold for enable port-traps atc automatic storm control and the apply timer expires. Use the no form to disable

Syntax

[no] snmp-server enable port-traps atc multicast-control-apply

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #snmp-server enable port-traps atc multicast-control-apply
Console(config-if)#
```

Related Commands

auto-traffic-control alarm-fire-threshold (483) auto-traffic-control apply-timer (479)

release

snmp-server This command sends a trap when multicast traffic falls beneath the lower threshold enable port-traps atc after a storm control response has been triggered and the release timer expires. multicast-control- Use the **no** form to disable this trap.

Syntax

[no] snmp-server enable port-traps atc multicast-control-release

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #snmp-server enable port-traps atc multicast-control-
 release
Console(config-if)#
```

Related Commands

auto-traffic-control alarm-clear-threshold (482) auto-traffic-control action (481) auto-traffic-control release-timer (480)

ATC Display Commands

control

show auto-traffic- This command shows global configuration settings for automatic storm control.

Command Mode

Privileged Exec

```
Console#show auto-traffic-control
Storm-control: Broadcast
Apply-timer (sec) : 300
```

Chapter 15 | Congestion Control Commands

Automatic Traffic Control Commands

```
release-timer (sec) : 900
Storm-control: Multicast
Apply-timer(sec) : 300
release-timer(sec) : 900
Console#
```

show auto-traffic- This command shows interface configuration settings and storm control status for control interface the specified port.

Syntax

show auto-traffic-control interface [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

```
Console#show auto-traffic-control interface ethernet 1/1
Eth 1/1 Information
______
                           Broadcast
Storm Control:
                                                        Multicast
                          Disabled
                                                       Disabled
State:
Action: rate-control
Auto Release Control: Disabled
                                                        rate-control
                                                        Disabled
Alarm Fire Threshold(Kpps): 128
                                                        128
Alarm Clear Threshold(Kpps):128
                                                        128
Trap Storm Fire: Disabled
Trap Storm Clear: Disabled
Trap Traffic Apply: Disabled
Trap Traffic Release: Disabled
                                                        Disabled
                                                        Disabled
                                                        Disabled
                                                         Disabled
Console#
```

Loopback Detection Commands

The switch can be configured to detect general loopback conditions caused by hardware problems or faulty protocol settings. When enabled, a control frame is transmitted on the participating ports, and the switch monitors inbound traffic to see if the frame is looped back.

Table 91: Loopback Detection Commands

Command	Function	Mode
loopback-detection	Enables loopback detection globally on the switch or on a specified interface	GC, IC
loopback-detection action	Specifies the response to take for a detected loopback condition	GC
loopback-detection recover-time	Specifies the interval to wait before releasing an interface from shutdown state	GC
loopback-detection transmit-interval	Specifies the interval at which to transmit loopback detection control frames	GC
loopback detection trap	Configures the switch to send a trap when a loopback condition is detected or the switch recover from a loopback	GC
loopback-detection release	Manually releases all interfaces currently shut down by the loopback detection feature	PE
show loopback- detection	Shows loopback detection configuration settings for the switch or for a specified interface	PE

Usage Guidelines

- The default settings for the control frame transmit interval and recover time may be adjusted to improve performance for your specific environment. The shutdown mode may also need to be changed once you determine what kind of packets are being looped back.
- General loopback detection provided by the commands described in this section and loopback detection provided by the spanning tree protocol cannot both be enabled at the same time. If loopback detection is enabled for the spanning tree protocol, general loopback detection cannot be enabled on the same interface.
- When a loopback event is detected on an interface or when a interface is released from a shutdown state caused by a loopback event, a trap message is sent and the event recorded in the system log.
- Loopback detection must be enabled both globally and on an interface for loopback detection to take effect.

loopback-detection This command enables loopback detection globally on the switch or on a specified interface. Use the **no** form to disable loopback detection.

Syntax

[no] loopback-detection

Default Setting

Disabled

Command Mode

Global Configuration Interface Configuration (Ethernet, Port Channel)

Command Usage

Loopback detection must be enabled globally for the switch by this command and enabled for a specific interface for this function to take effect.

Example

This example enables general loopback detection on the switch, disables loopback detection provided for the spanning tree protocol on port 1, and then enables general loopback detection for that port.

```
Console(config) #loopback-detection
Console(config)#interface ethernet 1/1
Console(config-if) #no spanning-tree loopback-detection
Console(config-if) #loopback-detection
Console(config)#
```

loopback-detection This command specifies the protective action the switch takes when a loopback action condition is detected. Use the **no** form to restore the default setting.

Syntax

loopback-detection action {block | none | shutdown}

no loopback-detection action

block - When a loopback is detected on a port which a member of a specific VLAN, packets belonging to that VLAN are dropped at the offending port.

none - No action is taken.

shutdown - Shuts down the interface.

Default Setting

Shut down

Command Mode

Global Configuration

Command Usage

- When the response to a detected loopback condition is set to block user traffic, loopback detection control frames may untagged or tagged depending on the port's VLAN membership type.
- When the response to a detected loopback condition is set to block user traffic, ingress filtering for the port is enabled automatically if not already enabled by the switchport ingress-filtering command. The port's original setting for ingress filtering will be restored when loopback detection is disabled.
- ◆ Use the loopback-detection recover-time command to set the time to wait before re-enabling an interface shut down by the loopback detection process.
- ♦ When the loopback detection response is changed, any ports placed in shutdown state by the loopback detection process will be immediately restored to operation regardless of the remaining recover time.

Example

This example sets the loopback detection mode to block user traffic.

```
Console(config) #loopback-detection action block
Console(config)#
```

loopback-detection This command specifies the interval to wait before the switch automatically recover-time releases an interface from shutdown state. Use the **no** form to restore the default setting.

Syntax

loopback-detection recover-time seconds

no loopback-detection recover-time

seconds - Recovery time from shutdown state. (Range: 60-1,000,000 seconds, or 0 to disable automatic recovery)

Default Setting

60 seconds

Command Mode

Global Configuration

Command Usage

 When the loopback detection mode is changed, any ports placed in shutdown state by the loopback detection process will be immediately restored to operation regardless of the remaining recover time.

• If the recovery time is set to zero, all ports placed in shutdown state can be restored to operation using the loopback-detection release command. To restore a specific port, use the no shutdown command.

Example

```
Console(config) #loopback-detection recover-time 120
Console(config-if)#
```

loopback-detection This command specifies the interval at which to transmit loopback detection transmit-interval control frames. Use the **no** form to restore the default setting.

Syntax

loopback-detection transmit-interval seconds

no loopback-detection transmit-interval

seconds - The transmission interval for loopback detection control frames. (Range: 1-32767 seconds)

Default Setting

10 seconds

Command Mode

Global Configuration

Example

```
Console(config) #loopback-detection transmit-interval 60
Console(config)#
```

trap

loopback detection This command sends a trap when a loopback condition is detected, or when the switch recovers from a loopback condition. Use the no form to restore the default state.

Syntax

loopback-detection trap [both | detect | none | recover] no loopback-detection trap

both - Sends an SNMP trap message when a loopback condition is detected, or when the switch recovers from a loopback condition.

detect - Sends an SNMP trap message when a loopback condition is detected.

none - Does not send an SNMP trap for loopback detection or recovery.

recover - Sends an SNMP trap message when the switch recovers from a loopback condition.

Default Setting

None

Command Mode

Global Configuration

Command Usage

Refer to the loopback-detection recover-time command for information on conditions which constitute loopback recovery.

Example

```
Console(config) #loopback-detection trap both
Console(config)#
```

loopback-detection This command releases all interfaces currently shut down by the loopback release detection feature.

Syntax

loopback-detection release

Command Mode

Privileged Exec

Example

```
Console#loopback-detection release
Console(config)#
```

show loopback This command shows loopback detection configuration settings for the switch or **detection** for a specified interface.

Syntax

show loopback-detection [interface]

interface

ethernet unit/port

```
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
```

Command Mode

Privileged Exec

```
Console#show loopback-detection
Loopback Detection Global Information
Global Status
               : Enabled
Transmit Interval : 10
Recover Time : 60
                : Shutdown
Action
                 : None
Loopback Detection Port Information
Port Admin State Oper State
Eth 1/ 1 Enabled
                      Normal
                   Disableu
Disabled
Eth 1/ 2 Disabled
Eth 1/ 3 Disabled
Console#show loopback-detection ethernet 1/1
Loopback Detection Information of Eth 1/1
Admin State : Enabled
Oper State : Normal
Looped VLAN : None
Console#
```


UniDirectional Link Detection Commands

The switch can be configured to detect and disable unidirectional Ethernet fiber or copper links. When enabled, the protocol advertises a port's identity and learns about its neighbors on a specific LAN segment; and stores information about its neighbors in a cache. It can also send out a train of echo messages under circumstances that require fast notifications or re-synchronization of the cached information.

Table 92: UniDirectional Link Detection Commands

Command	Function	Mode
udld detection-interval	Sets the amount of time the switch remains in detection state after discovering a neighbor	GC
udld message-interval	Configures the message interval between UDLD probe messages	GC
udld recovery	Automatically recovers from UDLD disabled port state after a period specified by the udld recovery-interval command	GC
udld recovery-interval	Specifies the period after which to automatically recover from UDLD disabled port state	GC
udld aggressive	Sets UDLD to aggressive mode on an interface	IC
udld port	Enables UDLD on a port	IC
show udld	Shows UDLD configuration settings and operational status	PE

udld detection This command sets the amount of time the switch remains in detection state after **interval** discovering a neighbor. Use the **no** form to restore the default setting.

Syntax

udld detection-interval detection-interval

no detection-interval

detection-interval – The amount of time the switch remains in detection state after discovering a neighbor through UDLD. (Range: 5-255 seconds)

Default Setting

5 seconds

Command Mode

Global Configuration

Command Usage

When a neighbor device is discovered by UDLD, the switch enters "detection state" and remains in this state for specified detection-interval. After the detectioninterval expires, the switch tries to decide whether or the link is unidirectional based on the information collected during "detection state."

Example

```
Console(config) #udld detection-interval 10
Console(config)#
```

udld message-interval This command configures the message interval between UDLD probe messages for ports in the advertisement phase and determined to be bidirectional. Use the **no** form to restore the default setting.

Syntax

udld message-interval message-interval

no message-interval

message-interval – The interval at which a port sends UDLD probe messages after linkup or detection phases. (Range: 7-90 seconds)

Default Setting

15 seconds

Command Mode

Global Configuration

Command Usage

During the detection phase, messages are exchanged at the maximum rate of one per second. After that, if the protocol reaches a stable state and determines that the link is bidirectional, the message interval is increased to a configurable value based on a curve known as M1(t), a time-based function described in RFC 5171.

If the link is deemed anything other than bidirectional at the end of the detection phase, this curve becomes a flat line with a fixed value of Mfast (7 seconds).

If the link is instead deemed bidirectional, the curve will use Mfast for the first four subsequent message transmissions and then transition to an Mslow value for all other steady-state transmissions. Mslow is the value configured by this command.

Example

This example sets the message interval to 10 seconds.

```
Console(config) #udld message-interval 10
Console(config)#
```

udld recovery This command configures the switch to automatically recover from UDLD disabled port state after a period specified by the udld recovery-interval command. Use the **no** form to disable this feature.

Syntax

[no] udld recovery

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

When automatic recovery state is changed by this command, any ports shut down by UDLD will be reset.

Example

```
Console(config) #udld recovery
Console(config)#
```

udld recovery-interval This command specifies the period after which to automatically recover from UDLD disabled port state. Use the **no** form to restore the default setting.

udld recovery-interval recovery-interval

no recovery-interval

recovery-interval – The interval after which a port is reset after being placed in UDLD disabled state. (Range: 30-86400 seconds)

Default Setting

7 seconds

Command Mode

Global Configuration

Command Usage

- ♦ This command is only applicable when automatic recovery has been enabled with the udld recovery command.
- ♦ When the recovery interval is changed by this command, any ports shut down by UDLD will be reset.

Example

```
Console(config) #udld recovery-interval 15
Console(config)#
```

udld aggressive This command sets UDLD to aggressive mode on an interface. Use the **no** form to restore the default setting.

Syntax

[no] udld aggressive

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet Port)

Command Usage

UDLD can function in two modes: normal mode and aggressive mode.

- In normal mode, determination of link status at the end of the detection process is always based on information received in UDLD messages: whether that's information about the exchange of proper neighbor identification or the absence of such. Hence, albeit bound by a timer, normal mode determinations are always based on gleaned information, and as such are "event-based." If no such information can be obtained (e.g., because of a bidirectional loss of connectivity), UDLD follows a conservative approach to minimize false positives during the detection process and deems a port to be in "undetermined" state. In other words, normal mode will shut down a port only if it can explicitly determine that the associated link is faulty for an extended period of time.
- In aggressive mode, UDLD will also shut down a port if it loses bidirectional connectivity with the neighbor for the same extended period of time (as that mentioned above for normal mode) and subsequently fails repeated last-resort attempts to re-establish communication with the other end of the link. This mode of operation assumes that loss of communication with the neighbor is a meaningful network event in itself, and a symptom of a serious connectivity problem. Because this type of detection can be event-less, and lack of information cannot always be associated to an actual malfunction of the link, this mode is recommended only in certain scenarios (typically only on point-topoint links where no communication failure between two neighbors is admissible).

Example

This example enables UDLD aggressive mode on port 1.

```
Console(config) #interface ethernet 1/1
Console(config-if) #udld aggressive
Console(config-if)#
```

udld port This command enables UDLD on a port. Use the **no** form to disable UDLD on an interface.

Syntax

[no] udld port

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet Port)

Command Usage

- UDLD requires that all the devices connected to the same LAN segment be running the protocol in order for a potential mis-configuration to be detected and for prompt corrective action to be taken.
- Whenever a UDLD device learns about a new neighbor or receives a resynchronization request from an out-of-synch neighbor, it (re)starts the detection process on its side of the connection and sends N echo messages in reply. (This mechanism implicitly assumes that N packets are sufficient to get through a link and reach the other end, even though some of them might get dropped during the transmission.)

Since this behavior must be the same on all the neighbors, the sender of the echoes expects to receive an echo in reply. If the detection process ends without the proper echo information being received, the link is considered to be unidirectional.

```
Console(config)#interface ethernet 1/1
Console(config-if) #udld port
Console(config-if)#
```

show udld This command shows UDLD configuration settings and operational status for the switch or for a specified interface.

Syntax

show udld [interface interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) *port* - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

Console#show udld		
Message Interval : 15		
Detection Interval : 5 sec	onds	
Recovery : Disab	led	
Recovery Interval : 300 s	econds	
Interface UDLD Mode	Oper State	Msg Invl
	Port State	Det Invl
Eth 1/ 1 Disabled Normal	Disabled	7 s
	Unknown	5 s
Eth 1/ 2 Disabled Normal	Disabled	7 s
	Unknown	5 s
Eth 1/ 3 Disabled Normal	Disabled	7 s
	Unknown	5 s
Eth 1/ 4 Disabled Normal	Disabled	7 s
	Unknown	5 s
Eth 1/5 Disabled Normal	Disabled	7 s
	Unknown	5 s
:		
Console#show udld interfac	e ethernet 1/1	
Interface UDLD Mode	Oper State	Msg Invl
	Port State	Det Invl
Eth 1/ 1 Disabled Normal	Disabled	7 s
	Unknown	5 s
Console#		

Table 93: show udld - display description

Field	Description
Message Interval	The interval between UDLD probe messages for ports in advertisement phase
Detection Interval	The period the switch remains in detection state after discovering a neighbor
Recovery	Shows if automatic recovery from UDLD disabled port state is enabled

Table 93: show udld - display description (Continued)

Field	Description
Recovery Interval	Shows the period after which to recover from UDLD disabled port state if automatic recovery is enabled
UDLD	Shows if UDLD is enabled or disabled on a port
Mode	Shows if UDLD is functioning in Normal or Aggressive mode
Oper State	Shows the UDLD operational state (Disabled, Link down, Link up, Advertisement, Detection, Disabled port, Advertisement - Single neighbor, Advertisement - Multiple neighbors)
Port State	Shows the UDLD port state (Unknown, Bidirectional, Unidirectional, Transmit-to-receive loop, Mismatch with neighbor state reported, Neighbor's echo is empty) The state is Unknown if the link is down or not connected to a UDLD-capable device. The state is Bidirectional if the link has a normal two-way connection to a UDLD-capable device. All other states indicate mis-wiring.
Msg Invl	The interval between UDLD probe messages used for the indicated operational state
Det Invl	The period the switch remains in detection state after discovering a neighbor
Timeout	The time that UDLD waits for echoes from a neighbor device during the detection window

Address Table Commands

These commands are used to configure the address table for filtering specified addresses, displaying current entries, clearing the table, or setting the aging time.

Table 94: Address Table Commands

Command	Function	Mode
mac-address-table aging-time	Sets the aging time of the address table	GC
mac-address-table hash-lookup-depth	Sets the hash lookup depth of MAC address table	GC
mac-address-table static	Maps a static address to a port in a VLAN	GC
clear collision-mac- address-table	Removes all entries from the collision MAC address table	PE
clear mac-address-table dynamic	Removes any learned entries from the forwarding database	PE
show collision-mac- address-table	Shows a shows a list of MAC addresses that cannot be learned by the switch due to hash collisions	PE
show mac-address-table	Displays entries in the bridge-forwarding database	PE
show mac-address-table aging-time	Shows the aging time for the address table	PE
show mac-address-table count	Shows the number of MAC addresses used and the number of available MAC addresses	PE
show mac-address-table hash-lookup-depth	Shows the hash lookup depth of MAC address table	PE

mac-address-table This command sets the aging time for entries in the address table. Use the **no** form aging-time to restore the default aging time.

Syntax

mac-address-table aging-time seconds

no mac-address-table aging-time

seconds - Aging time. (Range: 6-7200 seconds; 0 to disable aging)

Default Setting

300 seconds

Command Mode

Global Configuration

Command Usage

The aging time is used to age out dynamically learned forwarding information.

Example

```
Console(config) #mac-address-table aging-time 100
Console(config)#
```

mac-address-table This command sets the hash lookup depth used when searching the MAC address **hash-lookup-depth** table. Use the **no** form to restore the default setting.

Syntax

mac-address-table hash-lookup-depth depth no mac-address-table hash-lookup-depth

depth - The depth used in the hash lookup process. (Range: 4-32, in multiples of 4)

Default Setting

Command Mode

Global Configuration

Command Usage

Using the default depth of 4, MAC address collisions tend to increase once more than 8K entries have been learned. Setting the depth to a larger value reduces the occurrence of hash collisions, but can also decrease forwarding performance.

```
Console(config) #mac-address-table hash-lookup-depth 5
Console(config)#
```

mac-address-table This command maps a static address to a destination port in a VLAN. Use the **no** static form to remove an address.

Syntax

mac-address-table static mac-address interface interface vlan vlan-id [action] no mac-address-table static mac-address vlan vlan-id mac-address - MAC address.

interface ethernet unit/port unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52) port-channel channel-id (Range: 1-16) vlan-id - VLAN ID (Range: 1-4094) action -

delete-on-reset - Assignment lasts until the switch is reset.

permanent - Assignment is permanent.

Default Setting

No static addresses are defined. The default mode is **permanent**.

Command Mode

Global Configuration

Command Usage

The static address for a host device can be assigned to a specific port within a specific VLAN. Use this command to add static addresses to the MAC Address Table. Static addresses have the following characteristics:

- Static addresses will not be removed from the address table when a given interface link is down.
- Static addresses are bound to the assigned interface and will not be moved. When a static address is seen on another interface, the address will be ignored and will not be written to the address table.
- A static address cannot be learned on another port until the address is removed with the **no** form of this command.

Example

Console(config) #mac-address-table static 00-e0-29-94-34-de interface ethernet 1/1 vlan 1 delete-on-reset Console(config)#

address-table

clear collision-mac- This command removes all entries from the collision MAC address table.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#clear collision-mac-address-table
Console#
```

table dynamic

clear mac-address- This command removes any learned entries from the forwarding database.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Even if a hash collision for a MAC address is resolved, entries in collision MAC address table are not removed until this command is issued to reset the table, or the system is reset.

Example

```
Console#clear mac-address-table dynamic
Console#
```

show collision-mac- This command shows a list of MAC addresses that cannot be learned by the switch address-table due to hash collisions.

Command Mode

Privileged Exec

```
Console#show collision-mac-address-table
MAC Address VLAN Collision Count
_____
90-e6-ba-cb-cd-d6
              1
Total collision mac number: 1
Console#
```

table

show mac-address- This command shows classes of entries in the bridge-forwarding database.

Syntax

```
show mac-address-table [address mac-address [mask]] [interface interface]
   [vlan vlan-id]
   [sort {address | vlan | interface}]
   mac-address - MAC address.
   mask - Bits to match in the address.
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
   port-channel channel-id (Range: 1-16)
   vlan-id - VLAN ID (Range: 1-4094)
   sort - Sort by address, vlan or interface.
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- The MAC Address Table contains the MAC addresses associated with each interface. Note that the Type field may include the following types:
 - Learn Dynamic address entries
 - Config Static entry
 - Security Port Security
- The mask should be hexadecimal numbers (representing an equivalent bit mask) in the form xx-xx-xx-xx-xx that is applied to the specified MAC address. Enter hexadecimal numbers, where an equivalent binary bit "0" means to match a bit and "1" means to ignore a bit. For example, a mask of 00-00-00-00-00-00 means an exact match, and a mask of FF-FF-FF-FF-FF means "any."
- The maximum number of address entries is 16K.

```
Console#show mac-address-table
Interface MAC Address VLAN Type
                       Life Time
CPU 00-E0-00-00-01 1 CPU Delete on Reset
```

```
Eth 1/ 1 00-E0-29-94-34-64
                              1 Learn
                                         Delete on Timeout
Console#
```

table aging-time

show mac-address- This command shows the aging time for entries in the address table.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show mac-address-table aging-time
Aging Status : Enabled
Aging Time: 300 sec.
Console#
```

show mac-address- This command shows the number of MAC addresses used and the number of table count available MAC addresses for the overall system or for an interface.

Syntax

```
show mac-address-table count [interface interface]
```

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

None

Command Mode

Privileged Exec

```
Console#show mac-address-table count interface ethernet 1/1
MAC Entries for Eth 1/1
Total Address Count
                        :0
Static Address Count
                        : 0
Dynamic Address Count :0
Console#show mac-address-table count
Compute the number of MAC Address...
```

```
Maximum number of MAC Address which can be created in the system:
Total Number of MAC Address
                              : 16384
Number of Static MAC Address
                                : 1024
Current number of entries which have been created in the system:
Total Number of MAC Address : 3
Number of Static MAC Address
Number of Dynamic MAC Address
Console#
```

table hash-lookup- address table. depth

show mac-address- This command shows the hash lookup depth used when searching the MAC

Syntax

show mac-address-table hash-lookup-depth

Command Mode

Privileged Exec

```
Console#show mac-address-table hash-lookup-depth
Configured Hash Lookup Depth: 4
Activated Hash Lookup Depth: 4
Console#
```

19

Spanning Tree Commands

This section includes commands that configure the Spanning Tree Algorithm (STA) globally for the switch, and commands that configure STA for the selected interface.

Table 95: Spanning Tree Commands

Command	Function	Mode
spanning-tree	Enables the spanning tree protocol	GC
spanning-tree cisco-prestandard	Configures spanning tree operation to be compatible with Cisco prestandard versions	GC
spanning-tree forward-time	Configures the spanning tree bridge forward time	GC
spanning-tree hello-time	Configures the spanning tree bridge hello time	GC
spanning-tree max-age	Configures the spanning tree bridge maximum age	GC
spanning-tree mode	Configures STP, RSTP or MSTP mode	GC
spanning-tree pathcost method	Configures the path cost method for RSTP/MSTP	GC
spanning-tree priority	Configures the spanning tree bridge priority	GC
spanning-tree mst configuration	Changes to MSTP configuration mode	GC
spanning-tree system-bpdu-flooding	Floods BPDUs to all other ports or just to all other ports in the same VLAN when global spanning tree is disabled	GC
spanning-tree tc-prop	Configures a topology change propagation domain	GC
spanning-tree transmission-limit	Configures the transmission limit for RSTP/MSTP	GC
max-hops	Configures the maximum number of hops allowed in the region before a BPDU is discarded	MST
mst priority	Configures the priority of a spanning tree instance	MST
mst vlan	Adds VLANs to a spanning tree instance	MST
name	Configures the name for the multiple spanning tree	MST
revision	Configures the revision number for the multiple spanning tree	MST
spanning-tree bpdu-filter	Filters BPDUs for edge ports	IC
spanning-tree bpdu-guard	Shuts down an edge port if it receives a BPDU	IC
spanning-tree cost	Configures the spanning tree path cost of an interface	IC
spanning-tree edge-port	Enables fast forwarding for edge ports	IC
spanning-tree link-type	Configures the link type for RSTP/MSTP	IC

Table 95: Spanning Tree Commands (Continued)

Command	Function	Mode
spanning-tree loopback-detection	Enables BPDU loopback detection for a port	IC
spanning-tree loopback- detection action	Configures the response for loopback detection to block user traffic or shut down the interface	IC
spanning-tree loopback- detection release-mode	Configures loopback release mode for a port	IC
spanning-tree loopback-detection trap	Enables BPDU loopback SNMP trap notification for a port	IC
spanning-tree mst cost	Configures the path cost of an instance in the MST	IC
spanning-tree mst port-priority	Configures the priority of an instance in the MST	IC
spanning-tree port-bpdu-flooding	Floods BPDUs to other ports when global spanning tree is disabled	IC
spanning-tree port-priority	Configures the spanning tree priority of an interface	IC
spanning-tree root-guard	Prevents a designated port from passing superior BPDUs	IC
spanning-tree spanning-disabled	Disables spanning tree for an interface	IC
spanning-tree tc-prop-stop	Stops propagation of topology change information	IC
spanning-tree loopback-detection release	Manually releases a port placed in discarding state by loopback-detection	PE
spanning-tree protocol-migration	Re-checks the appropriate BPDU format	PE
show spanning-tree	Shows spanning tree configuration for the common spanning tree (i.e., overall bridge), a selected interface, or an instance within the multiple spanning tree	PE
show spanning-tree mst configuration	Shows the multiple spanning tree configuration	PE
show spanning-tree tc-prop	Shows configuration of topology change propagation domains	PE

spanning-tree This command enables the Spanning Tree Algorithm globally for the switch. Use the **no** form to disable it.

Syntax

[no] spanning-tree

Default Setting

Spanning tree is enabled.

Command Mode

Global Configuration

Command Usage

The Spanning Tree Algorithm (STA) can be used to detect and disable network loops, and to provide backup links between switches, bridges or routers. This allows the switch to interact with other bridging devices (that is, an STA-compliant switch, bridge or router) in your network to ensure that only one route exists between any two stations on the network, and provide backup links which automatically take over when a primary link goes down.

Example

This example shows how to enable the Spanning Tree Algorithm for the switch:

```
Console(config) #spanning-tree
Console(config)#
```

spanning-tree This command configures spanning tree operation to be compatible with Cisco **cisco-prestandard** prestandard versions. Use the **no** form to restore the default setting.

[no] spanning-tree cisco-prestandard

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

Cisco prestandard versions prior to Cisco IOS Release 12.2(25)SEC do not fully follow the IEEE standard, causing some state machine procedures to function incorrectly. The command forces the spanning tree protocol to function in a manner compatible with Cisco prestandard versions.

Example

```
Console(config) #spanning-tree cisco-prestandard
Console(config)#
```

spanning-tree This command configures the spanning tree bridge forward time globally for this **forward-time** switch. Use the **no** form to restore the default.

Syntax

```
spanning-tree forward-time seconds
no spanning-tree forward-time
```

```
seconds - Time in seconds. (Range: 4 - 30 seconds)
The minimum value is the higher of 4 or [(max-age / 2) + 1].
```

Default Setting

15 seconds

Command Mode

Global Configuration

Command Usage

This command sets the maximum time (in seconds) a port will wait before changing states (i.e., discarding to learning to forwarding). This delay is required because every device must receive information about topology changes before it starts to forward frames. In addition, each port needs time to listen for conflicting information that would make it return to the discarding state; otherwise, temporary data loops might result.

Example

```
Console(config) #spanning-tree forward-time 20
Console(config)#
```

spanning-tree This command configures the spanning tree bridge hello time globally for this hello-time switch. Use the no form to restore the default.

Syntax

spanning-tree hello-time time

no spanning-tree hello-time

time - Time in seconds. (Range: 1-10 seconds). The maximum value is the lower of 10 or [(max-age / 2) - 1].

Default Setting

2 seconds

Command Mode

Global Configuration

Command Usage

This command sets the time interval (in seconds) at which the root device transmits a configuration message.

Example

```
Console(config)#spanning-tree hello-time 5
Console(config)#
```

Related Commands

spanning-tree forward-time (515) spanning-tree max-age (517)

spanning-tree This command configures the spanning tree bridge maximum age globally for this max-age switch. Use the **no** form to restore the default.

Syntax

```
spanning-tree max-age seconds
```

no spanning-tree max-age

seconds - Time in seconds. (Range: 6-40 seconds) The minimum value is the higher of 6 or $[2 \times (hello-time + 1)]$. The maximum value is the lower of 40 or [2 x (forward-time - 1)].

Default Setting

20 seconds

Command Mode

Global Configuration

Command Usage

This command sets the maximum time (in seconds) a device can wait without receiving a configuration message before attempting to reconverge. All device ports (except for designated ports) should receive configuration messages at regular intervals. Any port that ages out STA information (provided in the last configuration message) becomes the designated port for the attached LAN. If it is a root port, a new root port is selected from among the device ports attached to the network.

Example

```
Console(config) #spanning-tree max-age 40
Console(config)#
```

Related Commands

spanning-tree forward-time (515) spanning-tree hello-time (516)

spanning-tree mode This command selects the spanning tree mode for this switch. Use the **no** form to restore the default.

Syntax

```
spanning-tree mode {stp | rstp | mstp}
no spanning-tree mode
   stp - Spanning Tree Protocol (IEEE 802.1D)
   rstp - Rapid Spanning Tree Protocol (IEEE 802.1w)
   mstp - Multiple Spanning Tree (IEEE 802.1s)
```

Default Setting

rstp

Command Mode

Global Configuration

Command Usage

Spanning Tree Protocol

This option uses RSTP set to STP forced compatibility mode. It uses RSTP for the internal state machine, but sends only 802.1D BPDUs. This creates one spanning tree instance for the entire network. If multiple VLANs are implemented on a network, the path between specific VLAN members may be inadvertently disabled to prevent network loops, thus isolating group members. When operating multiple VLANs, we recommend selecting the MSTP option.

- Rapid Spanning Tree Protocol
 RSTP supports connections to either STP or RSTP nodes by monitoring the
 incoming protocol messages and dynamically adjusting the type of protocol
 messages the RSTP node transmits, as described below:
 - STP Mode If the switch receives an 802.1D BPDU after a port's migration delay timer expires, the switch assumes it is connected to an 802.1D bridge and starts using only 802.1D BPDUs.
 - RSTP Mode If RSTP is using 802.1D BPDUs on a port and receives an RSTP BPDU after the migration delay expires, RSTP restarts the migration delay timer and begins using RSTP BPDUs on that port.
- Multiple Spanning Tree Protocol
 - To allow multiple spanning trees to operate over the network, you must configure a related set of bridges with the same MSTP configuration, allowing them to participate in a specific set of spanning tree instances.
 - A spanning tree instance can exist only on bridges that have compatible VLAN instance assignments.
 - Be careful when switching between spanning tree modes. Changing modes stops all spanning-tree instances for the previous mode and restarts the system in the new mode, temporarily disrupting user traffic.

Example

The following example configures the switch to use Rapid Spanning Tree:

```
Console(config) #spanning-tree mode rstp
Console(config) #
```

spanning-tree This command configures the path cost method used for Rapid Spanning Tree and pathcost method Multiple Spanning Tree. Use the no form to restore the default.

Syntax

spanning-tree pathcost method {long | short}

no spanning-tree pathcost method

long - Specifies 32-bit based values that range from 1-200,000,000. This method is based on the IEEE 802.1w Rapid Spanning Tree Protocol.

short - Specifies 16-bit based values that range from 1-65535. This method is based on the IEEE 802.1 Spanning Tree Protocol.

Default Setting

Long method

Command Mode

Global Configuration

Command Usage

- The path cost method is used to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media. Note that path cost (page 527) takes precedence over port priority (page 535).
- The path cost methods apply to all spanning tree modes (STP, RSTP and MSTP). Specifically, the long method can be applied to STP since this mode is supported by a backward compatible mode of RSTP.

Example

```
Console(config) #spanning-tree pathcost method long
Console(config)#
```

spanning-tree priority This command configures the spanning tree priority globally for this switch. Use the **no** form to restore the default.

Syntax

spanning-tree priority priority

no spanning-tree priority

priority - Priority of the bridge. (Range – 0-61440, in steps of 4096; Options: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440)

Default Setting

32768

Command Mode

Global Configuration

Command Usage

Bridge priority is used in selecting the root device, root port, and designated port. The device with the highest priority (i.e., lower numeric value) becomes the STA root device. However, if all devices have the same priority, the device with the lowest MAC address will then become the root device.

Example

```
Console(config) #spanning-tree priority 40000
Console(config)#
```

mst configuration

spanning-tree This command changes to Multiple Spanning Tree (MST) configuration mode.

Default Setting

No VLANs are mapped to any MST instance.

The region name is set the switch's MAC address.

Command Mode

Global Configuration

Example

```
Console(config) #spanning-tree mst configuration
Console(config-mstp)#
```

Related Commands

mst vlan (524) mst priority (523) name (524) revision (525) max-hops (522)

system-bpdu-flooding

spanning-tree This command configures the system to flood BPDUs to all other ports on the switch or just to all other ports in the same VLAN when spanning tree is disabled globally on the switch or disabled on a specific port. Use the **no** form to restore the default.

Syntax

```
spanning-tree system-bpdu-flooding (to-all | to-vlan)
no spanning-tree system-bpdu-flooding
```

to-all - Floods BPDUs to all other ports on the switch.

to-vlan - Floods BPDUs to all other ports within the receiving port's native VLAN (i.e., as determined by port's PVID).

Default Setting

Floods to all other ports in the same VLAN.

Command Mode

Global Configuration

Command Usage

The **spanning-tree system-bpdu-flooding** command has no effect if BPDU flooding is disabled on a port (see the spanning-tree port-bpdu-flooding command).

Example

```
Console(config) #spanning-tree system-bpdu-flooding
Console(config)#
```

spanning-tree tc-prop This command configures a topology change propagation domain. Use the no form to remove a propagation domain.

Syntax

```
spanning-tree tc-prop group group-id {ethernet interface |
 port-channel trunk-id}
```

```
group-id - Group identifier. (Range: 1-255)
interface - unit/port
    unit - Unit identifier. (Range: 1-8)
    port - Port number or list of ports. To enter a list, separate
    nonconsecutive port identifiers with a comma and no spaces; use a
    hyphen to designate a range of ports. (Range: 1-28/52)
trunk-id - Trunk index (Range: 1-16)
```

Default Setting

All ports and trunks belong to a common group.

Command Mode

Global Configuration

Command Usage

A port can only belong to one group. When an interface is added to a group, it is removed from the default group. When a TCN BPDU or BPDU with the TC flag set is received on an interface, that interface will only notify members in same group to propagate this topology change.

Example

```
Console(config) #spanning-tree tc-prop group 1 ethernet 1/1-5
Console(config)#
```

spanning-tree This command configures the minimum interval between the transmission of transmission-limit consecutive RSTP/MSTP BPDUs. Use the no form to restore the default.

Syntax

```
spanning-tree transmission-limit count
no spanning-tree transmission-limit
```

count - The transmission limit in seconds. (Range: 1-10)

Default Setting

Command Mode

Global Configuration

Command Usage

This command limits the maximum transmission rate for BPDUs.

Example

```
Console(config) #spanning-tree transmission-limit 4
Console(config)#
```

max-hops This command configures the maximum number of hops in the region before a BPDU is discarded. Use the **no** form to restore the default.

Syntax

max-hops hop-number

hop-number - Maximum hop number for multiple spanning tree. (Range: 1-40)

Default Setting

20

Command Mode

MST Configuration

Command Usage

An MSTI region is treated as a single node by the STP and RSTP protocols. Therefore, the message age for BPDUs inside an MSTI region is never changed. However, each spanning tree instance within a region, and the internal spanning tree (IST) that connects these instances use a hop count to specify the maximum number of bridges that will propagate a BPDU. Each bridge decrements the hop count by one before passing on the BPDU. When the hop count reaches zero, the message is dropped.

Example

```
Console(config-mstp) #max-hops 30
Console(config-mstp)#
```

mst priority This command configures the priority of a spanning tree instance. Use the **no** form to restore the default.

Syntax

```
mst instance-id priority priority
```

no mst instance-id priority

instance-id - Instance identifier of the spanning tree. (Range: 0-4094)

priority - Priority of the a spanning tree instance.

(Range: 0-61440 in steps of 4096; Options: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440)

Default Setting

32768

Command Mode

MST Configuration

Command Usage

- MST priority is used in selecting the root bridge and alternate bridge of the specified instance. The device with the highest priority (i.e., lowest numerical value) becomes the MSTI root device. However, if all devices have the same priority, the device with the lowest MAC address will then become the root device.
- You can set this switch to act as the MSTI root device by specifying a priority of 0, or as the MSTI alternate device by specifying a priority of 16384.

```
Console(config-mstp) #mst 1 priority 4096
Console(config-mstp)#
```

mst vlan This command adds VLANs to a spanning tree instance. Use the **no** form to remove the specified VLANs. Using the **no** form without any VLAN parameters to remove all VLANs.

Syntax

```
[no] mst instance-id vlan vlan-range
```

```
instance-id - Instance identifier of the spanning tree. (Range: 0-4094)
vlan-range - Range of VLANs. (Range: 1-4094)
```

Default Setting

none

Command Mode

MST Configuration

Command Usage

- Use this command to group VLANs into spanning tree instances. MSTP generates a unique spanning tree for each instance. This provides multiple pathways across the network, thereby balancing the traffic load, preventing wide-scale disruption when a bridge node in a single instance fails, and allowing for faster convergence of a new topology for the failed instance.
- By default all VLANs are assigned to the Internal Spanning Tree (MSTI 0) that connects all bridges and LANs within the MST region. This switch supports up to 32 instances. You should try to group VLANs which cover the same general area of your network. However, remember that you must configure all bridges within the same MSTI Region (page 524) with the same set of instances, and the same instance (on each bridge) with the same set of VLANs. Also, note that RSTP treats each MSTI region as a single node, connecting all regions to the Common Spanning Tree.

Example

```
Console(config-mstp) #mst 1 vlan 2-5
Console(config-mstp)#
```

name This command configures the name for the multiple spanning tree region in which this switch is located. Use the **no** form to clear the name.

Syntax

name name

name - Name of the spanning tree.

Default Setting

Switch's MAC address

Command Mode

MST Configuration

Command Usage

The MST region name and revision number (page 525) are used to designate a unique MST region. A bridge (i.e., spanning-tree compliant device such as this switch) can only belong to one MST region. And all bridges in the same region must be configured with the same MST instances.

Example

```
Console(config-mstp) #name R&D
Console(config-mstp)#
```

Related Commands

revision (525)

revision This command configures the revision number for this multiple spanning tree configuration of this switch. Use the **no** form to restore the default.

Syntax

revision number

number - Revision number of the spanning tree. (Range: 0-65535)

Default Setting

0

Command Mode

MST Configuration

Command Usage

The MST region name (page 524) and revision number are used to designate a unique MST region. A bridge (i.e., spanning-tree compliant device such as this switch) can only belong to one MST region. And all bridges in the same region must be configured with the same MST instances.

Example

```
Console(config-mstp) #revision 1
Console(config-mstp)#
```

Related Commands

name (524)

spanning-tree This command filters all BPDUs received on an edge port. Use the no form to **bpdu-filter** disable this feature.

Syntax

[no] spanning-tree bpdu-filter

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This command filters all Bridge Protocol Data Units (BPDUs) received on an interface to save CPU processing time. This function is designed to work in conjunction with edge ports which should only connect end stations to the switch, and therefore do not need to process BPDUs. However, note that if a trunking port connected to another switch or bridging device is mistakenly configured as an edge port, and BPDU filtering is enabled on this port, this might cause a loop in the spanning tree.
- Before enabling BPDU Filter, the interface must first be configured as an edge port with the spanning-tree edge-port command.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree edge-port
Console(config-if) #spanning-tree bpdu-filter
Console(config-if)#
```

Related Commands

spanning-tree edge-port (529)

spanning-tree This command shuts down an edge port (i.e., an interface set for fast forwarding) if bpdu-guard it receives a BPDU. Use the **no** form without any keywords to disable this feature, or with a keyword to restore the default settings.

Syntax

spanning-tree bpdu-guard [auto-recovery [interval interval]] no spanning-tree bpdu-guard [auto-recovery [interval]]

auto-recovery - Automatically re-enables an interface after the specified interval.

interval - The time to wait before re-enabling an interface. (Range: 30-86400 seconds)

Default Setting

BPDU Guard: Disabled Auto-Recovery: Disabled

Auto-Recovery Interval: 300 seconds

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- An edge port should only be connected to end nodes which do not generate BPDUs. If a BPDU is received on an edge port, this indicates an invalid network configuration, or that the switch may be under attack by a hacker. If an interface is shut down by BPDU Guard, it must be manually re-enabled using the no spanning-tree spanning-disabled command if the auto-recovery interval is not specified.
- Before enabling BPDU Guard, the interface must be configured as an edge port with the spanning-tree edge-port command. Also note that if the edge port attribute is disabled on an interface, BPDU Guard will also be disabled on that interface.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree edge-port
Console(config-if) #spanning-tree bpdu-guard
Console(config-if)#
```

Related Commands

spanning-tree edge-port (529) spanning-tree spanning-disabled (537)

spanning-tree cost This command configures the spanning tree path cost for the specified interface. Use the **no** form to restore the default auto-configuration mode.

Syntax

spanning-tree cost cost

no spanning-tree cost

cost - The path cost for the port. (Range: 0 for auto-configuration, 1-65535 for short path cost method¹¹, 1-200,000,000 for long path cost method)

Table 96: Recommended STA Path Cost Range

Port Type	Short Path Cost (IEEE 802.1D-1998)	Long Path Cost (IEEE 802.1D-2004)	
Ethernet	50-600	200,000-20,000,000	
Fast Ethernet	10-60	20,000-2,000,000	

Table 96: Recommended STA Path Cost Range (Continued)

Port Type	Short Path Cost (IEEE 802.1D-1998)	Long Path Cost (IEEE 802.1D-2004)
Gigabit Ethernet	3-10	2,000-200,000
10G Ethernet	1-5	200-20,000

Default Setting

By default, the system automatically detects the speed and duplex mode used on each port, and configures the path cost according to the values shown below. Path cost "0" is used to indicate auto-configuration mode. When the short path cost method is selected and the default path cost recommended by the IEEE 8021w standard exceeds 65,535, the default is set to 65,535.

Table 97: Default STA Path Costs

Port Type	Short Path Cost (IEEE 802.1D-1998)	Long Path Cost (IEEE 802.1D-2004)
Ethernet	65,535	1,000,000
Fast Ethernet	65,535	100,000
Gigabit Ethernet	10,000	10,000
10G Ethernet	1,000	1,000

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This command is used by the Spanning Tree Algorithm to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media.
- Path cost takes precedence over port priority.
- When the path cost method (page 519) is set to short, the maximum value for path cost is 65,535.

Example

Console(config)#interface ethernet 1/5
Console(config-if)#spanning-tree cost 50
Console(config-if)#

^{11.} Use the spanning-tree pathcost method command to set the path cost method.

edge-port default.

spanning-tree This command specifies an interface as an edge port. Use the **no** form to restore the

Syntax

```
spanning-tree edge-port [auto]
no spanning-tree edge-port
```

auto - Automatically determines if an interface is an edge port.

Default Setting

Auto

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

You can enable this option if an interface is attached to a LAN segment that is at the end of a bridged LAN or to an end node. Since end nodes cannot cause forwarding loops, they can pass directly through to the spanning tree forwarding state. Specifying Edge Ports provides quicker convergence for devices such as workstations or servers, retains the current forwarding database to reduce the amount of frame flooding required to rebuild address tables during reconfiguration events, does not cause the spanning tree to initiate reconfiguration when the interface changes state, and also overcomes other STA-related time out problems. However, remember that Edge Port should only be enabled for ports connected to an end-node device.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree edge-port
Console(config-if)#
```

spanning-tree This command configures the link type for Rapid Spanning Tree and Multiple **link-type** Spanning Tree. Use the **no** form to restore the default.

Syntax

```
spanning-tree link-type {auto | point-to-point | shared}
no spanning-tree link-type
   auto - Automatically derived from the duplex mode setting.
   point-to-point - Point-to-point link.
   shared - Shared medium.
```

Default Setting

auto

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Specify a point-to-point link if the interface can only be connected to exactly one other bridge, or a shared link if it can be connected to two or more bridges.
- When automatic detection is selected, the switch derives the link type from the duplex mode. A full-duplex interface is considered a point-to-point link, while a half-duplex interface is assumed to be on a shared link.
- RSTP only works on point-to-point links between two bridges. If you designate a port as a shared link, RSTP is forbidden. Since MSTP is an extension of RSTP, this same restriction applies.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree link-type point-to-point
```

spanning-tree This command enables the detection and response to Spanning Tree loopback **loopback-detection** BPDU packets on the port. Use the **no** form to disable this feature.

Syntax

[no] spanning-tree loopback-detection

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- If Port Loopback Detection is not enabled and a port receives it's own BPDU, then the port will drop the loopback BPDU according to IEEE Standard 802.1W-2001 9.3.4 (Note 1).
- Port Loopback Detection will not be active if Spanning Tree is disabled on the switch.

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree loopback-detection
```

action

spanning-tree This command configures the response for loopback detection to block user traffic loopback-detection or shut down the interface. Use the no form to restore the default.

Syntax

spanning-tree loopback-detection action {block | shutdown duration} no spanning-tree loopback-detection action

block - Blocks user traffic.

shutdown - Shuts down the interface.

duration - The duration to shut down the interface. (Range: 60-86400 seconds)

Default Setting

block

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- If an interface is shut down by this command, and the release mode is set to "auto" with the spanning-tree loopback-detection release-mode command, the selected interface will be automatically enabled when the shutdown interval has expired.
- If an interface is shut down by this command, and the release mode is set to "manual," the interface can be re-enabled using the spanning-tree loopback-detection release command.

Example

```
Console(config) #interface ethernet 1/5
Console(config-if)#spanning-tree loopback-detection action shutdown 600
```

release-mode the default.

spanning-tree This command configures the release mode for a port that was placed in the loopback-detection discarding state because a loopback BPDU was received. Use the **no** form to restore

Syntax

spanning-tree loopback-detection release-mode {auto | manual} no spanning-tree loopback-detection release-mode

auto - Allows a port to automatically be released from the discarding state when the loopback state ends.

manual - The port can only be released from the discarding state manually.

Default Setting

auto

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- If the port is configured for automatic loopback release, then the port will only be returned to the forwarding state if one of the following conditions is satisfied:
 - The port receives any other BPDU except for it's own, or;
 - The port's link status changes to link down and then link up again, or;
 - The port ceases to receive it's own BPDUs in a forward delay interval.
- If Port Loopback Detection is not enabled and a port receives it's own BPDU, then the port will drop the loopback BPDU according to IEEE Standard 802.1W-2001 9.3.4 (Note 1).
- Port Loopback Detection will not be active if Spanning Tree is disabled on the switch.
- When configured for manual release mode, then a link down / up event will not release the port from the discarding state. It can only be released using the spanning-tree loopback-detection release command.

Example

```
Console(config) #interface ethernet 1/5
Console(config-if) #spanning-tree loopback-detection release-mode manual
Console(config-if)#
```

trap

spanning-tree This command enables SNMP trap notification for Spanning Tree loopback BPDU loopback-detection detections. Use the no form to restore the default.

Syntax

[no] spanning-tree loopback-detection trap

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree loopback-detection trap
```

spanning-tree This command configures the path cost on a spanning instance in the Multiple mst cost Spanning Tree. Use the **no** form to restore the default auto-configuration mode.

Syntax

spanning-tree mst instance-id cost cost

no spanning-tree mst instance-id cost

instance-id - Instance identifier of the spanning tree. (Range: 0-4094)

cost - Path cost for an interface. (Range: 0 for auto-configuration, 1-65535 for short path cost method¹², 1-200,000,000 for long path cost method)

The recommended path cost range is listed in Table 96 on page 527.

Default Setting

By default, the system automatically detects the speed and duplex mode used on each port, and configures the path cost according to the values shown below. Path cost "0" is used to indicate auto-configuration mode. When the short path cost method is selected and the default path cost recommended by the IEEE 8021w standard exceeds 65,535, the default is set to 65,535. The default path costs are listed in Table 97 on page 528.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Each spanning-tree instance is associated with a unique set of VLAN IDs.
- This command is used by the multiple spanning-tree algorithm to determine the best path between devices. Therefore, lower values should be assigned to interfaces attached to faster media, and higher values assigned to interfaces with slower media.
- Use the **no spanning-tree mst cost** command to specify auto-configuration mode.
- Path cost takes precedence over interface priority.

Example

```
Console(config)#interface Ethernet 1/5
Console(config-if) #spanning-tree mst 1 cost 50
Console(config-if)#
```

12. Use the spanning-tree pathcost method command to set the path cost method.

Related Commands

spanning-tree mst port-priority (534)

mst port-priority

spanning-tree This command configures the interface priority on a spanning instance in the Multiple Spanning Tree. Use the **no** form to restore the default.

Syntax

spanning-tree mst instance-id port-priority priority

no spanning-tree mst instance-id port-priority

instance-id - Instance identifier of the spanning tree. (Range: 0-4094) priority - Priority for an interface. (Range: 0-240 in steps of 16)

Default Setting

128

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This command defines the priority for the use of an interface in the multiple spanning-tree. If the path cost for all interfaces on a switch are the same, the interface with the highest priority (that is, lowest value) will be configured as an active link in the spanning tree.
- Where more than one interface is assigned the highest priority, the interface with lowest numeric identifier will be enabled.

Example

```
Console(config)#interface Ethernet 1/5
Console(config-if) #spanning-tree mst 1 port-priority 0
Console(config-if)#
```

Related Commands

spanning-tree mst cost (533)

spanning-tree This command floods BPDUs to other ports when spanning tree is disabled globally port-bpdu-flooding or disabled on a specific port. Use the **no** form to restore the default setting.

Syntax

[no] spanning-tree port-bpdu-flooding

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- When enabled, BPDUs are flooded to all other ports on the switch or to all other ports within the receiving port's native VLAN as specified by the spanning-tree system-bpdu-flooding command.
- The spanning-tree system-bpdu-flooding command has no effect if BPDU flooding is disabled on a port by the spanning-tree port-bpdu-flooding command.

Example

```
Console(config) #interface ethernet 1/5
Console(config-if)#spanning-tree port-bpdu-flooding
Console(config-if)#
```

spanning-tree This command configures the priority for the specified interface. Use the **no** form to port-priority restore the default.

Syntax

```
spanning-tree port-priority priority
no spanning-tree port-priority
   priority - The priority for a port. (Range: 0-240, in steps of 16)
```

Default Setting

128

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This command defines the priority for the use of a port in the Spanning Tree Algorithm. If the path cost for all ports on a switch are the same, the port with the highest priority (that is, lowest value) will be configured as an active link in the spanning tree.
- Where more than one port is assigned the highest priority, the port with lowest numeric identifier will be enabled.

```
Console(config) #interface ethernet 1/5
Console(config-if)#spanning-tree port-priority 0
```

Related Commands

spanning-tree cost (527)

root-guard

spanning-tree This command prevents a designated port from taking superior BPDUs into account and allowing a new STP root port to be elected. Use the **no** form to disable this feature.

Syntax

[no] spanning-tree root-guard

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- A bridge with a lower bridge identifier (or same identifier and lower MAC address) can take over as the root bridge at any time.
- When Root Guard is enabled, and the switch receives a superior BPDU on this port, it is set to the Discarding state until it stops receiving superior BPDUs for a fixed recovery period. While in the discarding state, no traffic is forwarded across the port.
- Root Guard can be used to ensure that the root bridge is not formed at a suboptimal location. Root Guard should be enabled on any designated port connected to low-speed bridges which could potentially overload a slower link by taking over as the root port and forming a new spanning tree topology. It could also be used to form a border around part of the network where the root bridge is allowed.
- When spanning tree is initialized globally on the switch or on an interface, the switch will wait for 20 seconds to ensure that the spanning tree has converged before enabling Root Guard.

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree edge-port
Console(config-if) #spanning-tree root-guard
Console(config-if)#
```

spanning-tree This command disables the spanning tree algorithm for the specified interface. Use **spanning-disabled** the **no** form to re-enable the spanning tree algorithm for the specified interface.

Syntax

[no] spanning-tree spanning-disabled

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

This example disables the spanning tree algorithm for port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if) #spanning-tree spanning-disabled
Console(config-if)#
```

spanning-tree This command stops the propagation of topology change notifications (TCN). Use tc-prop-stop the **no** form to allow propagation of TCN messages.

Syntax

[no] spanning-tree tc-prop-stop

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

When this command is enabled on an interface, topology change information originating from the interface will still be propagated.

This command should not be used on an interface which is purposely configured in a ring topology.

```
Console(config)#interface ethernet 1/1
Console(config-if)#spanning-tree tc-prop-stop
Console(config-if)#
```

loopback-detection detection. release

spanning-tree This command manually releases a port placed in discarding state by loopback-

Syntax

spanning-tree loopback-detection release interface

interface

```
ethernet unit/port
```

unit - Unit identifier. (Range: 1) port - Port number. (Range: 1-28/52) port-channel channel-id (Range: 1-16)

Command Mode

Privileged Exec

Command Usage

Use this command to release an interface from discarding state if loopback detection release mode is set to "manual" by the spanning-tree loopback-detection release-mode command and BPDU loopback occurs.

Example

```
Console#spanning-tree loopback-detection release ethernet 1/1
Console#
```

protocol-migration

spanning-tree This command re-checks the appropriate BPDU format to send on the selected interface.

Syntax

spanning-tree protocol-migration interface

interface

ethernet unit/port

unit - Unit identifier. (Range: 1) port - Port number. (Range: 1-28/52) port-channel channel-id (Range: 1-16)

Command Mode

Privileged Exec

Command Usage

If at any time the switch detects STP BPDUs, including Configuration or Topology Change Notification BPDUs, it will automatically set the selected interface to forced STP-compatible mode. However, you can also use the **spanning-tree protocol-** migration command at any time to manually re-check the appropriate BPDU format to send on the selected interfaces (i.e., RSTP or STP-compatible).

Example

```
Console#spanning-tree protocol-migration eth 1/5
Console#
```

show spanning-tree This command shows the configuration for the common spanning tree (CST), for all instances within the multiple spanning tree (MST), or for a specific instance within the multiple spanning tree (MST).

Syntax

```
show spanning-tree [interface | mst instance-id | brief | stp-enabled-only]
   interface
```

ethernet *unit/port*

```
unit - Unit identifier. (Range: 1)
   port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

instance-id - Instance identifier of the multiple spanning tree.

(Range: 0-4094)

brief - Shows a summary of global and interface settings.

stp-enabled-only - Displays global settings, and settings for interfaces for which STP is enabled.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- Use the show spanning-tree command with no parameters to display the spanning tree configuration for the switch for the Common Spanning Tree (CST) and for every interface in the tree.
- Use the **show spanning-tree** *interface* command to display the spanning tree configuration for an interface within the Common Spanning Tree (CST).
- Use the **show spanning-tree mst** command to display the spanning tree configuration for all instances within the Multiple Spanning Tree (MST), including global settings and settings for active interfaces.

 Use the show spanning-tree mst instance-id command to display the spanning tree configuration for an instance within the Multiple Spanning Tree (MST), including global settings and settings for all interfaces.

```
Console#show spanning-tree
Spanning Tree Information
 Spanning Tree Mode : MSTP
 Spanning Tree Enabled/Disabled : Enabled
 Instance : 0
VLANs Configured : 1-4094
Priority : 32768
VLANS Configured : 1-4
Priority : 32'
Bridge Hello Time (sec.) : 2
Bridge Max. Age (sec.) : 20
Bridge Forward Delay (sec.) : 15
                                                  : 32768
 Root Hello Time (sec.) : 2
 Root Forward Delay (sec.) : 20
Max. Hops
Max. Hops : 20
Remaining Hops : 20
Designated Root : 32768.0.0001ECF8D8C6
Current Root Port : 21
Current Root Cost : 100000
Number of Topology Changes : 5
 Last Topology Change Time (sec.): 11409
Transmission Limit : 3
Path Cost Method : Long
Flooding Behavior : To VLAN
Cisco Prestandard : Disabled
                                                     : Disabled
______
Eth 1/ 1 Information
______
 Admin Status
                                                      : Enabled
                                                     : Disabled
 Role
                                                      : Discarding
 State
External Admin Path Cost
Internal Admin Path Cost
External Oper Path Cost
Internal Oper Path Cost
                                                       : 100000
                                                     : 100000
Internal Oper Path Cost : 100000
Priority : 128

Designated Cost : 100000
Designated Port : 128.1

Designated Root : 32768.0.0001ECF8D8C6

Designated Bridge : 32768.0.123412341234

Forward Transitions : 4

Admin Edge Port : Disabled

Oper Edge Port : Disabled

Admin Link Type : Point-to-point

Flooding Behavior : Enabled

Spanning-Tree Status : Enabled

Loopback Detection Status : Enabled

Loopback Detection Release Mode : Auto
 Loopback Detection Release Mode : Auto
 Loopback Detection Trap : Disabled
Loopback Detection Action : Block
Root Guard Status : Disabled
BPDU Guard Status : Disabled
BPDU Guard Auto Recovery : Disabled
 BPDU Guard Auto Recovery Interval : 300
                                      : Disabled
 BPDU Filter Status
```

:

This example shows a brief summary of global and interface setting for the spanning tree.

```
Console#show spanning-tree brief
Spanning Tree Mode : RSTP
Spanning Tree Enabled/Disabled : Enabled
Designated Root : 32768.0000E8944000
Current Root Port (Eth) : 1/24
Current Root Cost : 10000

Interface Pri Designated Designated Oper STP Role State Oper Bridge ID Port ID Cost Status Edge

Eth 1/ 1 128 32768.0000E89382A0 128.1 100000 EN DESG FWD No
Eth 1/ 2 128 32768.0000E89382A0 128.2 10000 EN DISB BLK No
Eth 1/ 3 128 32768.0000E89382A0 128.3 10000 EN DISB BLK No
Eth 1/ 4 128 32768.0000E89382A0 128.4 10000 EN DISB BLK No
Eth 1/ 5 128 32768.0000E89382A0 128.5 10000 EN DISB BLK No
Eth 1/ 5 128 32768.0000E89382A0 128.5 10000 EN DISB BLK No
```

show spanning-tree mst configuration

show spanning-tree This command shows the configuration of the multiple spanning tree.

Command Mode

Privileged Exec

Example

```
Console#show spanning-tree mst configuration
Mstp Configuration Information

Configuration Name : R&D
Revision Level :0

Instance VLANs

0 1-4094
Console#
```

show spanning-tree tc-prop

This command shows the configuration of topology change propagation domains.

Syntax

show spanning-tree tc-prop [group group-id]

group-id - Group identifier. (Range: 1-255)

Command Mode

Privileged Exec

```
Console#show spanning-tree tc-prop group 1
Group 1
Eth 1/ 1, Eth 1/ 2, Eth 1/ 3, Eth 1/ 4, Eth 1/ 5
Console#
```

20

ERPS Commands

The G.8032 recommendation, also referred to as Ethernet Ring Protection Switching (ERPS), can be used to increase the availability and robustness of Ethernet rings.

This chapter describes commands used to configure ERPS.

Table 98: ERPS Commands

Command	Function	Mode
erps	Enables ERPS globally on the switch	GC
erps domain	Creates an ERPS ring and enters ERPS configuration mode	GC
control-vlan	Adds a Control VLAN to an ERPS ring	ERPS
enable	Activates the current ERPS ring	ERPS
guard-timer	Sets the timer to prevent ring nodes from receiving outdated R-APS messages	ERPS
holdoff-timer	Sets the timer to filter out intermittent link faults	ERPS
major-domain	Specifies the ERPS ring used for sending control packets	ERPS
meg-level	Sets the Maintenance Entity Group level for a ring	ERPS
mep-monitor	Specifies the CCM MEPs used to monitor the link on a ring node	ERPS
node-id	Sets the MAC address for a ring node	ERPS
non-erps- dev-protect	Sends non-standard health-check packets when in protection state	ERPS
non-revertive	Enables non-revertive mode, which requires the protection state on the RPL to manually cleared	ERPS
propagate-tc	Enables propagation of topology change messages from a secondary ring to the primary ring	ERPS
raps-def-mac	Sets the switch's MAC address to be used as the node identifier in R-APS messages	ERPS
raps-without- vc	Terminates the R-APS channel at the primary ring to sub-ring interconnection nodes	ERPS
ring-port	Configures a node's connection to the ring through the east or west interface	ERPS
rpl neighbor	Configures a ring node to be the RPL neighbor	ERPS
rpl owner	Configures a ring node to be the RPL owner	ERPS
version	Specifies compatibility with ERPS version 1 or 2	ERPS
wtr-timer	Sets timer to verify that the ring has stabilized before blocking the RPL after recovery from a signal failure	ERPS

Table 98: ERPS Commands (Continued)

Command	Function	Mode
clear erps statistics	Clears statistics, including SF, NR, NR-RB, FS, MS, Event, and Health protocol messages	PE
erps clear	Manually clears protection state which has been invoked by a Forced Switch or Manual Switch command, and the node is operating under non-revertive mode; or before the WTR or WTB timer expires when the node is operating in revertive mode	PE
erps forced-switch	Blocks the specified ring port	PE
erps manual-switch	Blocks the specified ring port, in the absence of a failure or an erps forced-switch command	PE
show erps	Displays status information for all configured rings, or for a specified ring	PE

Configuration Guidelines for ERPS

- 1. Create an ERPS ring: Create a ring using the erps domain command. The ring name is used as an index in the G.8032 database.
- 2. Configure the east and west interfaces: Each node on the ring connects to it through two ring ports. Use the ring-port command to configure one port connected to the next node in the ring to the east (or clockwise direction); and then use the ring-port command again to configure another port facing west in the ring.
- 3. Configure the RPL owner: Configure one node in the ring as the Ring Protection Link (RPL) owner using the rpl owner command. When this switch is configured as the RPL owner, the west ring port is set as being connected to the RPL. Under normal operations (Idle state), the RPL is blocked to ensure that a loop cannot form in the ring. If a signal failure brings down any other link in the ring, the RPL will be unblocked (Protection state) to ensure proper connectivity among all ring nodes until the failure is recovered.
- 4. Configure ERPS timers: Use the guard-timer command to set the timer is used to prevent ring nodes from receiving outdated R-APS messages, the holdoff-timer command to filter out intermittent link faults, and the wtr-timer command to verify that the ring has stabilized before blocking the RPL after recovery from a signal failure.
- 5. Configure the ERPS Control VLAN (CVLAN): Use the control-vlan command to create the VLAN used to pass R-APS ring maintenance commands. The CVLAN must NOT be configured with an IP address. In addition, only ring ports may be added to the CVLAN (prior to configuring the VLAN as a CVLAN). No other ports can be members of this VLAN (once set as a CVLAN). Also, the ring ports of the CVLAN must be tagged. Failure to observe these restrictions can result in a loop in the network.

- **6.** Enable ERPS: Before enabling a ring as described in the next step, first use the erps command to globally enable ERPS on the switch. If ERPS has not yet been enabled or has been disabled with the no erps command, no ERPS rings will work.
- 7. Enable an ERPS ring: Before an ERPS ring can work, it must be enabled using the enable command. When configuration is completed and the ring enabled, R-APS messages will start flowing in the control VLAN, and normal traffic will begin to flow in the data VLANs. To stop a ring, it can be disabled on any node using the no enable command.
- **8.** Display ERPS status information: Use the show erps command to display general ERPS status information or detailed ERPS status information for a specific ring.

erps This command enables ERPS on the switch. Use the **no** form to disable this feature.

Syntax

[no] erps

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

ERPS must be enabled globally on the switch before it can enabled on an ERPS ring using the enable command.

Example

Console(config)#erps
Console(config)#

Related Commands

enable (547)

erps domain This command creates an ERPS ring and enters ERPS configuration mode for the specified domain. Use the **no** form to delete a ring.

Syntax

erps domain ring-name [**id** ring-id]

no erps domain ring-name

ring-name - Name of a specific ERPS ring. (Range: 1-12 characters) ring-id - ERPS ring identifier used in R-APS messages. (Range: 1-255)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Service Instances within each ring are based on a unique maintenance association for the specific users, distinguished by the ring name, maintenance level, maintenance association's name, and assigned VLAN. Up to 6 ERPS rings can be configured on the switch.
- R-APS information is carried in an R-APS PDUs. The last octet of the MAC address is designated as the Ring ID (01-19-A7-00-00-[Ring ID]). If use of the default MAC address is disabled with the no raps-def-mac command, then the Ring ID configured by the erps domain command will be used in R-APS PDUs.

Example

```
Console(config) #erps domain r&d id 1
Console(config-erps)#
```

control-vlan This command specifies a dedicated VLAN used for sending and receiving ERPS protocol messages. Use the **no** form to remove the Control VLAN.

Syntax

```
[no] control-vlan vlan-id
    vlan-id - VLAN ID (Range: 1-4094)
```

Default Setting

None

Command Mode

ERPS Configuration

Command Usage

- Configure one control VLAN for each ERPS ring. First create the VLAN to be used as the control VLAN (vlan, page 582), add the ring ports for the east and west interface as tagged members to this VLAN (switchport allowed vlan, page 585), and then use the control-vlan command to add it to the ring.
- ◆ The following restrictions are recommended to avoid creating a loop in the network or other problems which may occur under some situations:
 - The Control VLAN must not be configured as a Layer 3 interface (with an IP address), a dynamic VLAN (with GVRP enabled), nor as a private VLAN.
 - In addition, only ring ports may be added to the Control VLAN. No other ports can be members of this VLAN.
 - Also, the ring ports of the Control VLAN must be tagged.
- Once the ring has been activated with the enable command, the configuration
 of the control VLAN cannot be modified. Use the no enable command to stop
 the ERPS ring before making any configuration changes to the control VLAN.

Example

```
Console(config) #vlan database
Console(config-vlan) #vlan 2 name rdc media ethernet state active
Console(config-vlan) #exit
Console(config) #interface ethernet 1/12
Console(config-if) #switchport allowed vlan add 2 tagged
Console(config-if) #interface ethernet 1/11
Console(config-if) #switchport allowed vlan add 2 tagged
Console(config-if) #exit
Console(config) #erps domain rd1
Console(config-erps) #control-vlan 2
Console(config-erps) #
```

enable This command activates the current ERPS ring. Use the **no** form to disable the current ring.

Syntax

[no] enable

Default Setting

Disabled

Command Mode

ERPS Configuration

Command Usage

 Before enabling a ring, the global ERPS function should be enabled with the erps command, the east and west ring ports configured on each node with the ring-port command, the RPL owner specified with the rpl owner command, and the control VLAN configured with the control-vlan command.

Once enabled, the RPL owner node and non-owner node state machines will start, and the ring will enter idle state if no signal failures are detected.

Example

```
Console(config-erps)#enable
Console(config-erps)#
```

Related Commands

erps (545)

guard-timer This command sets the guard timer to prevent ring nodes from receiving outdated R-APS messages. Use the **no** form to restore the default setting.

Syntax

guard-timer milliseconds

milliseconds - The guard timer is used to prevent ring nodes from receiving outdated R-APS messages. During the duration of the guard timer, all received R-APS messages are ignored by the ring protection control process, giving time for old messages still circulating on the ring to expire. (Range: 10-2000 milliseconds, in steps of 10 milliseconds)

Default Setting

500 milliseconds

Command Mode

ERPS Configuration

Command Usage

The guard timer duration should be greater than the maximum expected forwarding delay for an R-APS message to pass around the ring. A side-effect of the guard timer is that during its duration, a node will be unaware of new or existing ring requests transmitted from other nodes.

Example

```
Console(config-erps)#guard-timer 300
Console(config-erps)#
```

holdoff-timer This command sets the timer to filter out intermittent link faults. Use the **no** form to restore the default setting.

Syntax

holdoff-timer milliseconds

milliseconds - The hold-off timer is used to filter out intermittent link faults. Faults will only be reported to the ring protection mechanism if this timer expires. (Range: 0-10000 milliseconds, in steps of 100 milliseconds)

Default Setting

0 milliseconds

Command Mode

ERPS Configuration

Command Usage

In order to coordinate timing of protection switches at multiple layers, a hold-off timer may be required. Its purpose is to allow, for example, a server layer protection switch to have a chance to fix the problem before switching at a client layer.

When a new defect or more severe defect occurs (new Signal Failure), this event will not be reported immediately to the protection switching mechanism if the provisioned hold-off timer value is non-zero. Instead, the hold-off timer will be started. When the timer expires, whether a defect still exists or not, the timer will be checked. If one does exist, that defect will be reported to the protection switching mechanism. The reported defect need not be the same one that started the timer.

Example

```
Console(config-erps) #holdoff-timer 300
Console(config-erps)#
```

major-domain This command specifies the ERPS ring used for sending control packets. Use the no form to remove the current setting.

Syntax

major-domain name

no major-domain

name - Name of the ERPS ring used for sending control packets. (Range: 1-32 characters)

Default Setting

None

Command Mode

ERPS Configuration

Command Usage

- This switch can support up to six rings. However, ERPS control packets can only be sent on one ring. This command is used to indicate that the current ring is a secondary ring, and to specify the major ring which will be used to send ERPS control packets.
- The Ring Protection Link (RPL) is the west port and can not be configured. So the physical port on a secondary ring must be the west port. In other words, if a domain has two physical ring ports, this ring can only be a major ring, not a secondary ring (or sub-domain) which can have only one physical ring port. This command will therefore fail if the east port is already configured (see the ring-port command).

Example

```
Console(config-erps) #major-domain rd0
Console(config-erps)#
```

meg-level This command sets the Maintenance Entity Group level for a ring. Use the **no** form to restore the default setting.

Syntax

meg-level level

level - The maintenance entity group (MEG) level which provides a communication channel for ring automatic protection switching (R-APS) information. (Range: 0-7)

Default Setting

Command Mode

ERPS Configuration

Command Usage

- This parameter is used to ensure that received R-APS PDUs are directed for this ring. A unique level should be configured for each local ring if there are many R-APS PDUs passing through this switch.
- If CFM continuity check messages are used to monitor the link status of an ERPS ring node as specified by the mep-monitor command, then the MEG level set by the meg-level command must match the authorized maintenance level of the CFM domain to which the specified MEP belongs. The MEP's primary VLAN must also be the same as that used for the ERPS ring's control VLAN.

```
Console(config-erps) #meg-level 0
Console(config-erps)#
```

Related Commands

ethernet cfm domain (809) ethernet cfm mep (814)

mep-monitor This command specifies the CFM MEPs used to monitor the link on a ring node. Use the **no** form to restore the default setting.

Syntax

```
mep-monitor {east | west} mep mpid
   east - Connects to next ring node to the east.
   west - Connects to next ring node to the west.
   mpid – Maintenance end point identifier. (Range: 1-8191)
```

Default Setting

None

Command Mode

ERPS Configuration

Command Usage

- If this command is used to monitor the link status of an ERPS node with CFM continuity check messages, then the MEG level set by the meg-level command must match the authorized maintenance level of the CFM domain to which the specified MEP belongs.
- To ensure complete monitoring of a ring node, use the **mep-monitor** command to specify the CFM MEPs used to monitor both the east and west ports of the ring node.
- If CFM determines that a MEP node which has been configured to monitor a ring port with this command has gone down, this information is passed to ERPS, which in turn processes it as a ring node failure. For more information on how ERPS recovers from a node failure, refer to "Ethernet Ring Protection" Switching" in the Web Management Guide.

Example

```
Console(config-erps) #mep-monitor east mep 1
Console(config-erps)#
```

Related Commands

ethernet cfm domain (809) ethernet cfm mep (814)

node-id This command sets the MAC address for a ring node. Use the **no** form to restore the default setting.

Syntax

node-id mac-address

mac-address – A MAC address unique to the ring node. The MAC address must be specified in the format xx-xx-xx-xx-xx or xxxxxxxxxxxx.

Default Setting

CPU MAC address

Command Mode

ERPS Configuration

Command Usage

The ring node identifier is used to identify a node in R-APS messages for both automatic and manual switching recovery operations.

For example, a node that has one ring port in SF condition and detects that the condition has been cleared, will continuously transmit R-APS (NR) messages with its own Node ID as priority information over both ring ports, informing its neighbors that no request is present at this node. When another recovered node holding the link blocked receives this message, it compares the Node ID information with its own. If the received R-APS (NR) message has a higher priority, this unblocks its ring ports. Otherwise, the block remains unchanged.

The node identifier may also be used for debugging, such as to distinguish messages when a node is connected to more than one ring.

Example

```
Console(config-erps) #node-id 00-12-CF-61-24-2D
Console(config-erps)#
```

non-erps-dev-protect This command sends non-standard health-check packets when an owner node enters protection state without any link down event having been detected through SF messages. Use the **no** form to disable this feature.

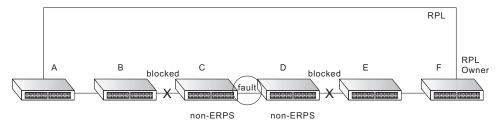
Syntax

[no] non-erps-dev-protect

Default Setting

Disabled

Command Mode


ERPS Configuration

Command Usage

◆ The RPL owner node detects a failed link when it receives R-APS (SF - signal fault) messages from nodes adjacent to the failed link. The owner then enters protection state by unblocking the RPL. However, using this standard recovery procedure may cause a non-EPRS device to become isolated when the ERPS device adjacent to it detects a continuity check message (CCM) loss event and blocks the link between the non-ERPS device and ERPS device.

CCMs are propagated by the Connectivity Fault Management (CFM) protocol as described under "CFM Commands" on page 803. If the standard recovery procedure were used as shown in the following figure, and node E detected CCM loss, it would send an R-APS (SF) message to the RPL owner and block the link to node D, isolating that non-ERPS device.

Figure 3: Non-ERPS Device Protection

When non-ERPS device protection is enabled on the ring, the ring ports on the RPL owner node and non-owner nodes will not be blocked when signal loss is detected by CCM loss events.

When non-ERPS device protection is enabled on an RPL owner node, it will send non-standard health-check packets to poll the ring health when it enters the protection state. It does not use the normal procedure of waiting to receive an R-APS (NR - no request) message from nodes adjacent to the recovered link. Instead, it waits to see if the non-standard health-check packets loop back. If they do, indicating that the fault has been resolved, the RPL will be blocked.

After blocking the RPL, the owner node will still transmit an R-APS (NR, RB - ring blocked) message. ERPS-compliant nodes receiving this message flush their forwarding database and unblock previously blocked ports. The ring is now returned to Idle state.

Example

Console(config-erps)#non-erps-dev-protect
Console(config-erps)#

non-revertive This command enables non-revertive mode, which requires the protection state on the RPL to manually cleared. Use the **no** form to restore the default revertive mode.

Syntax

[no] non-revertive

Default Setting

Disabled

Command Mode

ERPS Configuration

Command Usage

 Revertive behavior allows the switch to automatically return the RPL from Protection state to Idle state through the exchange of protocol messages.

Non-revertive behavior for Protection, Forced Switch, and Manual Switch states are basically the same. Non-revertive behavior requires the erps clear command to used to return the RPL from Protection state to Idle state.

Recovery for Protection Switching – A ring node that has one or more ring ports in an SF (Signal Fail) condition, upon detecting the SF condition cleared, keeps at least one of its ring ports blocked for the traffic channel and for the R-APS channel, until the RPL is blocked as a result of ring protection reversion, or until there is another higher priority request (e.g., an SF condition) in the ring.

A ring node that has one ring port in an SF condition and detects the SF condition cleared, continuously transmits the R-APS (NR – no request) message with its own Node ID as the priority information over both ring ports, informing that no request is present at this ring node and initiates a guard timer. When another recovered ring node (or nodes) holding the link block receives this message, it compares the Node ID information with its own Node ID. If the received R-APS (NR) message has the higher priority, this ring node unblocks its ring ports. Otherwise, the block remains unchanged. As a result, there is only one link with one end blocked.

The ring nodes stop transmitting R-APS (NR) messages when they accept an R-APS (NR, RB – RPL Blocked), or when another higher priority request is received.

- Recovery with Revertive Mode When all ring links and ring nodes have recovered and no external requests are active, reversion is handled in the following way:
 - **a.** The reception of an R-APS (NR) message causes the RPL Owner Node to start the WTR (Wait-to-Restore) timer.
 - **b.** The WTR timer is cancelled if during the WTR period a higher priority request than NR is accepted by the RPL Owner Node or is declared locally at the RPL Owner Node.
 - **c.** When the WTR timer expires, without the presence of any other higher priority request, the RPL Owner Node initiates reversion by blocking its

- traffic channel over the RPL, transmitting an R-APS (NR, RB) message over both ring ports, informing the ring that the RPL is blocked, and performing a flush FDB action.
- **d.** The acceptance of the R-APS (NR, RB) message causes all ring nodes to unblock any blocked non-RPL link that does not have an SF condition. If it is an R-APS (NR, RB) message without a DNF (do not flush) indication, all ring nodes flush the FDB.
- Recovery with Non-revertive Mode In non-revertive operation, the ring does not automatically revert when all ring links and ring nodes have recovered and no external requests are active. Non-revertive operation is handled in the following way:
 - **a.** The RPL Owner Node does not generate a response on reception of an R-APS (NR) messages.
 - **b.** When other healthy ring nodes receive the NR (Node ID) message, no action is taken in response to the message.
 - When the operator issues the erps clear command for non-revertive mode at the RPL Owner Node, the non-revertive operation is cleared, the RPL Owner Node blocks its RPL port, and transmits an R-APS (NR, RB) message in both directions, repeatedly.
 - **d.** Upon receiving an R-APS (NR, RB) message, any blocking node should unblock its non-failed ring port. If it is an R-APS (NR, RB) message without a DNF indication, all ring nodes flush the FDB.
- Recovery for Forced Switching An erps forced-switch command is removed by issuing the erps clear command to the same ring node where Forced Switch mode is in effect. The clear command removes any existing local operator commands, and triggers reversion if the ring is in revertive behavior mode.

The ring node where the Forced Switch was cleared keeps the ring port blocked for the traffic channel and for the R-APS channel, due to the previous Forced Switch command. This ring port is kept blocked until the RPL is blocked as a result of ring protection reversion, or until there is another higher priority request (e.g., an SF condition) in the ring.

The ring node where the Forced Switch was cleared continuously transmits the R-APS (NR) message on both ring ports, informing other nodes that no request is present at this ring node. The ring nodes stop transmitting R-APS (NR) messages when they accept an RAPS (NR, RB) message, or when another higher priority request is received.

If the ring node where the Forced Switch was cleared receives an R-APS (NR) message with a Node ID higher than its own Node ID, it unblocks any ring port which does not have an SF condition and stops transmitting R-APS (NR) message over both ring ports.

- Recovery with revertive mode is handled in the following way:
 - **a.** The reception of an R-APS (NR) message causes the RPL Owner Node to start the WTB timer.

- **b.** The WTB timer is cancelled if during the WTB period a higher priority request than NR is accepted by the RPL Owner Node or is declared locally at the RPL Owner Node.
- c. When the WTB timer expires, in the absence of any other higher priority request, the RPL Owner Node initiates reversion by blocking the traffic channel over the RPL, transmitting an R-APS (NR, RB) message over both ring ports, informing the ring that the RPL is blocked, and flushes the FDB.
- **d.** The acceptance of the R-APS (NR, RB) message causes all ring nodes to unblock any blocked non-RPL that does not have an SF condition. If it is an R-APS (NR, RB) message without a DNF indication, all ring nodes flush their FDB. This action unblocks the ring port which was blocked as a result of an operator command.
- Recovery with non-revertive mode is handled in the following way:
 - **a.** The RPL Owner Node, upon reception of an R-APS(NR) message and in the absence of any other higher priority request does not perform any action.
 - **b.** Then, after the operator issues the erps clear command at the RPL Owner Node, this ring node blocks the ring port attached to the RPL, transmits an R-APS (NR, RB) message on both ring ports, informing the ring that the RPL is blocked, and flushes its FDB.
 - **c.** The acceptance of the R-APS (NR, RB) message triggers all ring nodes to unblock any blocked non-RPL which does not have an SF condition. If it is an R-APS (NR, RB) message without a DNF indication, all ring nodes flush their FDB. This action unblocks the ring port which was blocked as result of an operator command.
- Recovery for Manual Switching An erps manual-switch command is removed by issuing the erps clear command at the same ring node where the Manual Switch is in effect. The clear command removes any existing local operator commands, and triggers reversion if the ring is in revertive behavior mode.

The ring node where the Manual Switch was cleared keeps the ring port blocked for the traffic channel and for the R-APS channel, due to the previous Manual Switch command. This ring port is kept blocked until the RPL is blocked as a result of ring protection reversion, or until there is another higher priority request (e.g., an SF condition) in the ring.

The Ethernet Ring Node where the Manual Switch was cleared continuously transmits the R-APS (NR) message on both ring ports, informing that no request is present at this ring node. The ring nodes stop transmitting R-APS (NR) messages when they accept an RAPS (NR, RB) message, or when another higher priority request is received.

If the ring node where the Manual Switch was cleared receives an R-APS (NR) message with a Node ID higher than its own Node ID, it unblocks any ring port which does not have an SF condition and stops transmitting R-APS (NR) message on both ring ports.

- Recovery with revertive mode is handled in the following way:
 - **a.** The RPL Owner Node, upon reception of an R-APS (NR) message and in the absence of any other higher priority request, starts the WTB timer and waits for it to expire. While the WTB timer is running, any latent R-APS (MS) message is ignored due to the higher priority of the WTB running signal.
 - **b.** When the WTB timer expires, it generates the WTB expire signal. The RPL Owner Node, upon reception of this signal, initiates reversion by blocking the traffic channel on the RPL, transmitting an R-APS (NR, RB) message over both ring ports, informing the ring that the RPL is blocked, and flushes its FDB.
 - c. The acceptance of the R-APS (NR, RB) message causes all ring nodes to unblock any blocked non-RPL that does not have an SF condition. If it is an R-APS (NR, RB) message without a DNF indication, all Ethernet Ring Nodes flush their FDB. This action unblocks the ring port which was blocked as a result of an operator command.
- Recovery with non-revertive mode is handled in the following way:
 - **a.** The RPL Owner Node, upon reception of an R-APS (NR) message and in the absence of any other higher priority request does not perform any action.
 - **b.** Then, after the operator issues the erps clear command at the RPL Owner Node, this ring node blocks the ring port attached to the RPL, transmits an R-APS (NR, RB) message over both ring ports, informing the ring that the RPL is blocked, and flushes its FDB.
 - c. The acceptance of the R-APS (NR, RB) message triggers all ring nodes to unblock any blocked non-RPL which does not have an SF condition. If it is an R-APS (NR, RB) message without a DNF indication, all ring nodes flush their FDB. This action unblocks the ring port which was blocked as result of an operator command.

Console(config-erps)#non-revertive
Console(config-erps)#

propagate-tc This command enables propagation of topology change messages for a secondary ring to the primary ring. Use the **no** form to disable this feature.

Syntax

[no] propagate-tc

Default Setting

Disabled

Command Mode

ERPS Configuration

Command Usage

- When a secondary ring detects a topology change, it can pass a message about this event to the major ring. When the major ring receives this kind of message from a secondary ring, it can clear the MAC addresses on its ring ports to help the secondary ring restore its connections more quickly through protection switching.
- When the MAC addresses are cleared, data traffic may flood onto the major ring. The data traffic will become stable after the MAC addresses are learned again. The major ring will not be broken, but the bandwidth of data traffic on the major ring may suffer for a short period of time due to this flooding behavior.

Example

```
Console(config-erps) #propagate-tc
Console(config-erps)#
```

raps-def-mac This command sets the switch's MAC address to be used as the node identifier in R-APS messages. Use the **no** form to use the node identifier specified in the G8032 standards.

Syntax

[no] raps-def-mac

Default Setting

Enabled

Command Mode

ERPS Configuration

Command Usage

- When ring nodes running ERPSv1 and ERPSv2 co-exist on the same ring, the Ring ID of each ring node must be configured as "1".
- If this command is disabled, the following strings are used as the node identifier:
 - ERPSv1: 01-19-A7-00-00-01
 - ERPSv2: 01-19-A7-00-00-[Ring ID]

Example

```
Console(config-erps) #raps-def-mac
Console(config-erps)#
```

raps-without-vc This command terminates the R-APS channel at the primary ring to sub-ring interconnection nodes. Use the **no** form to restore the default setting.

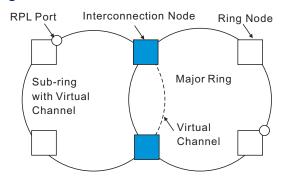
Syntax

[no] raps-without-vc

Default Setting

R-APS with Virtual Channel

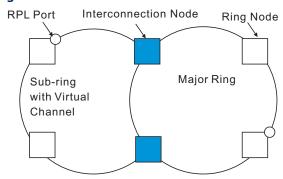
Command Mode


ERPS Configuration

Command Usage

- A sub-ring may be attached to a primary ring with or without a virtual channel. A virtual channel is used to connect two interconnection points on the subring, tunneling R-APS control messages across an arbitrary Ethernet network topology. If a virtual channel is not used to cross the intermediate Ethernet network, data in the traffic channel will still flow across the network, but the all R-APS messages will be terminated at the interconnection points.
- Sub-ring with R-APS Virtual Channel When using a virtual channel to tunnel R-APS messages between interconnection points on a sub-ring, the R-APS virtual channel may or may not follow the same path as the traffic channel over the network. R-APS messages that are forwarded over the sub-ring's virtual channel are broadcast or multicast over the interconnected network. For this reason the broadcast/multicast domain of the virtual channel should be limited to the necessary links and nodes. For example, the virtual channel could span only the interconnecting rings or sub-rings that are necessary for forwarding R-APS messages of this sub-ring. Care must also be taken to ensure that the local RAPS messages of the sub-ring being transported over the virtual channel into the interconnected network can be uniquely distinguished from those of other interconnected ring R-APS messages. This can be achieved by, for example, by using separate VIDs for the virtual channels of different sub-rings.

Note that the R-APS virtual channel requires a certain amount of bandwidth to forward R-APS messages on the interconnected Ethernet network where a subring is attached. Also note that the protection switching time of the sub-ring may be affected if R-APS messages traverse a long distance over an R-APS virtual channel.


Figure 4: Sub-ring with Virtual Channel

◆ Sub-ring without R-APS Virtual Channel – Under certain circumstances it may not be desirable to use a virtual channel to interconnect the sub-ring over an arbitrary Ethernet network. In this situation, the R-APS messages are terminated on the interconnection points. Since the sub-ring does not provide an R-APS channel nor R-APS virtual channel beyond the interconnection points, R-APS channel blocking is not employed on the normal ring links to avoid channel segmentation. As a result, a failure at any ring link in the sub-ring will cause the R-APS channel of the sub-ring to be segmented, thus preventing R-APS message exchange between some of the sub-ring's ring nodes.

No R-APS messages are inserted or extracted by other rings or sub- rings at the interconnection nodes where a sub-ring is attached. Hence there is no need for either additional bandwidth or for different VIDs/Ring IDs for the ring interconnection. Furthermore, protection switching time for a sub-ring is independent from the configuration or topology of the interconnected rings. In addition, this option always ensures that an interconnected network forms a tree topology regardless of its interconnection configuration. This means that it is not necessary to take precautions against forming a loop which is potentially composed of a whole interconnected network.

Figure 5: Sub-ring without Virtual Channel

Example

Console(config-erps) #raps-without-vc
Console(config-erps) #

ring-port This command configures a node's connection to the ring through the east or west interface. Use the **no** form to disassociate a node from the ring.

Syntax

```
ring-port {east | west} interface interface
east - Connects to next ring node to the east.
west - Connects to next ring node to the west.
interface
ethernet unit/port
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Default Setting

Not associated

Command Mode

ERPS Configuration

Command Usage

- ◆ Each node must be connected to two neighbors on the ring. For convenience, the ports connected are referred to as east and west ports. Alternatively, the closest neighbor to the east should be the next node in the ring in a clockwise direction, and the closest neighbor to the west should be the next node in the ring in a counter-clockwise direction.
- Note that a ring port cannot be configured as a member of a spanning tree, a dynamic trunk, or a static trunk.
- If a port channel (static trunk) is specified as a ring port, it can not be destroyed before it is removed from the domain configuration.
- ◆ A static trunk will be treated as a signal fault, if it contains no member ports or all of its member ports are in signal fault.
- If a static trunk is configured as a ring port prior to assigning any member ports, spanning tree will be disabled for the first member port assigned to the static trunk.

Example

```
Console(config-erps)#ring-port east interface ethernet 1/12
Console(config-erps)#
```

rpl neighbor This command configures a ring node to be the Ring Protection Link (RPL) neighbor. Use the **no** form to restore the default setting.

Syntax

rpl neighbor

no rpl

Default Setting

None (that is, neither owner nor neighbor)

Command Mode

ERPS Configuration

Command Usage

- The RPL neighbor node, when configured, is a ring node adjacent to the RPL that is responsible for blocking its end of the RPL under normal conditions (i.e., the ring is established and no requests are present in the ring) in addition to the block at the other end by the RPL Owner Node. The RPL neighbor node may participate in blocking or unblocking its end of the RPL, but is not responsible for activating the reversion behavior.
- Only one RPL owner can be configured on a ring. If the switch is set as the RPL owner for an ERPS domain, the west ring port is set as one end of the RPL. If the switch is set as the RPL neighbor for an ERPS domain, the east ring port is set as the other end of the RPL.
- The east and west connections to the ring must be specified for all ring nodes using the ring-port command. When this switch is configured as the RPL neighbor, the east ring port is set as being connected to the RPL.
- Note that is not mandatory to declare a RPL neighbor.

Example

```
Console(config-erps) #rpl neighbor
Console(config-erps)#
```

rpl owner This command configures a ring node to be the Ring Protection Link (RPL) owner. Use the **no** form to restore the default setting.

Syntax

rpl owner

no rpl

Default Setting

None (that is, neither owner nor neighbor)

Command Mode

ERPS Configuration

Command Usage

- Only one RPL owner can be configured on a ring. The owner blocks traffic on the RPL during Idle state, and unblocks it during Protection state (that is, when a signal fault is detected on the ring or the protection state is enabled with the erps forced-switch or erps manual-switch command).
- The east and west connections to the ring must be specified for all ring nodes using the ring-port command. When this switch is configured as the RPL owner, the west ring port is automatically set as being connected to the RPL.

Example

```
Console(config-erps)#rpl owner
Console(config-erps)#
```

version This command specifies compatibility with ERPS version 1 or 2.

Syntax

version {1 | 2}

- 1 ERPS version 1 based on ITU-T G.8032/Y.1344.
- 2 ERPS version 2 based on ITU-T G.8032/Y.1344 Version 2.

Default Setting

2

Command Mode

ERPS Configuration

Command Usage

- ◆ In addition to the basic features provided by version 1, version 2 also supports:
 - Multi-ring/ladder network support
 - Revertive/Non-revertive recovery
 - Forced Switch (FS) and Manual Switch (MS) commands for manually blocking a particular ring port
 - Flush FDB (forwarding database) logic which reduces amount of flush FDB operations in the ring
 - Support of multiple ERP instances on a single ring
- Version 2 is backward compatible with Version 1. If version 2 is specified, the inputs and commands are forwarded transparently. If set to version 1, MS and FS operator commands are filtered, and the switch set to revertive mode.

- ◆ The version number is automatically set to "1" when a ring node, supporting only the functionalities of G.8032v1, exists on the same ring with other nodes that support G.8032v2.
- When ring nodes running G.8032v1 and G.8032v2 co-exist on a ring, the ring ID of each node is configured as "1".
- ◆ In version 1, the MAC address 01-19-A7-00-00-01 is used for the node identifier. The raps-def-mac command has no effect.

```
Console(config-erps) #version 1
Console(config-erps)#
```

wtr-timer This command sets the wait-to-restore timer which is used to verify that the ring has stabilized before blocking the RPL after recovery from a signal failure. Use the **no** form to restore the default setting.

Syntax

wtr-timer minutes

minutes - The wait-to-restore timer is used to verify that the ring has stabilized before blocking the RPL after recovery from a signal failure. (Range: 5-12 minutes)

Default Setting

5 minutes

Command Mode

ERPS Configuration

Command Usage

If the switch goes into ring protection state due to a signal failure, after the failure condition is cleared, the RPL owner will start the wait-to-restore timer and wait until it expires to verify that the ring has stabilized before blocking the RPL and returning to the Idle (normal operating) state.

Example

```
Console(config-erps) #wtr-timer 10
Console(config-erps)#
```

clear erps statistics This command clears statistics, including SF, NR, NR-RB, FS, MS, Event, and Health protocol messages.

Syntax

clear erps statistics [domain ring-name]

ring-name - Name of a specific ERPS ring. (Range: 1-12 characters)

Command Mode

Privileged Exec

Example

Console#clear erps statistics domain r&d Console#

erps clear This command manually clears the protection state which has been invoked by a forced switch or manual switch command, and the node is operating under nonrevertive mode; or before the WTR or WTB timer expires when the node is operating in revertive mode.

Syntax

erps clear domain ring-name

ring-name - Name of a specific ERPS ring. (Range: 1-12 characters)

Command Mode

Privileged Exec

Command Usage

- Two steps are required to make a ring operating in non-revertive mode return to Idle state from forced switch or manual switch state:
 - 1. Issue an **erps clear** command to remove the forced switch command on the node where a local forced switch command is active.
 - 2. Issue an erps clear command on the RPL owner node to trigger the reversion.
- The **erps clear** command will also stop the WTR and WTB delay timers and reset their values.
- More detailed information about using this command for non-revertive mode is included under the Command Usage section for the non-revertive command.

Console#erps clear domain r&d Console#

erps forced-switch This command blocks the specified ring port.

Syntax

erps forced-switch [domain ring-name] {east | west}

ring-name - Name of a specific ERPS ring. (Range: 1-12 characters)

east - East ring port.

west - West ring port.

Command Mode

Privileged Exec

Command Usage

- A ring with no pending request has a logical topology with the traffic channel blocked at the RPL and unblocked on all other ring links. In this situation, the erps forced-switch command triggers protection switching as follows:
 - **a.** The ring node where a forced switch command was issued blocks the traffic channel and R-APS channel on the ring port to which the command was issued, and unblocks the other ring port.
 - **b.** The ring node where the forced switch command was issued transmits R-APS messages indicating FS over both ring ports. R-APS (FS) messages are continuously transmitted by this ring node while the local FS command is the ring node's highest priority command (see Table 99 on page 567). The R-APS (FS) message informs other ring nodes of the FS command and that the traffic channel is blocked on one ring port.
 - **c.** A ring node accepting an R-APS (FS) message, without any local higher priority requests unblocks any blocked ring port. This action subsequently unblocks the traffic channel over the RPL.
 - **d.** The ring node accepting an R-APS (FS) message, without any local higher priority requests stops transmission of R-APS messages.
 - e. The ring node receiving an R-APS (FS) message flushes its FDB.
- Protection switching on a forced switch request is completed when the above actions are performed by each ring node. At this point, traffic flows around the ring are resumed. From this point on the following rules apply regarding processing of further forced switch commands:

While an existing forced switch request is present in a ring, any new forced switch request is accepted, except on a ring node having a prior local forced switch request. The ring nodes where further forced switch commands are issued block the traffic channel and R-APS channel on the ring port at which the forced switch was issued. The ring node where the forced switch command was issued transmits an R-APS message over both ring ports indicating FS. R-APS (FS) messages are continuously transmitted by this ring node while the local FS command is the ring node's highest priority command. As such, two or more forced switches are allowed in the ring, which may inadvertently cause the segmentation of an ring. It is the responsibility of the operator to prevent this effect if it is undesirable.

Ring protection requests, commands and R-APS signals have the priorities as specified in the following table.

Table 99: ERPS Request/State Priority

Request / State and Status	Туре	Priority
Clear	local	highest
FS	local	1
R-APS (FS)	remote	1
local SF*	local	1
local clear SF	local	
R-APS (SF)	remote	I
R-APS (MS)	remote	
MS	local	
WTR Expires	local	
WTR Running	local	
WTB Expires	local	
WTB Running	local	I
R-APS (NR, RB)	remote	I
R-APS (NR)	remote	lowest

^{*} If an Ethernet Ring Node is in the Forced Switch state, local SF is ignored.

- Recovery for forced switching under revertive and non-revertive mode is described under the Command Usage section for the non-revertive command.
- When a ring is under an FS condition, and the node at which an FS command was issued is removed or fails, the ring remains in FS state because the FS command can only be cleared at node where the FS command was issued. This results in an unrecoverable FS condition.

When performing a maintenance procedure (e.g., replacing, upgrading) on a ring node (or a ring link), it is recommended that FS commands be issued at the two adjacent ring nodes instead of directly issuing a FS command at the ring

node under maintenance in order to avoid falling into the above mentioned unrecoverable situation.

Example

Console#erps forced-switch domain r&d west Console#

erps manual-switch This command blocks the specified ring port, in the absence of a failure or an erps forced-switch command.

Syntax

erps manual-switch [domain ring-name] {east | west}

ring-name - Name of a specific ERPS ring. (Range: 1-12 characters)

east - East ring port.

west - West ring port.

Command Mode

Privileged Exec

Command Usage

- A ring with no request has a logical topology with the traffic channel blocked at the RPL and unblocked on all other ring links. In this situation, the erps manual-switch command triggers protection switching as follows:
 - **a.** If no other higher priority commands exist, the ring node, where a manual switch command was issued, blocks the traffic channel and R-APS channel on the ring port to which the command was issued, and unblocks the other ring port.
 - **b.** If no other higher priority commands exist, the ring node where the manual switch command was issued transmits R-APS messages over both ring ports indicating MS. R-APS (MS) message are continuously transmitted by this ring node while the local MS command is the ring node's highest priority command (see Table 99 on page 567). The R-APS (MS) message informs other ring nodes of the MS command and that the traffic channel is blocked on one ring port.
 - c. If no other higher priority commands exist and assuming the ring node was in Idle state before the manual switch command was issued, the ring node flushes its local FDB.
 - **d.** A ring node accepting an R-APS (MS) message, without any local higher priority requests unblocks any blocked ring port which does not have an SF condition. This action subsequently unblocks the traffic channel over the RPL.

- **e.** A ring node accepting an R-APS (MS) message, without any local higher priority requests stops transmitting R-APS messages.
- **f.** A ring node receiving an R-APS (MS) message flushes its FDB.
- Protection switching on a manual switch request is completed when the above actions are performed by each ring node. At this point, traffic flows around the ring are resumed. From this point on, the following rules apply regarding processing of further manual switch commands:
 - **a.** While an existing manual switch request is present in the ring, any new manual switch request is rejected. The request is rejected at the ring node where the new request is issued and a notification is generated to inform the operator that the new MS request was not accepted.
 - **b.** A ring node with a local manual switch command which receives an R-APS (MS) message with a different Node ID clears its manual switch request and starts transmitting R-APS (NR) messages. The ring node keeps the ring port blocked due to the previous manual switch command.
 - **c.** An ring node with a local manual switch command that receives an R-APS message or a local request of higher priority than R-APS (MS) clear its manual switch request. The ring node then processes the new higher priority request.
- Recovery for manual switching under revertive and non-revertive mode is described under the Command Usage section for the non-revertive command.

Console#erps manual-switch domain r&d west Console#

show erps This command displays status information for all configured rings, or for a specified ring

Syntax

show erps [domain ring-name] [statistics]

domain - Keyword to display ERPS ring configuration settings. ring-name - Name of a specific ERPS ring. (Range: 1-32 characters)

statistics - Keyword to display ERPS ring statistics.

Command Mode

Privileged Exec

This example displays a summary of all the ERPS rings configured on the switch.

Table 100: show erps - summary display description

Field	Description
Node Information	
ERPS Status	Shows whether ERPS is enabled on the switch.
Number of ERPS Domains	Shows the number of ERPS rings configured on the switch.
Domain	Displays the name of each ring followed by a brief list of status information
ID	ERPS ring identifier used in R-APS messages.
Enabled	Shows if the specified ring is enabled.
Ver	Shows the ERPS version.
MEL	The maintenance entity group (MEG) level providing a communication channel for ring automatic protection switching (R-APS) information.
Ctrl VLAN	Shows the Control VLAN ID.
State	Shows the following ERPS states:
	Init – The ERPS ring has started but has not yet determined the status of the ring.
	Idle – If all nodes in a ring are in this state, it means that all the links in the ring are up. This state will switch to protection state if a link failure occurs.
	Protection – If a node in this state, it means that a link failure has occurred. This state will switch to idle state if all the failed links recover.
Туре	Shows ERPS node type as None, RPL Owner or RPL Neighbor.
Revertive	Shows if revertive or non-revertive recovery is selected.
Interface Information	
W/E	Shows information on the west and east ring port for this node.
Interface	The port or trunk which is configured as a ring port.

Table 100: show erps - summary display description (Continued)

Field	Description
Port State	The operational state:
	Blocking – The transmission and reception of traffic is blocked and the forwarding of R-APS messages is blocked, but the transmission of locally generated R-APS messages is allowed and the reception of all R-APS messages is allowed.
	Forwarding – The transmission and reception of traffic is allowed; transmission, reception and forwarding of R-APS messages is allowed.
	Unknown – The interface is not in a known state (includes the domain being disabled).
Local SF	A signal fault generated on a link to the local node.
Local FS	Shows if a forced switch command was issued on this interface.
Local MS	Shows if a manual switch command was issued on this interface.
MEP	The CFM MEP used to monitor the status on this link.
RPL	Shows if this node is connected to the RPL.

This example displays detailed information for the specified ERPS ring.

Console#show Domain	_			MEL	Ctrl	VLAN			⁄pe	Rev	ertive
r&d	1	Yes	2	1		1		RI	PL Owner	Yes	
	Majo	or Domair							7C		
					OC-00-						
		PS Def MA			-						
	Holdoff Guard WTB WTR WTB Expire WTR Expire										
		0 ms 50									
	,	Interfa								MS MEP	RPL
	West	Eth 1/	1	Block	king	No		No	No		Yes No
Console#	East	. EUH 1/	. ر	rolwa	ar artiiç	J 140		IVO	IVO		IVO

Table 100 on page 570 describes most of the parameters shown by **show erps domain** command. The following table includes the remaining parameters.

Table 101: show erps domain - detailed display description

Field	Description
Major Domain	Name of the ERPS major domain.
Node ID	A MAC address unique to this ring node.

Table 101: show erps domain - detailed display description (Continued)

Field	Description
R-APS with VC	The R-APS Virtual Channel is the R-APS channel connection used to tunnel R-APS messages between two interconnection nodes of a subring in another Ethernet ring or network.
R-APS Def MAC	Indicates if the switch's MAC address is used to identify the node in R-APS messages.
Propagate TC	Shows if the ring is configured to propagate topology change notification messages.
Non-ERPS Device Protect	Shows if the RPL owner node is configured to send non-standard health-check packets when it enters protection state without any link down event having been detected through SF messages
Holdoff	The hold-off timer interval used to filter out intermittent link faults.
Guard	The guard timer interval used to prevent ring nodes from receiving outdated R-APS messages.
WTB	The wait-to-block timer interval used to delay reversion after a Forced Switch or Manual Switch has been cleared.
WTR	The wait-to-restore timer interval used to verify that the ring has stabilized before blocking the RPL after recovery from a signal failure.
WTB Expire	The time before the wait-to-block timer expires.
WTR Expire	The time before the wait-to-restore timer expires.

This example displays statistics for all configured ERPS rings.

Console#show ERPS statist: Interface	ics for do	main r&				
(W) Eth 1/ 1	0 SF	0		RB FS	MS	
Sent		 0	62	948	0	0
Received		0	0	0	0	0
Ignored	EVENT		O PH	0	0	0
Sent		 0	0			
		0	0			
Received						
Received Ignored		0	0			
		0	•			
Ignored	Local SF	Local	•			
Ignored Interface	Local SF	Local 	Clear SF	RB FS	MS	
Ignored Interface	Local SF 0 SF	Local 0 NR	Clear SF	RB FS 948		 0
Ignored Interface(E) Eth 1/3	Local SF 0 SF	Local 0 NR	Clear SF			 0 0
Ignored Interface(E) Eth 1/ 3 Sent Received	Local SF 0 SF	Local 0 NR	Clear SF NR-F	948	0	-
Ignored Interface (E) Eth 1/ 3 Sent Received	Local SF	Local 0 NR	NR-F	948	0 0	0
Ignored Interface (E) Eth 1/ 3 Sent Received	Local SF 0 SF EVENT	Local 0 NR	NR-F	948	0 0	0
Ignored Interface(E) Eth 1/ 3 Sent Received Ignored Sent	Local SF 0 SF EVENT	Local O NR O O HEALT	NR-F 62 0 0	948	0 0	0
Ignored Interface(E) Eth 1/ 3 Sent Received Ignored Sent	Local SF 0 SF	Local 0 NR 0 DO DO HEALT	NR-F	948	0 0	0

Table 102: show erps statistics - detailed display description

Field	Description
Interface	The direction, and port or trunk which is configured as a ring port.
Local SF	A signal fault generated on a link to the local node.
Local Clear SF	The number of times a clear command was issued to terminate protection state entered through a forced switch or manual switch
SF	The number of signal fault messages
NR	The number of no request messages
NR-RB	The number no request - RPL blocked messages
FS	The number of forced switch messages
MS	The number of manual switch messages
EVENT	Any request/state message, excluding FS, SF, MS, and NR
HEALTH	The number of non-standard health-check messages

21)

VLAN Commands

A VLAN is a group of ports that can be located anywhere in the network, but communicate as though they belong to the same physical segment. This section describes commands used to create VLAN groups, add port members, specify how VLAN tagging is used, and enable automatic VLAN registration for the selected interface.

Table 103: VLAN Commands

Command Group	Function
GVRP and Bridge Extension Commands	Configures GVRP settings that permit automatic VLAN learning; shows the configuration for bridge extension MIB
Editing VLAN Groups	Sets up VLAN groups, including name, VID and state
Configuring VLAN Interfaces	Configures VLAN interface parameters, including ingress and egress tagging mode, ingress filtering, PVID, and GVRP
Displaying VLAN Information	Displays VLAN groups, status, port members, and MAC addresses
Configuring IEEE 802.1Q Tunneling	Configures 802.1Q Tunneling (QinQ Tunneling)
Configuring L2CP Tunneling*	Configures Layer 2 Control Protocol (L2CP) tunneling, either by discarding, processing, or transparently passing control packets across a QinQ tunnel
Configuring VLAN Translation*	Maps VLAN ID between customer and service provider for networks that do not support IEEE 802.1Q tunneling
Configuring Protocol-based VLANs	Configures protocol-based VLANs based on frame type and protocol
Configuring IP Subnet VLANs	Configures IP Subnet-based VLANs
Configuring MAC Based VLANs	Configures MAC-based VLANs
Configuring Voice VLANs	Configures VoIP traffic detection and enables a Voice VLAN

^{*} These functions are not compatible.

GVRP and Bridge Extension Commands

GARP VLAN Registration Protocol defines a way for switches to exchange VLAN information in order to automatically register VLAN members on interfaces across the network. This section describes how to enable GVRP for individual interfaces and globally for the switch, as well as how to display default configuration settings for the Bridge Extension MIB.

Table 104: GVRP and Bridge Extension Commands

Command	Function	Mode
bridge-ext gvrp	Enables GVRP globally for the switch	GC
garp timer	Sets the GARP timer for the selected function	IC
switchport forbidden vlan	Configures forbidden VLANs for an interface	IC
switchport gvrp	Enables GVRP for an interface	IC
show bridge-ext	Shows the global bridge extension configuration	PE
show garp timer	Shows the GARP timer for the selected function	NE, PE
show gvrp configuration	Displays GVRP configuration for the selected interface	NE, PE

bridge-ext gvrp This command enables GVRP globally for the switch. Use the **no** form to disable it.

Syntax

[no] bridge-ext gvrp

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

GVRP defines a way for switches to exchange VLAN information in order to register VLAN members on ports across the network. This function should be enabled to permit automatic VLAN registration, and to support VLANs which extend beyond the local switch.

Example

Console(config) #bridge-ext gvrp Console(config)#

garp timer This command sets the values for the join, leave and leaveall timers. Use the no form to restore the timers' default values.

Syntax

```
garp timer {join | leave | leaveall} timer-value
no garp timer {join | leave | leaveall}
```

{join | leave | leaveall} - Timer to set.

timer-value - Value of timer.

Ranges:

join: 20-1000 centiseconds leave: 60-3000 centiseconds leaveall: 500-18000 centiseconds

Default Setting

join: 20 centiseconds leave: 60 centiseconds leaveall: 1000 centiseconds

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Group Address Registration Protocol is used by GVRP and GMRP to register or deregister client attributes for client services within a bridged LAN. The default values for the GARP timers are independent of the media access method or data rate. These values should not be changed unless you are experiencing difficulties with GMRP or GVRP registration/deregistration.
- Timer values are applied to GVRP for all the ports on all VLANs.
- Timer values must meet the following restrictions:
 - leave > (2 x join)
 - leaveall > leave

Note: Set GVRP timers on all Layer 2 devices connected in the same network to the same values. Otherwise, GVRP may not operate successfully.

Example

Console(config)#interface ethernet 1/1 Console(config-if) #garp timer join 100 Console(config-if)#

GVRP and Bridge Extension Commands

Related Commands

show garp timer (580)

switchport forbidden This command configures forbidden VLANs. Use the **no** form to remove the list of vlan forbidden VLANs.

Syntax

switchport forbidden vlan {add *vlan-list* | **remove** *vlan-list*} no switchport forbidden vlan

add vlan-list - List of VLAN identifiers to add.

remove vlan-list - List of VLAN identifiers to remove.

vlan-list - Separate nonconsecutive VLAN identifiers with a comma and no spaces; use a hyphen to designate a range of IDs. (Range: 1-4094).

Default Setting

No VLANs are included in the forbidden list.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This command prevents a VLAN from being automatically added to the specified interface via GVRP.
- If a VLAN has been added to the set of allowed VLANs for an interface, then you cannot add it to the set of forbidden VLANs for that same interface.
- ◆ GVRP cannot be enabled for ports set to Access mode (see the switchport mode command).

Example

The following example shows how to prevent port 1 from being added to VLAN 3:

```
Console(config)#interface ethernet 1/1
Console(config-if) #switchport forbidden vlan add 3
Console(config-if)#
```

switchport gyrp This command enables GVRP for a port. Use the **no** form to disable it.

Syntax

[no] switchport gvrp

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

GVRP cannot be enabled for ports set to Access mode using the switchport mode command.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport gvrp
Console(config-if)#
```

show bridge-ext This command shows the configuration for bridge extension commands.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show bridge-ext
Maximum Supported VLAN Numbers : 4094
Maximum Supported VLAN ID : 4094
Extended Multicast Filtering Services : No
Static Entry Individual Port : Yes
VLAN Version Number
VLAN Learning
                                      : IVL
Configurable PVID Tagging
                                      : Yes
Local VLAN Capable
                                      : No
Traffic Classes
                                      : Enabled
                                       : Disabled
Global GVRP Status
Console#
```

Table 105: show bridge-ext - display description

Field	Description
Maximum Supported VLAN Numbers	The maximum number of VLANs supported on this switch.
Maximum Supported VLAN ID	The maximum configurable VLAN identifier supported on this switch.
Extended Multicast Filtering Services	This switch does not support the filtering of individual multicast addresses based on GMRP (GARP Multicast Registration Protocol).

Table 105: show bridge-ext - display description (Continued)

Field	Description
Static Entry Individual Port	This switch allows static filtering for unicast and multicast addresses. (Refer to the mac-address-table static command.)
VLAN Version Number	Based on IEEE 802.1Q, "1" indicates Bridges that support only single spanning tree (SST) operation, and "2" indicates Bridges that support multiple spanning tree (MST) operation.
VLAN Learning	This switch uses Independent VLAN Learning (IVL), where each port maintains its own filtering database.
Configurable PVID Tagging	This switch allows you to override the default Port VLAN ID (PVID used in frame tags) and egress status (VLAN-Tagged or Untagged) on each port. (Refer to the switchport allowed vlan command.)
Local VLAN Capable	This switch does not support multiple local bridges outside of the scope of 802.1Q defined VLANs.
Traffic Classes	This switch provides mapping of user priorities to multiple traffic classes. (Refer to "Class of Service Commands" on page 621.)
Global GVRP Status	GARP VLAN Registration Protocol defines a way for switches to exchange VLAN information in order to automatically register VLAN members on interfaces across the network. This field shows if GVRP is globally enabled or disabled. (Refer to the bridge-ext gvrp command.)

show garp timer This command shows the GARP timers for the selected interface.

Syntax

show garp timer [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

Shows all GARP timers.

Command Mode

Normal Exec, Privileged Exec

Example

Console#show garp timer ethernet 1/1

Eth 1/ 1 GARP Timer Status:

Join Timer : 20 centiseconds Leave Timer : 60 centiseconds Leave All Timer : 1000 centiseconds

Console#

Related Commands

garp timer (577)

configuration

show gvrp This command shows if GVRP is enabled.

Syntax

show gvrp configuration [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52) port-channel channel-id (Range: 1-16)

Default Setting

Shows both global and interface-specific configuration.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show gvrp configuration ethernet 1/7
Eth 1/ 7:
GVRP Configuration : Disabled
Console#
```

Editing VLAN Groups

Table 106: Commands for Editing VLAN Groups

Command	Function	Mode
vlan database	Enters VLAN database mode to add, change, and delete VLANs	GC
vlan	Configures a VLAN, including VID, name and state	VC

vlan database This command enters VLAN database mode. All commands in this mode will take effect immediately.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Use the VLAN database command mode to add, change, and delete VLANs. After finishing configuration changes, you can display the VLAN settings by entering the show vlan command.
- Use the interface vlan command mode to define the port membership mode and add or remove ports from a VLAN. The results of these commands are written to the running-configuration file, and you can display this file by entering the show running-config command.

Example

Console(config)#vlan database
Console(config-vlan)#

Related Commands

show vlan (590)

vlan This command configures a VLAN. Use the **no** form to restore the default settings or delete a VLAN.

Syntax

vlan vlan-id [name vlan-name] media ethernet [state {active | suspend}] [rspan]

no vlan vlan-id [name | state]

vlan-id - VLAN ID, specified as a single number, a range of consecutive numbers separated by a hyphen, or multiple numbers separated by commas. (Range: 1-4094)

name - Keyword to be followed by the VLAN name.

vlan-name - ASCII string from 1 to 32 characters.

media ethernet - Ethernet media type.

state - Keyword to be followed by the VLAN state.

active - VLAN is operational.

suspend - VLAN is suspended. Suspended VLANs do not pass packets.

rspan - Keyword to create a VLAN used for mirroring traffic from remote switches. The VLAN used for RSPAN cannot include VLAN 1 (the switch's default VLAN). Nor should it include VLAN 4093 (which is used for switch clustering). Configuring VLAN 4093 for other purposes may cause problems in the Clustering operation. For more information on configuring RSPAN through the CLI, see "RSPAN Mirroring Commands" on page 466.

Default Setting

By default only VLAN 1 exists and is active.

Command Mode

VLAN Database Configuration

Command Usage

- no vlan vlan-id deletes the VLAN.
- **no vlan** *vlan-id* **name** removes the VLAN name.
- **no vlan** *vlan-id* **state** returns the VLAN to the default state (i.e., active).
- ◆ You can configure up to 4094 VLANs on the switch.

Example

The following example adds a VLAN, using VLAN ID 105 and name RD5. The VLAN is activated by default.

```
Console(config) #vlan database
Console(config-vlan) #vlan 105 name RD5 media ethernet
Console(config-vlan) #
```

Related Commands

show vlan (590)

Configuring VLAN Interfaces

Table 107: Commands for Configuring VLAN Interfaces

Command	Function	Mode
interface vlan	Enters interface configuration mode for a specified VLAN	IC
switchport acceptable- frame-types	Configures frame types to be accepted by an interface	IC
switchport allowed vlan	Configures the VLANs associated with an interface	IC
switchport forbidden vlan	Configures forbidden VLANs for an interface	IC
switchport gvrp	Enables GVRP for an interface	IC
switchport ingress-filtering	Enables ingress filtering on an interface	IC
switchport mode	Configures VLAN membership mode for an interface	IC
switchport native vlan	Configures the PVID (native VLAN) of an interface	IC
switchport priority default	Sets a port priority for incoming untagged frames	IC
vlan-trunking	Allows unknown VLANs to cross the switch	IC

Chapter 21 | VLAN Commands Configuring VLAN Interfaces

interface vlan This command enters interface configuration mode for VLANs, which is used to configure VLAN parameters for a physical interface. Use the **no** form to change a Layer 3 normal VLAN back to a Layer 2 interface.

Syntax

[no] interface vlan vlan-id

vlan-id - ID of the configured VLAN. (Range: 1-4094)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Creating a "normal" VLAN with the vlan command initializes it as a Layer 2 interface. To change it to a Layer 3 interface, use the interface command to enter interface configuration for the desired VLAN, enter any Layer 3 configuration commands, and save the configuration settings.
- To change a Layer 3 normal VLAN back to a Layer 2 VLAN, use the no interface command.

Example

The following example shows how to set the interface configuration mode to VLAN 1, and then assign an IP address to the VLAN:

```
Console(config)#interface vlan 1
Console(config-if) #ip address 192.168.1.254 255.255.255.0
Console(config-if)#
```

Related Commands

shutdown (421) interface (414) vlan (582)

acceptable-frame- restore the default. types

switchport This command configures the acceptable frame types for a port. Use the **no** form to

Syntax

```
switchport acceptable-frame-types {all | tagged}
no switchport acceptable-frame-types
```

all - The port accepts all frames, tagged or untagged.

tagged - The port only receives tagged frames.

Default Setting

All frame types

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

When set to receive all frame types, any received frames that are untagged are assigned to the default VLAN.

Example

The following example shows how to restrict the traffic received on port 1 to tagged frames:

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport acceptable-frame-types tagged
Console(config-if)#
```

Related Commands

switchport mode (587)

switchport This command configures VLAN groups on the selected interface. Use the **no** form allowed vlan to restore the default.

Syntax

```
switchport allowed vlan {add vlan-list [tagged | untagged] |
 remove vlan-list}
```

no switchport allowed vlan

add vlan-list - List of VLAN identifiers to add.

remove vlan-list - List of VLAN identifiers to remove.

vlan-list - Separate nonconsecutive VLAN identifiers with a comma and no spaces; use a hyphen to designate a range of IDs. (Range: 1-4094).

Default Setting

All ports are assigned to VLAN 1 by default. The default frame type is untagged.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

• A port, or a trunk with switchport mode set to **hybrid**, must be assigned to at least one VLAN as untagged.

- If a trunk has switchport mode set to **trunk** (i.e., 1Q Trunk), then you can only assign an interface to VLAN groups as a tagged member.
- Frames are always tagged within the switch. The tagged/untagged parameter used when adding a VLAN to an interface tells the switch whether to keep or remove the tag from a frame on egress.
- If none of the intermediate network devices nor the host at the other end of the connection supports VLANs, the interface should be added to these VLANs as an untagged member. Otherwise, it is only necessary to add at most one VLAN as untagged, and this should correspond to the native VLAN for the interface.
- If a VLAN on the forbidden list for an interface is manually added to that interface, the VLAN is automatically removed from the forbidden list for that interface.

Example

The following example shows how to add VLANs 1, 2, 5 and 6 to the allowed list as tagged VLANs for port 1:

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport allowed vlan add 1,2,5,6 tagged
Console(config-if)#
```

ingress-filtering the default.

switchport This command enables ingress filtering for an interface. Use the **no** form to restore

Syntax

[no] switchport ingress-filtering

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Ingress filtering only affects tagged frames.
- If ingress filtering is disabled and a port receives frames tagged for VLANs for which it is not a member, these frames will be flooded to all other ports (except for those VLANs explicitly forbidden on this port).
- ◆ If ingress filtering is enabled and a port receives frames tagged for VLANs for which it is not a member, these frames will be discarded.

 Ingress filtering does not affect VLAN independent BPDU frames, such as GVRP or STA. However, they do affect VLAN dependent BPDU frames, such as GMRP.

Example

The following example shows how to set the interface to port 1 and then enable ingress filtering:

```
Console(config)#interface ethernet 1/1
Console(config-if) #switchport ingress-filtering
Console(config-if)#
```

switchport mode This command configures the VLAN membership mode for a port. Use the **no** form to restore the default.

Syntax

switchport mode {access | hybrid | trunk}

no switchport mode

access - Specifies an access VLAN interface. The port transmits and receives untagged frames on a single VLAN only.

hybrid - Specifies a hybrid VLAN interface. The port may transmit tagged or untagged frames.

trunk - Specifies a port as an end-point for a VLAN trunk. A trunk is a direct link between two switches, so the port transmits tagged frames that identify the source VLAN. Note that frames belonging to the port's default VLAN (i.e., associated with the PVID) are also transmitted as tagged frames.

Default Setting

All ports are in hybrid mode with the PVID set to VLAN 1.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

Access mode is mutually exclusive with VLAN trunking (see the vlan-trunking command). If VLAN trunking is enabled on an interface, then that interface cannot be set to access mode, and vice versa.

Example

The following shows how to set the configuration mode to port 1, and then set the switchport mode to hybrid:

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport mode hybrid
Console(config-if)#
```

Related Commands

switchport acceptable-frame-types (584)

switchport native vlan This command configures the PVID (i.e., default VLAN ID) for a port. Use the **no** form to restore the default.

Syntax

switchport native vlan vlan-id

no switchport native vlan

vlan-id - Default VLAN ID for a port. (Range: 1-4094)

Default Setting

VLAN 1

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- When using Access mode, and an interface is assigned to a new VLAN, its PVID is automatically set to the identifier for that VLAN. When using Hybrid mode, the PVID for an interface can be set to any VLAN for which it is an untagged member.
- If acceptable frame types is set to **all** or switchport mode is set to **hybrid**, the PVID will be inserted into all untagged frames entering the ingress port.

Example

The following example shows how to set the PVID for port 1 to VLAN 3:

```
Console(config)#interface ethernet 1/1
Console(config-if) #switchport native vlan 3
Console(config-if)#
```

vlan-trunking This command allows unknown VLAN groups to pass through the specified interface. Use the **no** form to disable this feature.

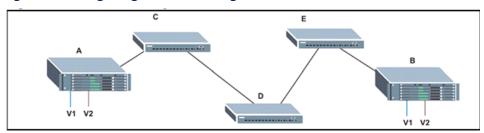
Syntax

[no] vlan-trunking

Default Setting

Disabled

Command Mode


Interface Configuration (Ethernet, Port Channel)

Command Usage

 Use this command to configure a tunnel across one or more intermediate switches which pass traffic for VLAN groups to which they do not belong.

The following figure shows VLANs 1 and 2 configured on switches A and B, with VLAN trunking being used to pass traffic for these VLAN groups across switches C, D and E.

Figure 6: Configuring VLAN Trunking

Without VLAN trunking, you would have to configure VLANs 1 and 2 on all intermediate switches – C, D and E; otherwise these switches would drop any frames with unknown VLAN group tags. However, by enabling VLAN trunking on the intermediate switch ports along the path connecting VLANs 1 and 2, you only need to create these VLAN groups in switches A and B. Switches C, D and E automatically allow frames with VLAN group tags 1 and 2 (groups that are unknown to those switches) to pass through their VLAN trunking ports.

- VLAN trunking is mutually exclusive with the "access" switchport mode (see the switchport mode command). If VLAN trunking is enabled on an interface, then that interface cannot be set to access mode, and vice versa.
- ◆ To prevent loops from forming in the spanning tree, all unknown VLANs will be bound to a single instance (either STP/RSTP or an MSTP instance, depending on the selected STA mode).
- If both VLAN trunking and ingress filtering are disabled on an interface, packets with unknown VLAN tags will still be allowed to enter this interface and will be flooded to all other ports where VLAN trunking is enabled. (In other words, VLAN trunking will still be effectively enabled for the unknown VLAN).

Example

The following example enables VLAN trunking on ports 9 and 10 to establish a path across the switch for unknown VLAN groups:

```
Console(config) #interface ethernet 1/9
Console(config-if) #vlan-trunking
Console(config-if) #interface ethernet 1/10
Console(config-if) #vlan-trunking
Console(config-if) #
```

Displaying VLAN Information

This section describes commands used to display VLAN information.

Table 108: Commands for Displaying VLAN Information

Command	Function	Mode
show interfaces status vlan	Displays status for the specified VLAN interface	NE, PE
show interfaces switchport	Displays the administrative and operational status of an interface	NE, PE
show vlan	Shows VLAN information	NE, PE

show vlan This command shows VLAN information.

Syntax

show vlan [**id** *vlan-id* | **name** *vlan-name*]

id - Keyword to be followed by the VLAN ID.

vlan-id - ID of the configured VLAN. (Range: 1-4094)

name - Keyword to be followed by the VLAN name.

vlan-name - ASCII string from 1 to 32 characters.

Default Setting

Shows all VLANs.

Command Mode

Normal Exec, Privileged Exec

Example

The following example shows how to display information for VLAN 1:

Configuring IEEE 802.1Q Tunneling

IEEE 802.1Q tunneling (QinQ tunneling) uses a single Service Provider VLAN (SPVLAN) for customers who have multiple VLANs. Customer VLAN IDs are preserved and traffic from different customers is segregated within the service provider's network even when they use the same customer-specific VLAN IDs. QinQ tunneling expands VLAN space by using a VLAN-in-VLAN hierarchy, preserving the customer's original tagged packets, and adding SPVLAN tags to each frame (also called double tagging).

This section describes commands used to configure QinQ tunneling.

Table 109: 802.1Q Tunneling Commands

Command	Function	Mode
dot1q-tunnel system-tunnel-control	Configures the switch to operate in normal mode or QinQ mode	GC
switchport dot1q-tunnel mode	Configures an interface as a QinQ tunnel port	IC
switchport dot1q-tunnel service match cvid	Creates a CVLAN to SPVLAN mapping entry	IC
switchport dot1q-tunnel tpid	Sets the Tag Protocol Identifier (TPID) value of a tunnel port	IC
show dot1q-tunnel	Displays the configuration of QinQ tunnel ports	PE
show interfaces switchport	Displays port QinQ operational status	PE

General Configuration Guidelines for QinQ

- 1. Configure the switch to QinQ mode (dot1q-tunnel system-tunnel-control).
- 2. Create a SPVLAN (vlan).
- **3.** Configure the QinQ tunnel access port to dot1Q-tunnel access mode (switchport dot1q-tunnel mode).
- **4.** Set the Tag Protocol Identifier (TPID) value of the tunnel access port. This step is required if the attached client is using a nonstandard 2-byte ethertype to identify 802.1Q tagged frames. The standard ethertype value is 0x8100. (See switchport dot1q-tunnel tpid.)
- **5.** Configure the QinQ tunnel access port to join the SPVLAN as an untagged member (switchport allowed vlan).
- **6.** Configure the SPVLAN ID as the native VID on the QinQ tunnel access port (switchport native vlan).
- 7. Configure the QinQ tunnel uplink port to dot1Q-tunnel uplink mode (switchport dot1q-tunnel mode).

Chapter 21 | VLAN Commands Configuring IEEE 802.1Q Tunneling

8. Configure the QinQ tunnel uplink port to join the SPVLAN as a tagged member (switchport allowed vlan).

Limitations for OinO

- ◆ The native VLAN for the tunnel uplink ports and tunnel access ports cannot be the same. However, the same service VLANs can be set on both tunnel port types.
- IGMP Snooping should not be enabled on a tunnel access port.
- If the spanning tree protocol is enabled, be aware that a tunnel access or tunnel uplink port may be disabled if the spanning tree structure is automatically reconfigured to overcome a break in the tree. It is therefore advisable to disable spanning tree on these ports.

system-tunnel-control QinQ operating mode.

dot1q-tunnel This command sets the switch to operate in QinQ mode. Use the **no** form to disable

Syntax

[no] dot1q-tunnel system-tunnel-control

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

QinQ tunnel mode must be enabled on the switch for QinQ interface settings to be functional.

Example

```
Console(config) #dot1g-tunnel system-tunnel-control
Console(config)#
```

Related Commands

show dot1q-tunnel (597) show interfaces switchport (429)

switchport This command configures an interface as a QinQ tunnel port. Use the **no** form to dot1q-tunnel mode disable QinQ on the interface.

Syntax

```
switchport dot1q-tunnel mode {access | uplink}
no switchport dot1q-tunnel mode
```

access – Sets the port as an 802.1Q tunnel access port. uplink – Sets the port as an 802.1Q tunnel uplink port.

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- ◆ QinQ tunneling must be enabled on the switch using the dot1q-tunnel system-tunnel-control command before the switchport dot1q-tunnel mode interface command can take effect.
- When a tunnel uplink port receives a packet from a customer, the customer tag (regardless of whether there are one or more tag layers) is retained in the inner tag, and the service provider's tag added to the outer tag.
- When a tunnel uplink port receives a packet from the service provider, the outer service provider's tag is stripped off, and the packet passed on to the VLAN indicated by the inner tag. If no inner tag is found, the packet is passed onto the native VLAN defined for the uplink port.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport dot1q-tunnel mode access
Console(config-if)#
```

Related Commands

show dot1q-tunnel (597) show interfaces switchport (429)

match cvid

switchport This command creates a CVLAN to SPVLAN mapping entry. Use the **no** form to dot1q-tunnel service delete a VLAN mapping entry.

Syntax

switchport dot1q-tunnel service svid match cvid cvid

svid - VLAN ID for the outer VLAN tag (Service Provider VID). (Range: 1-4094) cvid - VLAN ID for the inner VLAN tag (Customer VID). (Range: 1-4094)

Default Setting

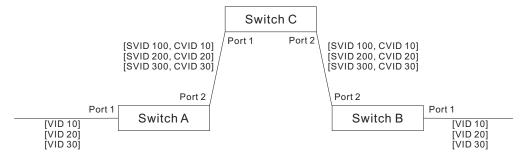
Default mapping uses the PVID of the ingress port on the edge router for the SPVID.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- The inner VLAN tag of a customer packet entering the edge router of a service provider's network is mapped to an outer tag indicating the service provider VLAN that will carry this traffic across the 802.1Q tunnel. This process is performed in a transparent manner.
- When priority bits are found in the inner tag, these are also copied to the outer tag. This allows the service provider to differentiate service based on the indicated priority and appropriate methods of queue management at intermediate nodes across the tunnel.
- Rather than relying on standard service paths and priority queuing, QinQ VLAN mapping can be used to further enhance service by defining a set of differentiated service pathways to follow across the service provider's network for traffic arriving from specified inbound customer VLANs.
- Note that all customer interfaces should be configured as access interfaces (that is, a user-to-network interface) and service provider interfaces as uplink interfaces (that is, a network-to-network interface). Use the switchport dot1g-tunnel mode uplink command to set an interface to access or uplink mode.


Example

This example sets the SVID to 99 in the outer tag for egress packets exiting port 1 when the packet's CVID is 2.

```
Console(config)#interface ethernet 1/1
Console(config-if) #switchport dot1q-tunnel service 99 match cvid 2
Console(config-if)#
```

The following example maps C-VLAN 10 to S-VLAN 100, C-VLAN 20 to S-VLAN 200 and C-VLAN 30 to S-VLAN 300 for ingress traffic on port 1 of Switches A and B.

Figure 7: Mapping QinQ Service VLAN to Customer VLAN

Step 1. Configure Switch A and B.

1. Create VLANs 100, 200 and 300.

```
Console(config) #vlan database
Console(config-vlan) #vlan 100,200,300 media ethernet state active
```

2. Enable QinQ.

Console(config) #dot1q-tunnel system-tunnel-control

3. Configure port 2 as a tagged member of VLANs 100, 200 and 300 using uplink mode.

```
Console(config)#interface ethernet 1/2
Console(config-if)#switchport allowed vlan add 100,200,300 tagged
Console(config-if)#switchport dot1q-tunnel mode uplink
```

4. Configures port 1 as an untagged member of VLANs 100, 200 and 300 using access mode.

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport allowed vlan add 100,200,300 untagged
Console(config-if) #switchport dot1q-tunnel mode access
```

5. Configure the following selective QinQ mapping entries.

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport dot1q-tunnel service 100 match cvid 10
Console(config-if)#switchport dot1q-tunnel service 200 match cvid 20
Console(config-if)#switchport dot1q-tunnel service 300 match cvid 30
```

6. Configures port 1 as member of VLANs 10, 20 and 30 to avoid filtering out incoming frames tagged with VID 10, 20 or 30 on port 1

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport allowed vlan add 10,20,30
```

7. Verify configuration settings.

Console#show dot1q-tunnel service 802.1Q Tunnel Service Subscriptions

Port		Match	${\tt C-VID}$	S-VID	
Eth	1/	1		10	100
Eth	1/	1		20	200
Eth	1/	1		30	300

Step 2. Configure Switch C.

1. Create VLAN 100, 200 and 300.

```
Console(config) #vlan database
Console(config-vlan) #vlan 100,200,300 media ethernet state active
```

2. Configure port 1 and port 2 as tagged members of VLAN 100, 200 and 300.

```
Console(config) #interface ethernet 1/1,2
Console(config-if) #switchport allowed vlan add 100,200,300 tagged
```

switchport This command sets the Tag Protocol Identifier (TPID) value of a tunnel port. Use the dot1g-tunnel tpid no form to restore the default setting.

Syntax

switchport dot1q-tunnel tpid tpid

no switchport dot1q-tunnel tpid

tpid – Sets the ethertype value for 802.1Q encapsulation. This identifier is used to select a nonstandard 2-byte ethertype to identify 802.1Q tagged frames. The standard ethertype value is 0x8100. (Range: 0800-FFFF hexadecimal)

Default Setting

0x8100

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Use the **switchport dot1q-tunnel tpid** command to set a custom 802.1Q ethertype value on the selected interface. This feature allows the switch to interoperate with third-party switches that do not use the standard 0x8100 ethertype to identify 802.1Q-tagged frames. For example, 0x1234 is set as the custom 802.1Q ethertype on a trunk port, incoming frames containing that ethertype are assigned to the VLAN contained in the tag following the ethertype field, as they would be with a standard 802.1Q trunk. Frames arriving on the port containing any other ethertype are looked upon as untagged frames, and assigned to the native VLAN of that port.
- The specified ethertype only applies to ports configured in Uplink mode using the switchport dot1q-tunnel mode command. If the port is in normal mode (i.e, unspecified), the TPID is always 8100. If the port is in Access mode, received packets are processes as untagged packets.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #switchport dot1q-tunnel tpid 9100
Console(config-if)#
```

Related Commands

show interfaces switchport (429)

show dot1q-tunnel This command displays information about QinQ tunnel ports.

Syntax

```
show dot1q-tunnel [interface interface [service svid] | service [svid]]
interface
    ethernet unit/port
    unit - Unit identifier. (Range: 1-8)
```

port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)

svid - VLAN ID for the outer VLAN tag (SPVID). (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console(config) #dot1q-tunnel system-tunnel-control
Console(config)#interface ethernet 1/1
Console(config-if) #switchport dot1g-tunnel mode access
Console(config-if)#interface ethernet 1/2
Console(config-if) #switchport dot1q-tunnel mode uplink
Console(config-if)#end
Console#show dot1q-tunnel
802.1Q Tunnel Status : Enabled
Port
        Mode TPID (hex)
Eth 1/ 1 Access 8100
Eth 1/ 2 Uplink 8100
Eth 1/ 3 Normal 8100
Console#show dot1q-tunnel interface ethernet 1/5
802.1Q Tunnel Service Subscriptions
         Match C-VID S-VID
 Port
 Eth 1/5 1 100
Console#show dot1q-tunnel service 100
802.10 Tunnel Service Subscriptions
         Match C-VID S-VID
 Eth 1/ 5
            1 100
1 100
 Eth 1/ 6
Console#
```

Related Commands

switchport dot1q-tunnel mode (593)

Configuring L2CP Tunneling

This section describes the commands used to configure Layer 2 Protocol Tunneling (L2PT).

Table 110: L2 Protocol Tunnel Commands

Command	Function	Mode
l2protocol-tunnel tunnel- dmac	Configures the destination address for Layer 2 Protocol Tunneling	GC
switchport I2protocol-tunnel	Enables Layer 2 Protocol Tunneling for the specified protocol	IC
show I2protocol-tunnel	Shows settings for Layer 2 Protocol Tunneling	PE

I2protocol-tunnel This command configures the destination address for Layer 2 Protocol Tunneling tunnel-dmac (L2PT). Use the **no** form to restore the default setting.

Syntax

I2protocol-tunnel tunnel-dmac mac-address

mac-address – The switch rewrites the destination MAC address in all upstream L2PT protocol packets (i.e, STP BPDUs) to this value, and forwards them on to uplink ports. The MAC address must be specified in the format XX-XX-XX-XX-XX Or XXXXXXXXXXXX.

Default Setting

01-12-CF-.00-00-02, proprietary tunnel address

Command Mode

Global Configuration

Command Usage

- When L2PT is not used, protocol packets (such as STP) are flooded to 802.1Q access ports on the same edge switch, but filtered from 802.1Q tunnel ports. This creates disconnected protocol domains in the customer's network.
- L2PT can be used to pass various types of protocol packets belonging to the same customer transparently across a service provider's network. In this way, normally segregated network segments can be configured to function inside a common protocol domain.
- L2PT encapsulates protocol packets entering ingress ports on the service provider's edge switch, replacing the destination MAC address with a

proprietary MAC address (for example, the spanning tree protocol uses 10-12-CF-00-00-02), a reserved address for other specified protocol types (as defined in IEEE 802.1ad – Provider Bridges), or a user-defined address. All intermediate switches carrying this traffic across the service provider's network treat these encapsulated packets in the same way as normal data, forwarding them across to the tunnel's egress port. The egress port decapsulates these packets, restores the proper protocol and MAC address information, and then floods them onto the same VLANs at the customer's remote site (via all of the appropriate tunnel ports and access ports¹³ connected to the same metro VLAN).

◆ The way in which L2PT processes packets is based on the following criteria – (1) packet is received on a QinQ uplink port, (2) packet is received on a QinQ access port, or (3) received packet is Cisco-compatible L2PT (i.e., as indicated by a proprietary MAC address).

Processing protocol packets defined in IEEE 802.1ad – Provider Bridges

- When an IEEE 802.1ad protocol packet is received on an uplink port (i.e., an 802.1Q tunnel ingress port connecting the edge switch to the service provider network)
 - with the destination address 01-80-C2-00-00,0B~0F (C-VLAN tag), it is forwarded to all QinQ uplink ports and QinQ access ports in the same S-VLAN for which L2PT is enabled for that protocol.
 - with the destination address 01-80-C2-00-00-01~0A (S-VLAN tag), it is filtered, decapsulated, and processed locally by the switch if the protocol is supported.
- ◆ When a protocol packet is received on an access port (i.e., an 802.1Q trunk port connecting the edge switch to the local customer network)
 - with the destination address 01-80-C2-00-00-00,0B~0F (C-VLAN), and
 - L2PT is enabled on the port, the frame is forwarded to all QinQ uplink ports and QinQ access ports on which L2PT is enabled for that protocol in the same S-VLAN.
 - L2PT is disabled on the port, the frame is decapsulated and processed locally by the switch if the protocol is supported.
 - with destination address 01-80-C2-00-00-01~0A (S-VLAN), the frame is filtered, decapsulated, and processed locally by the switch if the protocol is supported.

^{13.} Access ports in this context are 802.1Q trunk ports.

Processing Cisco-compatible protocol packets

- ♦ When a Cisco-compatible L2PT packet is received on an uplink port, and
 - recognized as a CDP/VTP/STP/PVST+ protocol packet (where STP means STP/RSTP/MSTP), it is forwarded to the following ports in the same S-VLAN:

 (a) all access ports for which L2PT has been disabled, and (b) all uplink ports.
 - recognized as a Generic Bridge PDU Tunneling (GBPT) protocol packet (i.e., having the destination address 01-00-0C-CD-CD-D0), it is forwarded to the following ports in the same S-VLAN:
 - other access ports for which L2PT is enabled after decapsulating the packet and restoring the proper protocol and MAC address information.
 - all uplink ports.
- ♦ When a Cisco-compatible L2PT packet is received on an access port, and
 - recognized as a CDP/VTP/STP/PVST+ protocol packet, and
 - L2PT is enabled on this port, it is forwarded to the following ports in the same S-VLAN: (a) other access ports for which L2PT is enabled, and (b) uplink ports after rewriting the destination address to make it a GBPT protocol packet (i.e., setting the destination address to 01-00-0C-CD-CD-D0).
 - L2PT is disabled on this port, it is forwarded to the following ports in the same S-VLAN: (a) other access ports for which L2PT is disabled, and (b) all uplink ports.
 - recognized as a GBPT protocol packet (i.e., having the destination address 01-00-0C-CD-D0), and
 - L2PT is enabled on this port, it is forwarded to other access ports in the same S-VLAN for which L2PT is enabled
 - L2PT is disabled on this port, it is forwarded to the following ports in the same S-VLAN: (a) other access ports for which L2PT is disabled, and (b) all uplink ports.
- ◆ For L2PT to function properly, QinQ must be enabled on the switch using the dot1q-tunnel system-tunnel-control command, and the interface configured to 802.1Q tunnel mode using the switchport dot1q-tunnel mode command.

Example

```
Console(config) #dot1q-tunnel system-tunnel-control
Console(config) #12protocol-tunnel tunnel-dmac 01-80-C2-00-00-01
Console(config-)#
```

switchport This command enables Layer 2 Protocol Tunneling (L2PT) for the specified protocol. **I2protocol-tunnel** Use the **no** form to disable L2PT for the specified protocol.

Syntax

cdp - Cisco Discovery Protocol

Ildp - Link Layer Discovery Protocol

pvst+ - Cisco Per VLAN Spanning Tree Plus

spanning-tree - Spanning Tree (STP, RSTP, MSTP)

vtp - Cisco VLAN Trunking Protocol

Default Setting

Disabled for all protocols

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Refer to the Command Usage section for the |2protocol-tunnel tunnel-dmac command.
- For L2PT to function properly, QinQ must be enabled on the switch using the dot1q-tunnel system-tunnel-control command, and the interface configured to 802.1Q tunnel mode using the switchport dot1q-tunnel mode command.

Example

```
Console(config) #dot1q-tunnel system-tunnel-control
Console(config) #interface ethernet 1/1
Console(config-if)#switchport dot1q-tunnel mode access
Console(config-if) #switchport 12protocol-tunnel spanning-tree
Console(config-if)#
```

show I2protocol-tunnel

show This command shows settings for Layer 2 Protocol Tunneling (L2PT).

Command Mode

Privileged Exec

Example

```
Console#show 12protocol-tunnel
Layer 2 Protocol Tunnel

Tunnel MAC Address: 01-12-CF-00-00

Interface Protocol

Eth 1/ 1 Spanning Tree

Console#
```

Configuring VLAN Translation

QinQ tunneling uses double tagging to preserve the customer's VLAN tags on traffic crossing the service provider's network. However, if any switch in the path crossing the service provider's network does not support this feature, then the switches directly connected to that device can be configured to swap the customer's VLAN ID with the service provider's VLAN ID for upstream traffic, or the service provider's VLAN ID with the customer's VLAN ID for downstream traffic.

This section describes commands used to configure VLAN translation.

Table 111: VLAN Translation Commands

Command	Function	Mode
switchport vlan-translation	Maps VLAN IDs between the customer and service provider	IC
show vlan-translation	Displays the configuration settings for VLAN translation	PE

switchport vlan-translation

switchport This command maps VLAN IDs between the customer and service provider.

Syntax

switchport vlan-translation original-vlan new-vlan
no switchport vlan-translation original-vlan
original-vlan - The original VLAN ID. (Range: 1-4094)
new-vlan - The new VLAN ID. (Range: 1-4094)

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

◆ If the next switch upstream does not support QinQ tunneling, then use this command to map the customer's VLAN ID to the service provider's VLAN ID for the upstream port. Similarly, if the next switch downstream does not support QinQ tunneling, then use this command to map the service provider's VLAN ID to the customer's VLAN ID for the downstream port. Note that one command maps both the *original-vlan* to *new-vlan* for ingress traffic and the *new-vlan* to *original-vlan* for egress traffic on the specified port.

For example, assume that the upstream switch does not support QinQ tunneling. If the command **switchport vlan-translation 10 100** is used to map VLAN 10 to VLAN 100 for upstream traffic entering port 1, and VLAN 100 to VLAN 10 for downstream traffic leaving port 1, then the VLAN IDs will be swapped as shown below.

Figure 8: Configuring VLAN Translation

- The maximum number of VLAN translation entries is 8 per port, and up to 96 for the system. However, note that configuring a large number of entries may degrade the performance of other processes that also use the TCAM, such as IP Source Guard filter rules, Quality of Service (QoS) processes, QinQ, MAC-based VLANs, VLAN translation, or traps.
- If VLAN translation is set on an interface with this command, and the same interface is also configured as a QinQ access port with the switchport dot1q-tunnel mode command, VLAN tag assignments will be determined by the QinQ process, not by VLAN translation.

Example

This example configures VLAN translation for Port 1 as described in the Command Usage section above.

Console#

show vlan-translation This command displays the configuration settings for VLAN translation.

Syntax

show vlan-translation [interface interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) *port* - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

```
Console#show vlan-translation

Interface Old VID New VID
------
Eth 1/ 1 10 100

Console#
```

Configuring Protocol-based VLANs

The network devices required to support multiple protocols cannot be easily grouped into a common VLAN. This may require non-standard devices to pass traffic between different VLANs in order to encompass all the devices participating in a specific protocol. This kind of configuration deprives users of the basic benefits of VLANs, including security and easy accessibility.

To avoid these problems, you can configure this switch with protocol-based VLANs that divide the physical network into logical VLAN groups for each required protocol. When a frame is received at a port, its VLAN membership can then be determined based on the protocol type in use by the inbound packets.

Table 112: Protocol-based VLAN Commands

Command	Function	Mode
protocol-vlan protocol-group	Create a protocol group, specifying the supported protocols	GC
protocol-vlan protocol-group	Maps a protocol group to a VLAN	IC

Table 112: Protocol-based VLAN Commands (Continued)

Command	Function	Mode
show protocol-vlan protocol-group	Shows the configuration of protocol groups	PE
show interfaces protocol-vlan protocol-group	Shows the interfaces mapped to a protocol group and the corresponding VLAN	PE

To configure protocol-based VLANs, follow these steps:

- 1. First configure VLAN groups for the protocols you want to use (page 582). Although not mandatory, we suggest configuring a separate VLAN for each major protocol running on your network. Do not add port members at this time.
- **2.** Create a protocol group for each of the protocols you want to assign to a VLAN using the protocol-vlan protocol-group command (Global Configuration mode).
- **3.** Then map the protocol for each interface to the appropriate VLAN using the protocol-vlan protocol-group command (Interface Configuration mode).

protocol-vlan protocol-group (Configuring Groups)

protocol-vlan This command creates a protocol group, or to add specific protocols to a group. Use **rotocol-group** the **no** form to remove a protocol group.

Syntax

protocol-vlan protocol-group *group-id* [{add | remove} frame-type *frame* protocol-type *protocol*]

no protocol-vlan protocol-group group-id

group-id - Group identifier of this protocol group. (Range: 1-2147483647)

*frame*¹⁴ - Frame type used by this protocol. (Options: ethernet, rfc_1042, llc_other)

protocol - Protocol type. The only option for the llc_other frame type is ipx_raw. The options for all other frames types include: arp, ip, ipv6, rarp.

Default Setting

No protocol groups are configured.

Command Mode

Global Configuration

^{14.} SNAP frame types are not supported by this switch due to hardware limitations.

Example

The following creates protocol group 1, and specifies Ethernet frames with IP and ARP protocol types:

```
Console(config) #protocol-vlan protocol-group 1 add frame-type ethernet
  protocol-type ip
Console(config) #protocol-vlan protocol-group 1 add frame-type ethernet
  protocol-type arp
Console(config) #
```

protocol-vlan protocol-group (Configuring Interfaces)

protocol-vlan This command maps a protocol group to a VLAN for the current interface. Use the **rotocol-group no** form to remove the protocol mapping for this interface.

Syntax

protocol-vlan protocol-group *group-id* vlan *vlan-id* priority priority no protocol-vlan protocol-group *group-id* vlan

group-id - Group identifier of this protocol group. (Range: 1-2147483647)

vlan-id - VLAN to which matching protocol traffic is forwarded.

(Range: 1-4094)

priority - The priority assigned to untagged ingress traffic.

(Range: 0-7, where 7 is the highest priority)

Default Setting

No protocol groups are mapped for any interface.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- When creating a protocol-based VLAN, only assign interfaces via this command. If you assign interfaces using any of the other VLAN commands (such as the vlan command), these interfaces will admit traffic of any protocol type into the associated VLAN.
- When MAC-based, IP subnet-based, and protocol-based VLANs are supported concurrently, priority is applied in this sequence, and then port-based VLANs last.
- When a frame enters a port that has been assigned to a protocol VLAN, it is processed in the following manner:
 - If the frame is tagged, it will be processed according to the standard rules applied to tagged frames.
 - If the frame is untagged and the protocol type matches, the frame is forwarded to the appropriate VLAN.

If the frame is untagged but the protocol type does not match, the frame is forwarded to the default VLAN for this interface.

Example

The following example maps the traffic entering Port 1 which matches the protocol type specified in protocol group 1 to VLAN 2.

```
Console(config)#interface ethernet 1/1
Console(config-if) #protocol-vlan protocol-group 1 vlan 2 priority 0
Console(config-if)#
```

protocol-group

show protocol-vlan This command shows the frame and protocol type associated with protocol groups.

Syntax

show protocol-vlan protocol-group [group-id]

group-id - Group identifier for a protocol group. (Range: 1-2147483647)

Default Setting

All protocol groups are displayed.

Command Mode

Privileged Exec

Example

This shows protocol group 1 configured for IP over Ethernet:

```
Console#show protocol-vlan protocol-group
Protocol Group ID Frame Type Protocol Type
_____
         1 ethernet 08 00
```

protocol-vlan protocol-group

show interfaces This command shows the mapping from protocol groups to VLANs for the selected interfaces.

Syntax

show interfaces protocol-vlan protocol-group [interface]

interface

ethernet *unit/port*

```
unit - Unit identifier. (Range: 1-8)
    port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Default Setting

The mapping for all interfaces is displayed.

Command Mode

Privileged Exec

Example

This shows that traffic entering Port 1 that matches the specifications for protocol group 1 will be mapped to VLAN 2:

```
Console#show interfaces protocol-vlan protocol-group

Port ProtocolGroup ID VLAN ID

Eth 1/1 1 vlan2

Console#
```

Configuring IP Subnet VLANs

When using IEEE 802.1Q port-based VLAN classification, all untagged frames received by a port are classified as belonging to the VLAN whose VID (PVID) is associated with that port.

When IP subnet-based VLAN classification is enabled, the source address of untagged ingress frames are checked against the IP subnet-to-VLAN mapping table. If an entry is found for that subnet, these frames are assigned to the VLAN indicated in the entry. If no IP subnet is matched, the untagged frames are classified as belonging to the receiving port's VLAN ID (PVID).

Table 113: IP Subnet VLAN Commands

Command	Function	Mode
subnet-vlan	Defines the IP Subnet VLANs	GC
show subnet-vlan	Displays IP Subnet VLAN settings	PE

subnet-vlan This command configures IP Subnet VLAN assignments. Use the **no** form to remove an IP subnet-to-VLAN assignment.

Syntax

subnet-vlan subnet *ip-address mask* **vlan** *vlan-id* [**priority** *priority*] no subnet-vlan subnet {ip-address mask | all}

ip-address – The IP address that defines the subnet. Valid IP addresses consist of four decimal numbers, 0 to 255, separated by periods.

mask – This mask identifies the host address bits of the IP subnet.

vlan-id – VLAN to which matching IP subnet traffic is forwarded. (Range: 1-4094)

priority – The priority assigned to untagged ingress traffic. (Range: 0-7, where 7 is the highest priority)

Default Setting

Priority: 0

Command Mode

Global Configuration

Command Usage

- Each IP subnet can be mapped to only one VLAN ID. An IP subnet consists of an IP address and a subnet mask. The specified VLAN need not be an existing VLAN.
- When an untagged frame is received by a port, the source IP address is checked against the IP subnet-to-VLAN mapping table, and if an entry is found, the corresponding VLAN ID is assigned to the frame. If no mapping is found, the PVID of the receiving port is assigned to the frame.
- The IP subnet cannot be a broadcast or multicast IP address.
- When MAC-based, IP subnet-based, and protocol-based VLANs are supported concurrently, priority is applied in this sequence, and then port-based VLANs last.

Example

The following example assigns traffic for the subnet 192.168.12.192, mask 255.255.255.224, to VLAN 4.

Console(config) #subnet-vlan subnet 192.168.12.192 255.255.255.224 vlan 4 Console(config)#

show subnet-vlan This command displays IP Subnet VLAN assignments.

Command Mode

Privileged Exec

Command Usage

- Use this command to display subnet-to-VLAN mappings.
- The last matched entry is used if more than one entry can be matched.

Example

The following example displays all configured IP subnet-based VLANs.

P Address	Mask	VLAN ID	Priority
00 160 10 0	255 255 255 120		
.92.168.12.0	255.255.255.128	1	0
.92.168.12.128	255.255.255.192	3	0
92.168.12.192	255.255.255.224	4	0
92.168.12.224	255.255.255.240	5	0
92.168.12.240	255.255.255.248	6	0
92.168.12.248	255.255.255.252	7	0
92.168.12.252	255.255.255.254	8	0
92.168.12.254	255.255.255.255	9	0
92.168.12.255	255.255.255.255	1.0	0

Configuring MAC Based VLANs

When using IEEE 802.1Q port-based VLAN classification, all untagged frames received by a port are classified as belonging to the VLAN whose VID (PVID) is associated with that port.

When MAC-based VLAN classification is enabled, the source address of untagged ingress frames are checked against the MAC address-to-VLAN mapping table. If an entry is found for that address, these frames are assigned to the VLAN indicated in the entry. If no MAC address is matched, the untagged frames are classified as belonging to the receiving port's VLAN ID (PVID).

Table 114: MAC Based VLAN Commands

Command	Function	Mode
mac-vlan	Defines the IP Subnet VLANs	GC
show mac-vlan	Displays IP Subnet VLAN settings	PE

mac-vlan This command configures MAC address-to-VLAN mapping. Use the **no** form to remove an assignment.

Syntax

mac-vlan mac-address mac-address [mask mask-address] vlan vlan-id [priority priority]

no mac-vlan mac-address [mask mask-address] | all}

mac-address – The source MAC address to be matched. Configured MAC addresses can only be unicast addresses. The MAC address must be specified in the format xx-xx-xx-xx or xxxxxxxxxxx.

mask-address - Identifies a range of MAC addresses. The mask can be specified in the format xx-xx-xx-xx-xx or xxxxxxxxxx, where an equivalent binary value "1" means relevant and "0" means ignore.

vlan-id – VLAN to which the matching source MAC address traffic is forwarded. (Range: 1-4094)

priority – The priority assigned to untagged ingress traffic. (Range: 0-7, where 7 is the highest priority)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- ◆ The MAC-to-VLAN mapping applies to all ports on the switch.
- Source MAC addresses can be mapped to only one VLAN ID.
- Configured MAC addresses cannot be broadcast or multicast addresses.
- When MAC-based, IP subnet-based, and protocol-based VLANs are supported concurrently, priority is applied in this sequence, and then port-based VLANs last.

Example

The following example assigns traffic from source MAC address 00-00-00-11-22-33 to VLAN 10.

```
Console(config) #mac-vlan mac-address 00-00-00-11-22-33 mask FF-FF-FF-00-00
  vlan 10
Console(config) #
```

show mac-vlan This command displays MAC address-to-VLAN assignments.

Command Mode

Privileged Exec

Command Usage

Use this command to display MAC address-to-VLAN mappings.

Example

The following example displays all configured MAC address-based VLANs.

Console#show mac-vlan				
	MAC Address	VLAN ID	Priority	
	00-00-00-11-22-33 Console#	10	0	

Configuring Voice VLANs

The switch allows you to specify a Voice VLAN for the network and set a CoS priority for the VoIP traffic. VoIP traffic can be detected on switch ports by using the source MAC address of packets, or by using LLDP (IEEE 802.1AB) to discover connected VoIP devices. When VoIP traffic is detected on a configured port, the switch automatically assigns the port to the Voice VLAN. Alternatively, switch ports can be manually configured.

Table 115: Voice VLAN Commands

Command	Function	Mode
voice vlan	Defines the Voice VLAN ID	GC
voice vlan aging	Configures the aging time for Voice VLAN ports	GC
voice vlan mac-address	Configures VoIP device MAC addresses	GC
switchport voice vlan	Sets the Voice VLAN port mode	IC
switchport voice vlan priority	Sets the VoIP traffic priority for ports	IC
switchport voice vlan rule	Sets the automatic VoIP traffic detection method for ports	IC
switchport voice vlan security	Enables Voice VLAN security on ports	IC
show voice vlan	Displays Voice VLAN settings	PE

voice vlan This command enables VoIP traffic detection and defines the Voice VLAN ID. Use the **no** form to disable the Voice VLAN.

Syntax

voice vlan voice-vlan-id

no voice vlan

voice-vlan-id - Specifies the voice VLAN ID. (Range: 1-4094)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- When IP telephony is deployed in an enterprise network, it is recommended to isolate the Voice over IP (VoIP) network traffic from other data traffic. Traffic isolation helps prevent excessive packet delays, packet loss, and jitter, which results in higher voice quality. This is best achieved by assigning all VoIP traffic to a single VLAN.
- VoIP traffic can be detected on switch ports by using the source MAC address of packets, or by using LLDP (IEEE 802.1AB) to discover connected VoIP devices. When VoIP traffic is detected on a configured port, the switch automatically assigns the port as a tagged member of the Voice VLAN.
- Only one Voice VLAN is supported and it must already be created on the switch before it can be specified as the Voice VLAN.
- The Voice VLAN ID cannot be modified when the global auto-detection status is enabled (see the switchport voice vlan command.

Example

The following example enables VoIP traffic detection and specifies the Voice VLAN ID as 1234.

Console(config) #voice vlan 1234 Console(config)#

voice vlan aging This command sets the Voice VLAN ID time out. Use the **no** form to restore the default.

Syntax

voice vlan aging minutes

no voice vlan

minutes - Specifies the port Voice VLAN membership time out. (Range: 5-43200 minutes)

Default Setting

1440 minutes

Command Mode

Global Configuration

Command Usage

The Voice VLAN aging time is the time after which a port is removed from the Voice VLAN when VoIP traffic is no longer received on the port.

The VoIP aging time starts to count down when the OUI's MAC address expires from the MAC address table. Therefore, the MAC address aging time should be added to the overall aging time. For example, if you configure the MAC address table aging time to 30 seconds, and voice VLAN aging time to 5 minutes, then after 5.5 minutes, a port will be removed from the voice VLAN when VoIP traffic is no longer received on the port. Alternatively, if you clear the MAC address table manually, then the switch will also start counting down the voice VLAN aging time.

Example

The following example configures the Voice VLAN aging time as 3000 minutes.

```
Console(config) #voice vlan aging 3000
Console(config)#
```

voice vlan This command specifies MAC address ranges to add to the OUI Telephony list. Use mac-address the no form to remove an entry from the list.

Syntax

voice vlan mac-address mac-address mask mask-address [description description]

no voice vlan mac-address mac-address mask mask-address

mac-address - Defines a MAC address OUI that identifies VoIP devices in the network. (For example, 01-23-45-00-00-00)

mask-address - Identifies a range of MAC addresses. (Range: 80-00-00-00-00-00 to FF-FF-FF-FF)

description - User-defined text that identifies the VoIP devices. (Range: 1-32 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- VoIP devices attached to the switch can be identified by the manufacturer's Organizational Unique Identifier (OUI) in the source MAC address of received packets. OUI numbers are assigned to manufacturers and form the first three octets of device MAC addresses. The MAC OUI numbers for VoIP equipment can be configured on the switch so that traffic from these devices is recognized as VoIP.
- Setting a mask of FF-FF-FF-00-00-00 identifies all devices with the same OUI (the first three octets). Other masks restrict the MAC address range. Setting a mask of FF-FF-FF-FF-FF specifies a single MAC address.

Example

The following example adds a MAC OUI to the OUI Telephony list.

```
Console(config) #voice vlan mac-address 00-12-34-56-78-90 mask ff-ff-ff-00-00-
 00 description A new phone
Console(config)#
```

switchport voice vlan This command specifies the Voice VLAN mode for ports. Use the **no** form to disable the Voice VLAN feature on the port.

Syntax

switchport voice vlan {manual | auto}

no switchport voice vlan

manual - The Voice VLAN feature is enabled on the port, but the port must be manually added to the Voice VLAN.

auto - The port will be added as a tagged member to the Voice VLAN when VoIP traffic is detected on the port.

Default Setting

Disabled

Command Mode

Interface Configuration

Command Usage

- When auto is selected, you must select the method to use for detecting VoIP traffic, either OUI or 802.1ab (LLDP) using the switchport voice vlan rule command. When OUI is selected, be sure to configure the MAC address ranges in the Telephony OUI list using the voice vlan mac-address command.
- All ports are set to VLAN hybrid mode by default. Prior to enabling VoIP for a port (by setting the VoIP mode to Auto or Manual as described below), ensure that VLAN membership is not set to access mode using the switchport mode command.

Example

The following example sets port 1 to Voice VLAN auto mode.

```
Console(config)#interface ethernet 1/1
Console(config-if) #switchport voice vlan auto
Console(config-if)#
```

switchport voice vlan This command specifies a CoS priority for VoIP traffic on a port. Use the **no** form to **priority** restore the default priority on a port.

Syntax

switchport voice vlan priority priority-value no switchport voice vlan priority

priority-value - The CoS priority value. (Range: 0-6)

Default Setting

6

Command Mode

Interface Configuration

Command Usage

Specifies a CoS priority to apply to the port VoIP traffic on the Voice VLAN. The priority of any received VoIP packet is overwritten with the new priority when the Voice VLAN feature is active for the port.

Example

The following example sets the CoS priority to 5 on port 1.

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport voice vlan priority 5
Console(config-if)#
```

switchport voice vlan This command selects a method for detecting VoIP traffic on a port. Use the no rule form to disable the detection method on the port.

Syntax

[no] switchport voice vlan rule {oui | lldp}

oui - Traffic from VoIP devices is detected by the Organizationally Unique Identifier (OUI) of the source MAC address.

Ildp - Uses LLDP to discover VoIP devices attached to the port.

Default Setting

OUI: Enabled LLDP: Disabled

Command Mode

Interface Configuration

Command Usage

- When OUI is selected, be sure to configure the MAC address ranges in the Telephony OUI list (see the voice vlan mac-address command. MAC address OUI numbers must be configured in the Telephony OUI list so that the switch recognizes the traffic as being from a VoIP device.
- ◆ LLDP checks that the "telephone bit" in the system capability TLV is turned on. See "LLDP Commands" on page 777 for more information on LLDP.

Example

The following example enables the OUI method on port 1 for detecting VoIP traffic.

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport voice vlan rule oui
Console(config-if)#
```

switchport voice vlan This command enables security filtering for VoIP traffic on a port. Use the **no** form **security** to disable filtering on a port.

Syntax

[no] switchport voice vlan security

Default Setting

Disabled

Command Mode

Interface Configuration

Command Usage

- Security filtering discards any non-VoIP packets received on the port that are tagged with the voice VLAN ID. VoIP traffic is identified by source MAC addresses configured in the Telephony OUI list, or through LLDP that discovers VoIP devices attached to the switch. Packets received from non-VoIP sources are dropped.
- When enabled, be sure the MAC address ranges for VoIP devices are configured in the Telephony OUI list (voice vlan mac-address).

Example

The following example enables security filtering on port 1.

```
Console(config) #interface ethernet 1/1
Console(config-if) #switchport voice vlan security
Console(config-if)#
```

show voice vlan This command displays the Voice VLAN settings on the switch and the OUI Telephony list.

Syntax

show voice vlan {oui | status}

oui - Displays the OUI Telephony list.

status - Displays the global and port Voice VLAN settings.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show voice vlan status
Global Voice VLAN Status
Voice VLAN Status : Enabled
Voice VLAN ID : 1234
Voice VLAN aging time : 1440 minutes
Voice VLAN Port Summary
      Mode Security Rule Priority Remaining Age
Port.
                                          (minutes)
_____ ____
Eth 1/ 1 Auto Enabled OUI
                                      6 100
                                      6 NA
Eth 1/ 2 Disabled Disabled OUI
                                      5 100
Eth 1/ 3 Manual Enabled OUI
Eth 1/ 4 Auto Enabled OUI
Eth 1/ 5 Disabled Disabled OUI
Eth 1/ 3 Manual Enabled OUI
                                       6 100
                                       6 NA
Eth 1/ 6 Disabled Disabled OUI
                                       6 NA
Eth 1/ 7 Disabled Disabled OUI
                                       6 NA
Eth 1/ 8 Disabled Disabled OUI
                                       6 NA
```

Chapter 21 | VLAN Commands Configuring Voice VLANs

Eth	1/9	Disabled	Disabled	OUI	6	NA
Eth	1/10	Disabled	Disabled	OUI	6	NA

Console#show voice vlan oui

OUI Address	Mask	Description
00-12-34-56-78-9A	FF-FF-FF-00-00-00	old phones
00-11-22-33-44-55	FF-FF-FF-00-00-00	new phones
00-98-76-54-32-10	${\tt FF-FF-FF-FF-FF-FF}$	Chris' phone

Console#

Chapter 21 | VLAN Commands Configuring Voice VLANs

Class of Service Commands

The commands described in this section allow you to specify which data packets have greater precedence when traffic is buffered in the switch due to congestion. This switch supports CoS with eight priority queues for each port. Data packets in a port's high-priority queue will be transmitted before those in the lower-priority queues. The default priority can be set for each interface, also the queue service mode and the mapping of frame priority tags to the switch's priority queues can be configured.

Table 116: Priority Commands

Command Group	Function
Priority Commands (Layer 2)	Configures the queue mode, queue weights, and default priority for untagged frames
Priority Commands (Layer 3 and 4)	Sets the default priority processing method (CoS or DSCP), maps priority tags for internal processing, maps values from internal priority table to CoS values used in tagged egress packets for Layer 2 interfaces, maps internal per hop behavior to hardware queues

Priority Commands (Layer 2)

This section describes commands used to configure Layer 2 traffic priority on the switch.

Table 117: Priority Commands (Layer 2)

Command	Function	Mode
queue mode	Sets the queue mode to Weighted Round-Robin (WRR), strict priority, or a combination of strict and weighted queuing	GC
queue weight	Assigns round-robin weights to the priority queues	GC
switchport priority default	Sets a port priority for incoming untagged frames	IC
show interfaces switchport	Displays the administrative and operational status of an interface	PE
show queue mode	Shows the current queue mode	PE
show queue weight	Shows weights assigned to the weighted queues	PE

Priority Commands (Layer 2)

queue mode This command sets the scheduling mode used for processing each of the class of service (CoS) priority queues. The options include strict priority, Weighted Round-Robin (WRR), or a combination of strict and weighted queuing. Use the **no** form to restore the default value.

Syntax

queue mode {strict | wrr | strict-wrr [queue-type-list]}

no queue mode

strict - Services the egress gueues in sequential order, transmitting all traffic in the higher priority queues before servicing lower priority queues. This ensures that the highest priority packets are always serviced first, ahead of all other traffic.

wrr - Weighted Round-Robin shares bandwidth at the egress ports by using scheduling weights (based on the queue weight command), and servicing each queue in a round-robin fashion.

strict-wrr - Uses strict or weighted service as specified for each queue.

queue-type-list - Indicates if the queue is a normal or strict type. (Options: 0 indicates a normal queue, 1 indicates a strict queue)

Default Setting

WRR

Command Mode

Global Configuration

- The switch can be set to service the port queues based on strict priority, WRR, or a combination of strict and weighted queueing.
- Strict priority requires all traffic in a higher priority queue to be processed before lower priority queues are serviced.
- Weighted Round Robin (WRR) uses a predefined relative weight for each queue that determines the percentage of service time the switch services each queue before moving on to the next queue. This prevents the head-of-line blocking that can occur with strict priority queuing. Use the queue weight command to assign weights for WRR queuing to the eight priority queues.
- If Strict and WRR mode is selected, a combination of strict and weighted service is used as specified for each queue. The queues assigned to use strict or WRR priority should be specified using the queue-type-list parameter.
- A weight can be assigned to each of the weighted queues (and thereby to the corresponding traffic priorities). This weight sets the frequency at which each gueue is polled for service, and subsequently affects the response time for software applications assigned a specific priority value.

- Service time is shared at the egress ports by defining scheduling weights for WRR, or for the queuing mode that uses a combination of strict and weighted gueuing. Service time is allocated to each gueue by calculating a precise number of bytes per second that will be serviced on each round.
- The specified queue mode applies to all interfaces.

Example

The following example sets the queue mode to strict priority service mode:

```
Console(config) #queue mode strict
Console(config)#
```

Related Commands

queue weight (623) show queue mode (625)

queue weight This command assigns weights to the eight class of service (CoS) priority queues when using weighted queuing, or one of the queuing modes that use a combination of strict and weighted queuing. Use the **no** form to restore the default weights.

Syntax

queue weight weight0...weight7

no queue weight

weight0...weight7 - The ratio of weights for queues 0 - 7 determines the weights used by the WRR scheduler. (Range: 1-255)

Default Setting

Weights 1, 2, 4, 6, 8, 10, 12, 14 are assigned to gueues 0 - 7 respectively.

Command Mode

Global Configuration

- This command shares bandwidth at the egress port by defining scheduling weights for Weighted Round-Robin, or for the queuing mode that uses a combination of strict and weighted queuing (page 622).
- Bandwidth is allocated to each queue by calculating a precise number of bytes per second that will be serviced on each round.

Priority Commands (Layer 2)

Example

The following example shows how to assign round-robin weights of 1 - 8 to the CoS priority queues 0 - 7.

```
Console(config) #queue weight 1 2 3 4 5 6 7 8
Console(config)#
```

Related Commands

queue mode (622) show queue weight (625)

switchport priority This command sets a priority for incoming untagged frames. Use the **no** form to **default** restore the default value.

Syntax

switchport priority default default-priority-id no switchport priority default

default-priority-id - The priority number for untagged ingress traffic. The priority is a number from 0 to 7. Seven is the highest priority.

Default Setting

The priority is not set, and the default value for untagged frames received on the interface is zero.

Command Mode

Interface Configuration (Ethernet, Port Channel)

- The precedence for priority mapping is IP DSCP, and then default switchport priority.
- The default priority applies for an untagged frame received on a port set to accept all frame types (i.e, receives both untagged and tagged frames). This priority does not apply to IEEE 802.1Q VLAN tagged frames. If the incoming frame is an IEEE 802.1Q VLAN tagged frame, the IEEE 802.1p User Priority bits will be used.
- The switch provides eight priority queues for each port. It can be configured to use strict priority queuing, Weighted Round Robin (WRR), or a combination of strict and weighted queuing using the queue mode command. Inbound frames that do not have VLAN tags are tagged with the input port's default ingress user priority, and then placed in the appropriate priority queue at the output port. The default priority for all ingress ports is zero. Therefore, any inbound frames that do not have priority tags will be placed in queue 2 of the output port. (Note that if the output port is an untagged member of the associated VLAN, these frames are stripped of all VLAN tags prior to transmission.)

Example

The following example shows how to set a default priority on port 3 to 5:

```
Console(config)#interface ethernet 1/3
Console(config-if)#switchport priority default 5
Console(config-if)#
```

Related Commands

show interfaces switchport (429)

show queue mode This command shows the current queue mode.

Command Mode

Privileged Exec

Example

```
Console#show queue mode
Queue Mode : Weighted Round Robin Mode
Console#
```

show queue weight This command displays the weights used for the weighted queues.

Command Mode

Privileged Exec

Example

```
Console#show queue weight
 Queue ID Weight
       0
             1
       1
              2
       3
              6
              8
       4
             10
             12
              14
Console#
```

Priority Commands (Layer 3 and 4)

This section describes commands used to configure Layer 3 and 4 traffic priority mapping on the switch.

Table 118: Priority Commands (Layer 3 and 4)

Command	Function	Mode
qos map cos-dscp	Maps CoS/CFI values in incoming packets to per-hop behavior and drop precedence values for internal priority processing	IC
qos map dscp-mutation	Maps DSCP values in incoming packets to per-hop behavior and drop precedence values for internal priority processing	IC
qos map phb-queue	Maps internal per-hop behavior values to hardware queues	IC
qos map trust-mode	Sets QoS mapping to DSCP or CoS	IC
show qos map cos-dscp	Shows ingress CoS to internal DSCP map	PE
show qos map dscp-mutation	Shows ingress DSCP to internal DSCP map	PE
show qos map phb-queue	Shows internal per-hop behavior to hardware queue map	PE
show qos map trust-mode	Shows the QoS mapping mode	PE

^{*} The default settings used for mapping priority values to internal DSCP values and back to the hardware queues are designed to optimize priority services for the majority of network applications. It should not be necessary to modify any of the default settings unless a queuing problem occurs with a particular application.

qos map cos-dscp

This command maps CoS/CFI values in incoming packets to per-hop behavior and drop precedence values for priority processing. Use the **no** form to restore the default settings.

Syntax

qos map cos-dscp phb drop-precedence from cos0 cfi0...cos7 cfi7

no qos map cos-dscp cos0 cfi0...cos7 cfi7

phb - Per-hop behavior, or the priority used for this router hop. (Range: 0-7)

drop-precedence - Drop precedence used for controlling traffic congestion. (Range: 0 - Green, 3 - Yellow, 1 - Red)

cos - CoS value in ingress packets. (Range: 0-7)

cfi - Canonical Format Indicator. Set to this parameter to "0" to indicate that the MAC address information carried in the frame is in canonical format. (Range: 0-1)

Default Setting

Table 119: Default Mapping of CoS/CFI to Internal PHB/Drop Precedence

	CFI	0 1	
CoS			
0	(1	0,0) (0,0)	
1	(1,0) (1,0)	
2	(2,0) (2,0)	
3	(3,0) (3,0)	
4	(4,0) (4,0)	
5	(.	5,0) (5,0)	
6	(1	6,0) (6,0)	
7	(7,0) (7,0)	

Command Mode

Interface Configuration (Port, Static Aggregation)

Command Usage

- ◆ The default mapping of CoS to PHB values shown in Table 119 is based on the recommended settings in IEEE 802.1p for mapping CoS values to output queues.
- Enter a value pair for the internal per-hop behavior and drop precedence, followed by the keyword "from" and then up to eight CoS/CFI paired values separated by spaces.
- If a packet arrives with a 802.1Q header but it is not an IP packet, then the CoS/ CFI-to-PHB/Drop Precedence mapping table is used to generate priority and drop precedence values for internal processing. Note that priority tags in the original packet are not modified by this command.
- ◆ The internal DSCP consists of three bits for per-hop behavior (PHB) which determines the queue to which a packet is sent; and two bits for drop precedence (namely color) which is used to control traffic congestion.
- The specified mapping applies to all interfaces.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if)#qos map cos-dscp 0 0 from 0 1
Console(config-if)#
```

Priority Commands (Layer 3 and 4)

dscp-mutation

qos map This command maps DSCP values in incoming packets to per-hop behavior and drop precedence values for priority processing. Use the **no** form to restore the default settings.

Syntax

qos map dscp-mutation phb drop-precedence from dscp0 ... dscp7 no gos map dscp-mutation dscp0 ... dscp7

phb - Per-hop behavior, or the priority used for this router hop. (Range: 0-7)

drop-precedence - Drop precedence used for controlling traffic congestion. (Range: 0 - Green, 3 - Yellow, 1 - Red)

dscp - DSCP value in ingress packets. (Range: 0-63)

DEFAULT SETTING.

Table 120: Default Mapping of DSCP Values to Internal PHB/Drop Values

	ingress- dscp1	0	1	2	3	4	5	6	7	8	9
ingress- dscp10											
0		0,0	0,1	0,0	0,3	0,0	0,1	0,0	0,3	1,0	1,1
1		1,0	1,3	1,0	1,1	1,0	1,3	2,0	2,1	2,0	2,3
2		2,0	2,1	2,0	2,3	3,0	3,1	3,0	3,3	3.0	3,1
3		3,0	3,3	4,0	4,1	4,0	4,3	4,0	4,1	4.0	4,3
4		5,0	5,1	5,0	5,3	5,0	5,1	6,0	5,3	6,0	6,1
5		6,0	6,3	6,0	6,1	6,0	6,3	7,0	7,1	7.0	7,3
6		7,0	7,1	7,0	7,3						

The ingress DSCP is composed of ingress-dscp10 (most significant digit in the left column) and ingress-dscp1 (least significant digit in the top row (in other words, ingress-dscp = ingressdscp10 * 10 + ingress-dscp1); and the corresponding internal-dscp is shown at the intersecting cell in the table.

The ingress DSCP is bitwise ANDed with the binary value 11 to determine the drop precedence. If the resulting value is 10 binary, then the drop precedence is set to 0.

Command Mode

Interface Configuration (Port, Static Aggregation)

- Enter a value pair for the internal per-hop behavior and drop precedence, followed by the keyword "from" and then up to eight DSCP values separated by spaces.
- This map is only used when the QoS mapping mode is set to "DSCP" by the qos map trust-mode command, and the ingress packet type is IPv4.

- Two QoS domains can have different DSCP definitions, so the DSCP-to-PHB/ Drop Precedence mutation map can be used to modify one set of DSCP values to match the definition of another domain. The mutation map should be applied at the receiving port (ingress mutation) at the boundary of a QoS administrative domain.
- The specified mapping applies to all interfaces.

Example

This example changes the priority for all packets entering port 1 which contain a DSCP value of 1 to a per-hop behavior of 3 and a drop precedence of 1. Referring to Table 120, note that the DSCP value for these packets is now set to 25 (3x23+1) and passed on to the egress interface.

```
Console(config)#interface ethernet 1/5
Console(config-if) #qos map dscp-mutation 3 1 from 1
Console(config-if)#
```

qos map phb-queue This command determines the hardware output queues to use based on the internal per-hop behavior value. Use the **no** form to restore the default settings.

Syntax

```
qos map phb-queue queue-id from phb0 ... phb7
no map phb-queue phb0 ... phb7
```

phb - Per-hop behavior, or the priority used for this router hop. (Range: 0-7) queue-id - The ID of the priority queue. (Range: 0-7, where 7 is the highest priority queue)

DEFAULT SETTING.

Table 121: Mapping Internal Per-hop Behavior to Hardware Queues

Per-hop Behavior	0	1	2	3	4	5	6	7
Hardware Queues	2	0	1	3	4	5	6	7

Command Mode

Interface Configuration (Port, Static Aggregation)

- Enter a queue identifier, followed by the keyword "from" and then up to eight internal per-hop behavior values separated by spaces.
- Egress packets are placed into the hardware queues according to the mapping defined by this command.

Priority Commands (Layer 3 and 4)

Example

```
Console(config) #interface ethernet 1/5
Console(config-if) #qos map phb-queue 0 from 1 2 3
Console(config-if)#
```

gos map trust-mode This command sets QoS mapping to DSCP or CoS. Use the **no** form to restore the default setting.

Syntax

```
qos map trust-mode {dscp | cos}
no gos map trust-mode
   dscp - Sets the QoS mapping mode to DSCP.
   cos - Sets the QoS mapping mode to CoS.
```

Default Setting

CoS

Command Mode

Interface Configuration (Port)

Command Usage

- If the QoS mapping mode is set to DSCP with this command, and the ingress packet type is IPv4, then priority processing will be based on the DSCP value in the ingress packet.
- If the QoS mapping mode is set to DSCP, and a non-IP packet is received, the packet's CoS and CFI (Canonical Format Indicator) values are used for priority processing if the packet is tagged. For an untagged packet, the default port priority (see page 624) is used for priority processing.
- If the QoS mapping mode is set to CoS with this command, and the ingress packet type is IPv4, then priority processing will be based on the CoS and CFI values in the ingress packet.

For an untagged packet, the default port priority (see page 624) is used for priority processing.

Example

This example sets the QoS priority mapping mode to use DSCP based on the conditions described in the Command Usage section.

```
Console(config)#interface ge1/1
Console(config-if) #qos map trust-mode dscp
Console(config-if)#
```

cos-dscp

show gos map This command shows ingress CoS/CFI to internal DSCP map.

Syntax

show gos map cos-dscp interface interface

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

```
Console#show gos map cos-dscp interface ethernet 1/5
CoS Information of Eth 1/5
 CoS-DSCP map.(x,y),x: PHB,y: drop precedence:
 CoS : CFI 0
                            1

    (0,0)
    (0,0)

    (1,0)
    (1,0)

    (2,0)
    (2,0)

    (3,0)
    (3,0)

                 (3,0)
                 (4,0)
                                 (4,0)
                 (5,0)
                                 (5,0)
                 (6,0)
                                 (6,0)
 7
                 (7,0)
                                 (7,0)
Console#
```

dscp-mutation

show gos map This command shows the ingress DSCP to internal DSCP map.

Syntax

show gos map dscp-mutation interface interface

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Command Usage

This map is only used when the QoS mapping mode is set to "DSCP" by the gos map trust-mode command, and the ingress packet type is IPv4.

Priority Commands (Layer 3 and 4)

Example

The ingress DSCP is composed of "d1" (most significant digit in the left column) and "d2" (least significant digit in the top row (in other words, ingress DSCP = d1 * 10 + d2); and the corresponding Internal DSCP and drop precedence is shown at the intersecting cell in the table.

```
Console#show qos map dscp-mutation interface ethernet 1/5
Information of Eth 1/5
DSCP mutation map.(x,y),x: PHB,y: drop precedence:
d1: d2 0
          1
               2 3 4 5
                                      6
       (0,0) (0,1) (0,0) (0,3) (0,0) (0,1) (0,0) (0,3) (1,0) (1,1)
       (1,0) (1,3) (1,0) (1,1) (1,0) (1,3) (2,0) (2,1) (2,0) (2,3)
1:
       (2,0) (2,1) (2,0) (2,3) (3,0) (3,1) (3,0) (3,3) (3,0) (3,1)
 3: (3,0) (3,3) (4,0) (4,1) (4,0) (4,3) (4,0) (4,1) (4,0) (4,3)
 4: (5,0) (5,1) (5,0) (5,3) (5,0) (5,1) (6,0) (5,3) (6,0) (6,1)
 5: (6,0) (6,3) (6,0) (6,1) (6,0) (6,3) (7,0) (7,1) (7,0) (7,3)
 6 : (7,0) (7,1) (7,0) (7,3)
Console#
```

phb-queue

show gos map This command shows internal per-hop behavior to hardware queue map.

Syntax

show qos map phb-queue interface interface

interface

ethernet *unit/port*

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

```
Console#show qos map phb-queue interface ethernet 1/5
Information of Eth 1/5
PHB Queue Map:
PHB:
        0
                    2
                         3
                              4
                                  5
Oueue:
          2.
               Ω
                          3
                               4
                    1
Console#
```

trust-mode

show qos map This command shows the QoS mapping mode.

Syntax

show qos map trust-mode interface interface

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

The following shows that the trust mode is set to CoS:

Console#show qos map trust-mode interface ethernet 1/5 Information of Eth 1/5 CoS Map Mode: CoS mode Console#

Chapter 22 | Class of Service Commands Priority Commands (Layer 3 and 4)

Quality of Service Commands

The commands described in this section are used to configure Differentiated Services (DiffServ) classification criteria and service policies. You can classify traffic based on access lists, IP Precedence or DSCP values, or VLANs. Using access lists allows you select traffic based on Layer 2, Layer 3, or Layer 4 information contained in each packet.

Table 122: Quality of Service Commands

Command	Function	Mode
class-map	Creates a class map for a type of traffic	GC
description	Specifies the description of a class map	CM
match	Defines the criteria used to classify traffic	CM
rename	Redefines the name of a class map	CM
policy-map	Creates a policy map for multiple interfaces	GC
description	Specifies the description of a policy map	PM
class	Defines a traffic classification for the policy to act on	PM
rename	Redefines the name of a policy map	PM
police flow	Defines an enforcer for classified traffic based on a metered flow rate	PM-C
police srtcm-color	Defines an enforcer for classified traffic based on a single rate three color meter	PM-C
police trtcm-color	Defines an enforcer for classified traffic based on a two rate three color meter	PM-C
set cos	Services IP traffic by setting a class of service value for matching packets for internal processing	PM-C
set ip dscp	Services IP traffic by setting a IP DSCP value for matching packets for internal processing	PM-C
set phb	Services IP traffic by setting a per-hop behavior value for matching packets for internal processing	PM-C
service-policy	Applies a policy map defined by the policy-map command to a particular interface	IC
show class-map	Displays the QoS class maps which define matching criteria used for classifying traffic	PE
show policy-map	Displays the QoS policy maps which define classification criteria for incoming traffic, and may include policers for bandwidth limitations	PE
show policy-map interface	Displays the configuration of all classes configured for all service policies on the specified interface	PE

To create a service policy for a specific category of ingress traffic, follow these steps:

- 1. Use the class-map command to designate a class name for a specific category of traffic, and enter the Class Map configuration mode.
- 2. Use the match command to select a specific type of traffic based on an access list, an IPv4 DSCP value, IPv4 Precedence value, IPv6 DSCP value, a VLAN, a CoS value, or a source port.
- **3.** Use the policy-map command to designate a policy name for a specific manner in which ingress traffic will be handled, and enter the Policy Map configuration mode.
- **4.** Use the class command to identify the class map, and enter Policy Map Class configuration mode. A policy map can contain up to 16 class maps.
- 5. Use the set phb, set cos, or set ip dscp command to modify the per-hop behavior, the class of service value in the VLAN tag, or the priority bits in the IP header (IP DSCP value) for the matching traffic class, and use one of the police commands to monitor parameters such as the average flow and burst rate, and drop any traffic that exceeds the specified rate, or just reduce the DSCP service level for traffic exceeding the specified rate.
- **6.** Use the service-policy command to assign a policy map to a specific interface.

Note: Create a Class Map before creating a Policy Map.

class-map

This command creates a class map used for matching packets to the specified class, and enters Class Map configuration mode. Use the **no** form to delete a class map.

Syntax

[no] class-map class-map-name [match-all | match-any]
class-map-name - Name of the class map. (Range: 1-32 characters)
match-all - Match all conditions within a class map.
match-any - Match any condition within a class map.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- First enter this command to designate a class map and enter the Class Map configuration mode. Then use match commands to specify the criteria for ingress traffic that will be classified under this class map.
- One or more class maps can be assigned to a policy map (page 640). The policy map is then bound by a service policy to an interface (page 651). A service policy defines packet classification, service tagging, and bandwidth policing. Once a policy map has been bound to an interface, no additional class maps may be added to the policy map, nor any changes made to the assigned class maps with the match or set commands.

Example

This example creates a class map call "rd-class," and sets it to match packets marked for DSCP service value 3:

```
Console(config)#class-map rd-class match-any
Console(config-cmap)#match ip dscp 3
Console(config-cmap)#
```

Related Commands

show class-map (651)

description This command specifies the description of a class map or policy map.

Syntax

description string

string - Description of the class map or policy map. (Range: 1-64 characters)

Command Mode

Class Map Configuration Policy Map Configuration

Example

```
Console(config) #class-map rd-class#1
Console(config-cmap) #description matches packets marked for DSCP service
value 3
Console(config-cmap)#
```

match This command defines the criteria used to classify traffic. Use the **no** form to delete the matching criteria.

Syntax

```
[no] match {access-list acl-name | cos cos | ip dscp dscp | ip precedence ip-precedence | ipv6 dscp dscp | source-port interface | vlan vlan}
acl-name - Name of the access control list. Any type of ACL can be specified, including standard or extended IPv4/IPv6 ACLs and MAC ACLs. (Range: 1-16 characters)
cos - A Class of Service value. (Range: 0-7)
dscp - A Differentiated Service Code Point value. (Range: 0-63)
ip-precedence - An IP Precedence value. (Range: 0-7)
interface
unit/port
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
vlan - A VLAN. (Range:1-4094)
```

Default Setting

None

Command Mode

Class Map Configuration

- First enter the class-map command to designate a class map and enter the Class Map configuration mode. Then use **match** commands to specify the fields within ingress packets that must match to qualify for this class map.
- If an ingress packet matches an ACL specified by this command, any deny rules included in the ACL will be ignored.
- ◆ If match criteria includes an IP ACL or IP priority rule, then a VLAN rule cannot be included in the same class map.
- ◆ If match criteria includes a MAC ACL or VLAN rule, then neither an IP ACL nor IP priority rule can be included in the same class map.
- ◆ Up to 16 match entries can be included in a class map.

Example

This example creates a class map called "rd-class#1," and sets it to match packets marked for DSCP service value 3.

```
Console(config)#class-map rd-class#1 match-any
Console(config-cmap)#match ip dscp 3
Console(config-cmap)#
```

This example creates a class map call "rd-class#2," and sets it to match packets marked for IP Precedence service value 5.

```
Console(config)#class-map rd-class#2 match-any
Console(config-cmap)#match ip precedence 5
Console(config-cmap)#
```

This example creates a class map call "rd-class#3," and sets it to match packets marked for VLAN 1.

```
Console(config)#class-map rd-class#3 match-any
Console(config-cmap)#match vlan 1
Console(config-cmap)#
```

rename This command redefines the name of a class map or policy map.

Syntax

rename map-name

map-name - Name of the class map or policy map. (Range: 1-32 characters)

Command Mode

Class Map Configuration Policy Map Configuration

Example

```
Console(config)#class-map rd-class#1
Console(config-cmap)#rename rd-class#9
Console(config-cmap)#
```

policy-map

This command creates a policy map that can be attached to multiple interfaces, and enters Policy Map configuration mode. Use the **no** form to delete a policy map.

Syntax

```
[no] policy-map policy-map-name policy-map-name - Name of the policy map. (Range: 1-32 characters)
```

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Use the policy-map command to specify the name of the policy map, and then
 use the class command to configure policies for traffic that matches the criteria
 defined in a class map.
- ◆ A policy map can contain multiple class statements that can be applied to the same interface with the service-policy command.
- Create a Class Map (page 640) before assigning it to a Policy Map.

Example

This example creates a policy called "rd-policy," uses the class command to specify the previously defined "rd-class," uses the **set** command to classify the service that incoming packets will receive, and then uses the police flow command to limit the average bandwidth to 100,000 Kbps, the burst rate to 4000 bytes, and configure the response to drop any violating packets.

```
Console(config) #policy-map rd-policy
Console(config-pmap) #class rd-class
Console(config-pmap-c) #set cos 0
Console(config-pmap-c) #police flow 10000 4000 conform-action transmit violate-action drop
Console(config-pmap-c) #
```

class This command defines a traffic classification upon which a policy can act, and enters Policy Map Class configuration mode. Use the **no** form to delete a class map.

Syntax

```
[no] class class-map-name class-map-name - Name of the class map. (Range: 1-32 characters)
```

Default Setting

None

Command Mode

Policy Map Configuration

Command Usage

- Use the policy-map command to specify a policy map and enter Policy Map configuration mode. Then use the class command to enter Policy Map Class configuration mode. And finally, use the set command and one of the police commands to specify the match criteria, where the:
 - set phb command sets the per-hop behavior value in matching packets.
 (This modifies packet priority for internal processing only.)
 - set cos command sets the class of service value in matching packets.
 (This modifies packet priority in the VLAN tag.)
 - set ip dscp command sets the IP DSCP value in matching packets.
 (This modifies packet priority in the IP header.)
 - police commands define parameters such as the maximum throughput, burst rate, and response to non-conforming traffic.
- ◆ Up to 16 classes can be included in a policy map.

Example

This example creates a policy called "rd-policy," uses the **class** command to specify the previously defined "rd-class," uses the set phb command to classify the service that incoming packets will receive, and then uses the police flow command to limit the average bandwidth to 100,000 Kbps, the burst rate to 4,000 bytes, and configure the response to drop any violating packets.

```
Console(config) #policy-map rd-policy
Console(config-pmap) #class rd-class
Console(config-pmap-c) #set phb 3
Console(config-pmap-c) #police flow 10000 4000 conform-action transmit violate-action drop
Console(config-pmap-c) #
```

police flow This command defines an enforcer for classified traffic based on the metered flow rate. Use the no form to remove a policer.

Syntax

[no] police flow committed-rate committed-burst conform-action transmit **violate-action** {**drop**| *new-dscp*}

committed-rate - Committed information rate (CIR) in kilobits per second. (Range: 0-10000000 kbps at a granularity of 64 kbps or maximum port speed, whichever is lower)

committed-burst - Committed burst size (BC) in bytes. (Range: 64-16000000 at a granularity of 4k bytes)

conform-action - Action to take when packet is within the CIR and BC. (There are enough tokens to service the packet, the packet is set green).

violate-action - Action to take when packet exceeds the CIR and BC. (There are not enough tokens to service the packet, the packet is set red).

transmit - Transmits without taking any action.

drop - Drops packet as required by violate-action.

new-dscp - Differentiated Service Code Point (DSCP) value. (Range: 0-63)

Default Setting

None

Command Mode

Policy Map Class Configuration

Command Usage

- You can configure up to 16 policers (i.e., class maps) for ingress ports.
- The committed-rate cannot exceed the configured interface speed, and the committed-burst cannot exceed 16 Mbytes.
- Policing is based on a token bucket, where bucket depth (i.e., the maximum burst before the bucket overflows) is by specified the committed-burst field, and the average rate tokens are added to the bucket is by specified by the committed-rate option. Note that the token bucket functions similar to that described in RFC 2697 and RFC 2698.
- The behavior of the meter is specified in terms of one token bucket (C), the rate at which the tokens are incremented (CIR - Committed Information Rate), and the maximum size of the token bucket (BC – Committed Burst Size).

The token bucket C is initially full, that is, the token count Tc(0) = BC. Thereafter, the token count Tc is updated CIR times per second as follows:

If Tc is less than BC, Tc is incremented by one, else

Tc is not incremented.

When a packet of size B bytes arrives at time t, the following happens:

- If $Tc(t)-B \ge 0$, the packet is green and Tc is decremented by B down to the minimum value of 0, else
- else the packet is red and Tc is not decremented.

Example

This example creates a policy called "rd-policy," uses the class command to specify the previously defined "rd-class," uses the set phb command to classify the service that incoming packets will receive, and then uses the **police flow** command to limit the average bandwidth to 100,000 Kbps, the burst rate to 4000 bytes, and configure the response to drop any violating packets.

```
Console(config) #policy-map rd-policy
Console(config-pmap) #class rd-class
Console(config-pmap-c) #set phb 3
Console(config-pmap-c)#police flow 100000 4000 conform-action transmit
 violate-action drop
Console(config-pmap-c)#
```

police srtcm-color This command defines an enforcer for classified traffic based on a single rate three color meter (srTCM). Use the **no** form to remove a policer.

Syntax

[no] police {srtcm-color-blind | srtcm-color-aware}

committed-rate committed-burst excess-burst

conform-action transmit **exceed-action** {**drop** | *new-dscp*} **violate action** {**drop** | *new-dscp*}

srtcm-color-blind - Single rate three color meter in color-blind mode.

srtcm-color-aware - Single rate three color meter in color-aware mode.

committed-rate - Committed information rate (CIR) in kilobits per second. (Range: 0-10000000 kbps at a granularity of 64 kbps or maximum port speed, whichever is lower)

committed-burst - Committed burst size (BC) in bytes. (Range: 64-16000000 at a granularity of 4k bytes)

excess-burst - Excess burst size (BE) in bytes. (Range: 64-1600000 at a granularity of 4k bytes)

conform-action - Action to take when rate is within the CIR and BC. (There are enough tokens in bucket BC to service the packet, packet is set green).

exceed-action - Action to take when rate exceeds the CIR and BC but is within the BE. (There are enough tokens in bucket BE to service the packet, the packet is set yellow.)

violate-action - Action to take when rate exceeds the BE. (There are not enough tokens in bucket BE to service the packet, the packet is set red.)

transmit - Transmits without taking any action.

drop - Drops packet as required by exceed-action or violate-action.

new-dscp - Differentiated Service Code Point (DSCP) value. (Range: 0-63)

Default Setting

None

Command Mode

Policy Map Class Configuration

Command Usage

- You can configure up to 16 policers (i.e., class maps) for ingress ports.
- ◆ The *committed-rate* cannot exceed the configured interface speed, and the *committed-burst* and *excess-burst* cannot exceed 16 Mbytes.
- ◆ The srTCM as defined in RFC 2697 meters a traffic stream and processes its packets according to three traffic parameters – Committed Information Rate (CIR), Committed Burst Size (BC), and Excess Burst Size (BE).
- ◆ The PHB label is composed of five bits, three bits for per-hop behavior, and two bits for the color scheme used to control queue congestion. A packet is marked green if it doesn't exceed the CIR and BC, yellow if it does exceed the CIR and BC, but not the BE, and red otherwise.
- ◆ The meter operates in one of two modes. In the color-blind mode, the meter assumes that the packet stream is uncolored. In color-aware mode the meter assumes that some preceding entity has pre-colored the incoming packet stream so that each packet is either green, yellow, or red. The marker (re)colors an IP packet according to the results of the meter. The color is coded in the DS field [RFC 2474] of the packet.
- ◆ The behavior of the meter is specified in terms of its mode and two token buckets, C and E, which both share the common rate CIR. The maximum size of the token bucket C is BC and the maximum size of the token bucket E is BE.

The token buckets C and E are initially full, that is, the token count Tc(0) = BC and the token count Te(0) = BE. Thereafter, the token counts Tc and Te are updated CIR times per second as follows:

- If Tc is less than BC, Tc is incremented by one, else
- if Te is less then BE, Te is incremented by one, else
- neither Tc nor Te is incremented.

When a packet of size B bytes arrives at time t, the following happens if srTCM is configured to operate in color-blind mode:

- If $Tc(t)-B \ge 0$, the packet is green and Tc is decremented by B down to the minimum value of 0, else
- if $Te(t)-B \ge 0$, the packets is yellow and Te is decremented by B down to the minimum value of 0,
- else the packet is red and neither Tc nor Te is decremented.

When a packet of size B bytes arrives at time t, the following happens if srTCM is configured to operate in color-aware mode:

- If the packet has been precolored as green and $Tc(t)-B \ge 0$, the packet is green and Tc is decremented by B down to the minimum value of 0, else
- If the packet has been precolored as yellow or green and if
- Te(t)-B \geq 0, the packets is yellow and Te is decremented by B down to the minimum value of 0, else the packet is red and neither Tc nor Te is decremented.

The metering policy guarantees a deterministic behavior where the volume of green packets is never smaller than what has been determined by the CIR and BC, that is, tokens of a given color are always spent on packets of that color. Refer to RFC 2697 for more information on other aspects of srTCM.

Example

This example creates a policy called "rd-policy," uses the class command to specify the previously defined "rd-class," uses the set phb command to classify the service that incoming packets will receive, and then uses the **police srtcm-color-blind** command to limit the average bandwidth to 100,000 Kbps, the committed burst rate to 4000 bytes, the excess burst rate to 6000 bytes, to remark any packets exceeding the committed burst size, and to drop any packets exceeding the excess burst size.

```
Console(config) #policy-map rd-policy
Console(config-pmap) #class rd-class
Console(config-pmap-c) #set phb 3
Console(config-pmap-c) #police srtcm-color-blind 100000 4000 6000 conformaction transmit exceed-action 0 violate-action drop
Console(config-pmap-c)#
```

police trtcm-color This command defines an enforcer for classified traffic based on a two rate three color meter (trTCM). Use the **no** form to remove a policer.

Syntax

[no] police {trtcm-color-blind | trtcm-color-aware}

committed-rate committed-burst peak-rate peak-burst

conform-action transmit **exceed-action** {drop | new-dscp}

violate action {**drop** | *new-dscp*}

trtcm-color-blind - Two rate three color meter in color-blind mode.

trtcm-color-aware - Two rate three color meter in color-aware mode.

committed-rate - Committed information rate (CIR) in kilobits per second. (Range: 0-10000000 kbps at a granularity of 64 kbps or maximum port speed, whichever is lower)

committed-burst - Committed burst size (BC) in bytes.

(Range: 64-16000000 at a granularity of 4k bytes)

peak-rate - Peak information rate (PIR) in kilobits per second.

(Range: 0-10000000 kbps at a granularity of 64 kbps or maximum port speed, whichever is lower)

peak-burst - Peak burst size (BP) in bytes.

(Range: 64-16000000 at a granularity of 4k bytes)

conform-action - Action to take when rate is within the CIR and BP. (Packet size does not exceed BP and there are enough tokens in bucket BC to service the packet, the packet is set green.)

exceed-action - Action to take when rate exceeds the CIR but is within the PIR. (Packet size exceeds BC but there are enough tokens in bucket BP to service the packet, the packet is set yellow.)

violate-action - Action to take when rate exceeds the PIR. (There are not enough tokens in bucket BP to service the packet, the packet is set red.)

drop - Drops packet as required by exceed-action or violate-action.

transmit - Transmits without taking any action.

new-dscp - Differentiated Service Code Point (DSCP) value. (Range: 0-63)

Default Setting

None

Command Mode

Policy Map Class Configuration

- You can configure up to 16 policers (i.e., class maps) for ingress ports.
- The committed-rate and peak-rate cannot exceed the configured interface speed, and the committed-burst and peak-burst cannot exceed 16 Mbytes.

- ◆ The trTCM as defined in RFC 2698 meters a traffic stream and processes its packets based on two rates Committed Information Rate (CIR) and Peak Information Rate (PIR), and their associated burst sizes Committed Burst Size (BC) and Peak Burst Size (BP).
- The PHB label is composed of five bits, three bits for per-hop behavior, and two bits for the color scheme used to control queue congestion. A packet is marked red if it exceeds the PIR. Otherwise it is marked either yellow or green depending on whether it exceeds or doesn't exceed the CIR.

The trTCM is useful for ingress policing of a service, where a peak rate needs to be enforced separately from a committed rate.

- ◆ The meter operates in one of two modes. In the color-blind mode, the meter assumes that the packet stream is uncolored. In color-aware mode the meter assumes that some preceding entity has pre-colored the incoming packet stream so that each packet is either green, yellow, or red. The marker (re)colors an IP packet according to the results of the meter. The color is coded in the DS field [RFC 2474] of the packet.
- ◆ The behavior of the meter is specified in terms of its mode and two token buckets, P and C, which are based on the rates PIR and CIR, respectively. The maximum size of the token bucket P is BP and the maximum size of the token bucket C is BC.
- ◆ The token buckets P and C are initially (at time 0) full, that is, the token count Tp(0) = BP and the token count Tc(0) = BC. Thereafter, the token count Tp is incremented by one PIR times per second up to BP and the token count Tc is incremented by one CIR times per second up to BC.

When a packet of size B bytes arrives at time t, the following happens if trTCM is configured to operate in color-blind mode:

- If Tp(t)-B < 0, the packet is red, else
- if Tc(t)-B < 0, the packet is yellow and Tp is decremented by B, else
- the packet is green and both Tp and Tc are decremented by B.

When a packet of size B bytes arrives at time t, the following happens if trTCM is configured to operate in color-aware mode:

- If the packet has been precolored as red or if Tp(t)-B < 0, the packet is red, else
- if the packet has been precolored as yellow or if Tc(t)-B < 0, the packet is yellow and Tp is decremented by B, else
- the packet is green and both Tp and Tc are decremented by B.
- The trTCM can be used to mark a IP packet stream in a service, where different, decreasing levels of assurances (either absolute or relative) are given to packets which are green, yellow, or red. Refer to RFC 2698 for more information on other aspects of trTCM.

Example

This example creates a policy called "rd-policy," uses the class command to specify the previously defined "rd-class," uses the set phb command to classify the service that incoming packets will receive, and then uses the **police trtcm-color-blind** command to limit the average bandwidth to 100,000 Kbps, the committed burst rate to 4000 bytes, the peak information rate to 1,000,000 kbps, the peak burst size to 6000, to remark any packets exceeding the committed burst size, and to drop any packets exceeding the peak information rate.

```
Console(config) #policy-map rd-policy
Console(config-pmap) #class rd-class
Console(config-pmap-c) #set phb 3
Console(config-pmap-c) #police trtcm-color-blind 100000 4000 100000 6000
conform-action transmit exceed-action 0 violate-action drop
Console(config-pmap-c)#
```

set cos This command modifies the class of service (CoS) value for a matching packet (as specified by the match command) in the packet's VLAN tag. Use the **no** form to remove this setting.

Syntax

[no] set cos cos-value
 cos-value - Class of Service value. (Range: 0-7)

Default Setting

None

Command Mode

Policy Map Class Configuration

- The set cos command is used to set the CoS value in the VLAN tag for matching packets.
- ◆ The **set cos** and **set phb** command function at the same level of priority. Therefore setting either of these commands will overwrite any action already configured by the other command.

Example

This example creates a policy called "rd-policy," uses the class command to specify the previously defined "rd-class," uses the **set cos** command to classify the service that incoming packets will receive, and then uses the police flow command to limit the average bandwidth to 100,000 Kbps, the burst rate to 4000 bytes, and configure the response to drop any violating packets.

```
Console(config) #policy-map rd-policy
Console(config-pmap) #class rd-class
Console(config-pmap-c) #set cos 3
Console(config-pmap-c) #police flow 10000 4000 conform-action transmit
violate-action drop
Console(config-pmap-c) #
```

set ip dscp

This command modifies the IP DSCP value in a matching packet (as specified by the match command). Use the **no** form to remove this traffic classification.

Syntax

```
[no] set ip dscp new-dscp
```

new-dscp - New Differentiated Service Code Point (DSCP) value. (Range: 0-63)

Default Setting

None

Command Mode

Policy Map Class Configuration

Command Usage

The **set ip dscp** command is used to set the priority values in the packet's ToS field for matching packets.

Example

This example creates a policy called "rd-policy," uses the class command to specify the previously defined "rd-class," uses the **set ip dscp** command to classify the service that incoming packets will receive, and then uses the police flow command to limit the average bandwidth to 100,000 Kbps, the burst rate to 4000 bytes, and configure the response to drop any violating packets.

```
Console(config) #policy-map rd-policy
Console(config-pmap) #class rd-class
Console(config-pmap-c) #set ip dscp 3
Console(config-pmap-c) #police flow 10000 4000 conform-action transmit violate-action drop
Console(config-pmap-c) #
```

set phb This command services IP traffic by setting a per-hop behavior value for a matching packet (as specified by the match command) for internal processing. Use the no form to remove this setting.

Syntax

```
[no] set phb phb-value
   phb-value - Per-hop behavior value. (Range: 0-7)
```

Default Setting

None

Command Mode

Policy Map Class Configuration

Command Usage

- The set phb command is used to set an internal QoS value in hardware for matching packets (see Table 120, "Default Mapping of DSCP Values to Internal PHB/Drop Values"). The QoS label is composed of five bits, three bits for perhop behavior, and two bits for the color scheme used to control queue congestion by the police srtcm-color command and police trtcm-color command.
- The **set cos** and **set phb** command function at the same level of priority. Therefore setting either of these commands will overwrite any action already configured by the other command.

Example

This example creates a policy called "rd-policy," uses the class command to specify the previously defined "rd-class," uses the **set phb** command to classify the service that incoming packets will receive, and then uses the police flow command to limit the average bandwidth to 100,000 Kbps, the burst rate to 4000 bytes, and configure the response to drop any violating packets.

```
Console(config) #policy-map rd-policy
Console(config-pmap)#class rd-class
Console(config-pmap-c) #set phb 3
Console(config-pmap-c)#police flow 10000 4000 conform-action transmit
 violate-action drop
Console(config-pmap-c)#
```

service-policy

This command applies a policy map defined by the **policy-map** command to the ingress or egress side of a particular interface. Use the **no** form to remove this mapping.

Syntax

[no] service-policy {input | output} policy-map-name

input - Apply to the input traffic.

output - Apply to the output traffic.

policy-map-name - Name of the policy map for this interface. (Range: 1-32 characters)

Default Setting

No policy map is attached to an interface.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Only one policy map can be assigned to an interface.
- First define a class map, then define a policy map, and finally use the **servicepolicy** command to bind the policy map to the required interface.

Example

This example applies a service policy to an ingress interface.

```
Console(config)#interface ethernet 1/1
Console(config-if) #service-policy input rd-policy
Console(config-if)#
```

show class-map This command displays the QoS class maps which define matching criteria used for classifying traffic.

Syntax

```
show class-map [class-map-name]
```

class-map-name - Name of the class map. (Range: 1-32 characters)

Default Setting

Displays all class maps.

Command Mode

Privileged Exec

Example

```
Console#show class-map
Class Map match-any rd-class#1
Description:
Match ip dscp 10
Match access-list rd-access
Match ip dscp 0
Class Map match-any rd-class#2
Match ip precedence 5
Class Map match-any rd-class#3
Match vlan 1
Console#
```

show policy-map This command displays the QoS policy maps which define classification criteria for incoming traffic, and may include policers for bandwidth limitations.

Syntax

```
show policy-map [policy-map-name [class class-map-name]]
   policy-map-name - Name of the policy map. (Range: 1-32 characters)
   class-map-name - Name of the class map. (Range: 1-32 characters)
```

Default Setting

Displays all policy maps and all classes.

Command Mode

Privileged Exec

Example

```
Console#show policy-map
Policy Map rd-policy
Description:
class rd-class
set PHB 3
Console#show policy-map rd-policy class rd-class
Policy Map rd-policy
class rd-class
set PHB 3
Console#
```

interface

show policy-map This command displays the service policy assigned to the specified interface.

Syntax

show policy-map interface interface input

```
interface
    unit/port
        unit - Unit identifier. (Range: 1-8)
        port - Port number. (Range: 1-28/52)
    port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

Example

Console#show policy-map interface 1/5 input Service-policy rd-policy Console#

Multicast Filtering Commands

This switch uses IGMP (Internet Group Management Protocol) to check for any attached hosts that want to receive a specific multicast service. It identifies the ports containing hosts requesting a service and sends data out to those ports only. It then propagates the service request up to any neighboring multicast switch/router to ensure that it will continue to receive the multicast service.

Note that IGMP query can be enabled globally at Layer 2, or enabled for specific VLAN interfaces at Layer 3. (Layer 2 query is disabled if Layer 3 query is enabled.)

Table 123: Multicast Filtering Commands

Command Group	Function
IGMP Snooping	Configures multicast groups via IGMP snooping or static assignment, sets the IGMP version, enables proxy reporting, displays current snooping settings, and displays the multicast service and group members
Static Multicast Routing	Configures static multicast router ports which forward all inbound multicast traffic to the attached VLANs
IGMP Filtering and Throttling	Configures IGMP filtering and throttling
MLD Snooping	Configures multicast snooping for IPv6
MLD Filtering and Throttling	Configures MLD filtering and throttling for IPv6.
MVR for IPv4	Configures a single network-wide multicast VLAN shared by hosts residing in other standard or private VLAN groups, preserving security and data isolation for normal traffic
MVR for IPv6	Configures a single network-wide multicast VLAN shared by hosts residing in other standard or private VLAN groups, preserving security and data isolation for normal traffic
IGMP (Layer 3)	Configures the IGMP protocol used with multicast routing in IPv4 networks
IGMP Proxy Routing	Collects and sends multicast group membership information onto the upstream interface based on IGMP messages monitored on downstream interfaces, and forwards multicast traffic based on that information
MLD (Layer 3)	Configures the MLD protocol used with multicast routing in IPv6 networks
MLD Proxy Routing	Collects and sends multicast group membership information onto the upstream interface based on MLD messages monitored on downstream interfaces, and forwards multicast traffic based on that information

IGMP Snooping

This section describes commands used to configure IGMP snooping on the switch.

Table 124: IGMP Snooping Commands

Command	Function	Mode
ip igmp snooping	Enables IGMP snooping	GC
ip igmp snooping priority	Assigns a priority to all multicast traffic	GC
ip igmp snooping proxy-reporting	Enables IGMP Snooping with Proxy Reporting	GC
ip igmp snooping querier	Allows this device to act as the querier for IGMP snooping	GC
ip igmp snooping router- alert-option-check	Discards any IGMPv2/v3 packets that do not include the Router Alert option	GC
ip igmp snooping router-port-expire-time	Configures the querier timeout	GC
ip igmp snooping tcn-flood	Floods multicast traffic when a Spanning Tree topology change occurs	GC
ip igmp snooping tcn-query-solicit	Sends an IGMP Query Solicitation when a Spanning Tree topology change occurs	GC
ip igmp snooping unregistered-data-flood	Floods unregistered multicast traffic into the attached VLAN	GC
ip igmp snooping unsolicited-report-interval	Specifies how often the upstream interface should transmit unsolicited IGMP reports (when proxy reporting is enabled)	GC
ip igmp snooping version	Configures the IGMP version for snooping	GC
ip igmp snooping version-exclusive	Discards received IGMP messages which use a version different to that currently configured	GC
ip igmp snooping vlan general-query-suppression	Suppresses general queries except for ports attached to downstream multicast hosts	GC
ip igmp snooping vlan immediate-leave	Immediately deletes a member port of a multicast service if a leave packet is received at that port and immediate-leave is enabled for the parent VLAN	GC
ip igmp snooping vlan last- memb-query-count	Configures the number of IGMP proxy query messages that are sent out before the system assumes there are no local members	GC
ip igmp snooping vlan last- memb-query-intvl	Configures the last-member-query interval	GC
ip igmp snooping vlan mrd	Sends multicast router solicitation messages	GC
ip igmp snooping vlan proxy-address	Configures a static address for proxy IGMP query and reporting	GC
ip igmp snooping vlan proxy-reporting	Enables IGMP Snooping with Proxy Reporting	GC
ip igmp snooping vlan query-interval	Configures the interval between sending IGMP general queries	GC
ip igmp snooping vlan query-resp-intvl	Configures the maximum time the system waits for a response to general queries	GC

Table 124: IGMP Snooping Commands (Continued)

Command	Function	Mode
ip igmp snooping vlan static	Adds an interface as a member of a multicast group	GC
ip igmp snooping vlan version	Configures the IGMP version for snooping	GC
ip igmp snooping vlan version-exclusive	Discards received IGMP messages which use a version different to that currently configured	GC
clear ip igmp snooping groups dynamic	Clears multicast group information dynamically learned through IGMP snooping	PE
clear ip igmp snooping statistics	Clears IGMP snooping statistics	PE
show ip igmp snooping	Shows the IGMP snooping, proxy, and query configuration	PE
show ip igmp snooping group	Shows known multicast group, source, and host port mapping	PE
show ip igmp snooping mrouter	Shows multicast router ports	PE
show ip igmp snooping statistics	Shows IGMP snooping protocol statistics for the specified interface	PE

ip igmp snooping This command enables IGMP snooping globally on the switch or on a selected VLAN interface. Use the **no** form to disable it.

Syntax

[no] ip igmp snooping [vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- ♦ When IGMP snooping is enabled globally, the per VLAN interface settings for IGMP snooping take precedence.
- ♦ When IGMP snooping is disabled globally, snooping can still be configured per VLAN interface, but the interface settings will not take effect until snooping is re-enabled globally.

Example

The following example enables IGMP snooping globally.

```
Console(config) #ip igmp snooping
Console(config)#
```

ip igmp snooping This command assigns a priority to all multicast traffic. Use the **no** form to restore **priority** the default setting.

Syntax

ip igmp snooping priority priority

no ip igmp snooping priority

priority - The CoS priority assigned to all multicast traffic. (Range: 0-7, where 7 is the highest priority)

Default Setting

2

Command Mode

Global Configuration

Command Usage

This command can be used to set a high priority for low-latency multicast traffic such as a video-conference, or to set a low priority for normal multicast traffic not sensitive to latency.

Example

```
Console(config)#ip igmp snooping priority 6
Console(config)#
```

Related Commands

show ip igmp snooping (674)

ip igmp snooping This command enables IGMP Snooping with Proxy Reporting. Use the **no** form to **proxy-reporting** restore the default setting.

Syntax

[no] ip igmp snooping proxy-reporting

ip igmp snooping vlan vlan-id proxy-reporting {enable | disable} no ip igmp snooping vlan vlan-id proxy-reporting

vlan-id - VLAN ID (Range: 1-4094)

enable - Enable on the specified VLAN.

disable - Disable on the specified VLAN.

Default Setting

Global: Enabled

VLAN: Based on global setting

Command Mode

Global Configuration

Command Usage

- When proxy reporting is enabled with this command, the switch performs "IGMP Snooping with Proxy Reporting" (as defined in DSL Forum TR-101, April 2006), including last leave, and query suppression. Last leave sends out a proxy query when the last member leaves a multicast group, and query suppression means that specific queries are not forwarded from an upstream multicast router to hosts downstream from this device.
- If the IGMP proxy reporting is configured on a VLAN, this setting takes precedence over the global configuration.

Example

```
Console(config) #ip igmp snooping proxy-reporting
Console(config)#
```

querier

ip igmp snooping This command enables the switch as an IGMP querier. Use the no form to disable it.

Syntax

[no] ip igmp snooping querier

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- IGMP snooping querier is not supported for IGMPv3 snooping (see ip igmp snooping version).
- If enabled, the switch will serve as querier if elected. The querier is responsible for asking hosts if they want to receive multicast traffic.

Example

```
Console(config) #ip igmp snooping querier
Console(config)#
```

ip igmp snooping This command discards any IGMPv2/v3 packets that do not include the Router router-alert-option- Alert option. Use the no form to ignore the Router Alert Option when receiving check IGMP messages.

Syntax

[no] ip igmp snooping router-alert-option-check

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

As described in Section 9.1 of RFC 3376 for IGMP Version 3, the Router Alert Option can be used to protect against DOS attacks. One common method of attack is launched by an intruder who takes over the role of querier, and starts overloading multicast hosts by sending a large number of group-and-source-specific queries, each with a large source list and the Maximum Response Time set to a large value.

To protect against this kind of attack, (1) routers should not forward queries. This is easier to accomplish if the query carries the Router Alert option. (2) Also, when the switch is acting in the role of a multicast host (such as when using proxy routing), it should ignore version 2 or 3 queries that do not contain the Router Alert option.

Example

```
Console(config) #ip igmp snooping router-alert-option-check
Console(config)#
```

router-portexpire-time

ip igmp snooping This command configures the querier timeout. Use the **no** form to restore the default.

Syntax

ip igmp snooping router-port-expire-time seconds

no ip igmp snooping router-port-expire-time

seconds - The time the switch waits after the previous querier stops before it considers it to have expired. (Range: 1-65535; Recommended Range: 300-500)

Default Setting

300 seconds

Command Mode

Global Configuration

Example

The following shows how to configure the timeout to 400 seconds:

```
Console(config) #ip igmp snooping router-port-expire-time 400
Console(config)#
```

ip igmp snooping This command enables flooding of multicast traffic if a spanning tree topology tcn-flood change notification (TCN) occurs. Use the **no** form to disable flooding.

Syntax

[no] ip igmp snooping tcn-flood

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

 When a spanning tree topology change occurs, the multicast membership information learned by the switch may be out of date. For example, a host linked to one port before the topology change (TC) may be moved to another port after the change. To ensure that multicast data is delivered to all receivers, by default, a switch in a VLAN (with IGMP snooping enabled) that receives a Bridge Protocol Data Unit (BPDU) with the TC bit set (by the root bridge) will enter into "multicast flooding mode" for a period of time until the topology has stabilized and the new locations of all multicast receivers are learned.

- If a topology change notification (TCN) is received, and all the uplink ports are subsequently deleted, a timeout mechanism is used to delete all of the currently learned multicast channels.
- When a new uplink port starts up, the switch sends unsolicited reports for all current learned channels out through the new uplink port.
- By default, the switch immediately enters into "multicast flooding mode" when a spanning tree topology change occurs. In this mode, multicast traffic will be flooded to all VLAN ports. If many ports have subscribed to different multicast groups, flooding may cause excessive loading on the link between the switch and the end host. Flooding may be disabled to avoid this, causing multicast traffic to be delivered only to those ports on which multicast group members have been learned.
- When the spanning tree topology changes, the root bridge sends a proxy query to quickly re-learn the host membership/port relations for multicast channels. The root bridge also sends an unsolicited Multicast Router Discover (MRD) request to quickly locate the multicast routers in this VLAN.

The proxy query and unsolicited MRD request are flooded to all VLAN ports except for the receiving port when the switch receives such packets.

Example

The following example enables TCN flooding.

```
Console(config) #ip igmp snooping tcn-flood
Console(config)#
```

ip igmp snooping This command instructs the switch to send out an IGMP general guery solicitation tcn-query-solicit when a spanning tree topology change notification (TCN) occurs. Use the **no** form to disable this feature.

Syntax

[no] ip igmp snooping tcn-query-solicit

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

 When the root bridge in a spanning tree receives a topology change notification for a VLAN where IGMP snooping is enabled, it issues a global IGMP leave message (query solicitation). When a switch receives this solicitation, it floods it to all ports in the VLAN where the spanning tree change occurred.

When an upstream multicast router receives this solicitation, it will also immediately issues an IGMP general query.

The **ip igmp snooping tcn guery-solicit** command can be used to send a query solicitation whenever it notices a topology change, even if the switch is not the root bridge in the spanning tree.

Example

The following example instructs the switch to issue an IGMP general query whenever it receives a spanning tree topology change notification.

```
Console(config) #ip igmp snooping tcn query-solicit
Console(config)#
```

unregistered-dataflood

ip igmp snooping This command floods unregistered multicast traffic into the attached VLAN. Use the **no** form to drop unregistered multicast traffic.

Syntax

[no] ip igmp snooping unregistered-data-flood

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

Once the table used to store multicast entries for IGMP snooping and multicast routing is filled, no new entries are learned. If no router port is configured in the attached VLAN, and unregistered-flooding is disabled, any subsequent multicast traffic not found in the table is dropped, otherwise it is flooded throughout the VLAN.

Example

Console(config) #ip igmp snooping unregistered-data-flood Console(config)#

ip igmp snooping This command specifies how often the upstream interface should transmit unsolicited-report- unsolicited IGMP reports when proxy reporting is enabled. Use the no form to interval restore the default value.

Syntax

ip igmp snooping unsolicited-report-interval seconds

no ip igmp snooping version-exclusive

seconds - The interval at which to issue unsolicited reports. (Range: 1-65535 seconds)

Default Setting

400 seconds

Command Mode

Global Configuration

Command Usage

- When a new upstream interface (that is, uplink port) starts up, the switch sends unsolicited reports for all currently learned multicast channels out through the new upstream interface.
- ◆ This command only applies when proxy reporting is enabled (see page 659).

Example

```
Console(config) #ip igmp snooping unsolicited-report-interval 5
Console(config)#
```

ip igmp snooping This command configures the IGMP snooping version. Use the **no** form to restore version the default.

Syntax

ip igmp snooping [vlan vlan-id] version {1 | 2 | 3}

no ip igmp snooping version

vlan-id - VLAN ID (Range: 1-4094)

- 1 IGMP Version 1
- 2 IGMP Version 2
- 3 IGMP Version 3

Default Setting

Global: IGMP Version 2

VLAN: Not configured, based on global setting

Command Mode

Global Configuration

Command Usage

- This command configures the IGMP report/query version used by IGMP snooping. Versions 1 - 3 are all supported, and versions 2 and 3 are backward compatible, so the switch can operate with other devices, regardless of the snooping version employed.
- If the IGMP snooping version is configured on a VLAN, this setting takes precedence over the global configuration.

Example

The following configures the global setting for IGMP snooping to version 1.

```
Console(config) #ip igmp snooping version 1
Console(config)#
```

version-exclusive

ip igmp snooping This command discards any received IGMP messages (except for multicast protocol packets) which use a version different to that currently configured by the ip igmp snooping version command. Use the **no** form to disable this feature.

Syntax

ip igmp snooping [vlan vlan-id] version-exclusive no ip igmp snooping version-exclusive

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Global: Disabled VLAN: Disabled

Command Mode

Global Configuration

Command Usage

- If version exclusive is disabled on a VLAN, then this setting is based on the global setting. If it is enabled on a VLAN, then this setting takes precedence over the global setting.
- When this function is disabled, the currently selected version is backward compatible (see the ip igmp snooping version command.

Example

```
Console(config) #ip igmp snooping version-exclusive
Console(config)#
```

ip igmp snooping vlan This command suppresses general queries except for ports attached to general-query- downstream multicast hosts. Use the no form to flood general queries to all ports suppression except for the multicast router port.

Syntax

[no] ip igmp snooping vlan vlan-id general-query-suppression

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- By default, general query messages are flooded to all ports, except for the multicast router through which they are received.
- If general query suppression is enabled, then these messages are forwarded only to downstream ports which have joined a multicast service.

Example

```
Console(config) #ip igmp snooping vlan 1 general-query-suppression
Console(config)#
```

immediate-leave

ip igmp snooping vlan This command immediately deletes a member port of a multicast service if a leave packet is received at that port and immediate-leave is enabled for the parent VLAN. Use the **no** form to restore the default.

Syntax

ip igmp snooping vlan vlan-id immediate-leave [by-host-ip]

no ip igmp snooping vlan vlan-id immediate-leave

vlan-id - VLAN ID (Range: 1-4094)

by-host-ip - Specifies that the member port will be deleted only when there are no hosts joining this group.

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- If immediate-leave is not used, a multicast router (or querier) will send a groupspecific query message when an IGMPv2/v3 group leave message is received. The router/querier stops forwarding traffic for that group only if no host replies to the query within the timeout period. (The timeout for this release is currently defined by ip igmp snooping vlan last-memb-query-intvl * ip igmp robustval.
- If immediate-leave is used, the switch assumes that only one host is connected to the interface. Therefore, immediate leave should only be enabled on an interface if it is connected to only one IGMP-enabled device, either a service host or a neighbor running IGMP snooping.
- If the "by-host-ip" option is used, the router/querier will not send out a groupspecific guery when an IGMPv2/v3 leave message is received. But will check if there are other hosts joining the multicast group. Only when all hosts on that port leave the group will the member port be deleted.
- This command is only effective if IGMP snooping is enabled, and IGMPv2 or IGMPv3 snooping is used.

Example

The following shows how to enable immediate leave.

```
Console(config) #ip igmp snooping vlan 1 immediate-leave
Console(config)#
```

last-memb-query-

ip igmp snooping vlan This command configures the number of IGMP proxy group-specific or group-andsource-specific query messages that are sent out before the system assumes there **count** are no more local members. Use the **no** form to restore the default.

Syntax

ip igmp snooping vlan vlan-id last-memb-query-count count no ip igmp snooping vlan vlan-id last-memb-query-count

vlan-id - VLAN ID (Range: 1-4094)

count - The number of proxy group-specific or group-and-source-specific query messages to issue before assuming that there are no more group members. (Range: 1-255)

Default Setting

2

Command Mode

Global Configuration

Command Usage

This command will take effect only if IGMP snooping proxy reporting or IGMP querier is enabled (page 659).

Example

```
Console(config) #ip igmp snooping vlan 1 last-memb-query-count 7
Console(config)#
```

last-memb-queryintvl

ip igmp snooping vlan This command configures the last-member-query interval. Use the **no** form to restore the default.

Syntax

ip igmp snooping vlan vlan-id last-memb-query-intvl interval no ip igmp snooping vlan vlan-id last-memb-query-intvl

vlan-id - VLAN ID (Range: 1-4094)

interval - The interval to wait for a response to a group-specific or groupand-source-specific query message. (Range: 1-31744 tenths of a second)

Default Setting

10 (1 second)

Command Mode

Global Configuration

Command Usage

- When a multicast host leaves a group, it sends an IGMP leave message. When the leave message is received by the switch, it checks to see if this host is the last to leave the group by sending out an IGMP group-specific or group-andsource-specific query message, and starts a timer. If no reports are received before the timer expires, the group record is deleted, and a report is sent to the upstream multicast router.
- ◆ A reduced value will result in reduced time to detect the loss of the last member of a group or source, but may generate more bursty traffic.
- This command will take effect only if IGMP snooping proxy reporting is enabled (page 659).

Example

```
Console(config) #ip igmp snooping vlan 1 last-memb-query-intvl 700
Console(config)#
```

ip igmp snooping vlan This command enables sending of multicast router solicitation messages. Use the mrd no form to disable these messages.

Syntax

[no] ip igmp snooping vlan vlan-id mrd

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Multicast Router Discovery (MRD) uses multicast router advertisement, multicast router solicitation, and multicast router termination messages to discover multicast routers. Devices send solicitation messages in order to solicit advertisement messages from multicast routers. These messages are used to discover multicast routers on a directly attached link. Solicitation messages are also sent whenever a multicast forwarding interface is initialized or reinitialized. Upon receiving a solicitation on an interface with IP multicast forwarding and MRD enabled, a router will respond with an advertisement.
- Advertisements are sent by routers to advertise that IP multicast forwarding is enabled. These messages are sent unsolicited periodically on all router interfaces on which multicast forwarding is enabled. They are sent upon the expiration of a periodic timer, as a part of a router's start up procedure, during the restart of a multicast forwarding interface, and on receipt of a solicitation message. When the multicast services provided to a VLAN is relatively stable, the use of solicitation messages is not required and may be disabled using the **no** ip igmp snooping vlan mrd command.
- This command may also be used to disable multicast router solicitation messages when the upstream router does not support MRD, to reduce the loading on a busy upstream router, or when IGMP snooping is disabled in a VLAN.

This example disables sending of multicast router solicitation messages on VLAN 1.

Console(config) #no ip igmp snooping vlan 1 mrd Console(config)#

ip igmp snooping vlan This command configures a static source address for locally generated query and proxy-address report messages used by IGMP proxy reporting. Use the **no** form to restore the default source address.

Syntax

[no] ip igmp snooping vlan vlan-id proxy-address source-address

vlan-id - VLAN ID (Range: 1-4094)

source-address - The source address used for proxied IGMP query and report, and leave messages. (Any valid IP unicast address)

Default Setting

0.0.0.0

Command Mode

Global Configuration

Command Usage

IGMP Snooping uses a null IP address of 0.0.0.0 for the source of IGMP guery messages which are proxied to downstream hosts to indicate that it is not the elected querier, but is only proxying these messages as defined in RFC 4541. The switch also uses a null address in IGMP reports sent to upstream ports.

Many hosts do not implement RFC 4541, and therefore do not understand query messages with the source address of 0.0.0.0. These hosts will therefore not reply to the queries, causing the multicast router to stop sending traffic to them.

To resolve this problem, the source address in proxied IGMP query and report messages can be replaced with any valid unicast address (other than the router's own address) using this command.

Rules Used for Proxy Reporting

When IGMP Proxy Reporting is disabled, the switch will use a null IP address for the source of IGMP query and report messages unless a proxy query address has been set.

When IGMP Proxy Reporting is enabled, the source address is based on the following criteria:

- If a proxy guery address is configured, the switch will use that address as the source IP address in general and group-specific query messages sent to downstream hosts, and in report and leave messages sent upstream from the multicast router port.
- If a proxy query address is not configured, the switch will use the VLAN's IP address as the IP source address in general and group-specific query messages sent downstream, and use the source address of the last IGMP message received from a downstream host in report and leave messages sent upstream from the multicast router port.

Example

The following example sets the source address for proxied IGMP query messages to 10.0.1.8.

```
Console(config) #ip igmp snooping vlan 1 proxy-address 10.0.1.8
Console(config)#
```

ip igmp snooping vlan This command configures the interval between sending IGMP general queries. Use query-interval the no form to restore the default.

Syntax

ip igmp snooping vlan vlan-id query-interval interval no ip igmp snooping vlan vlan-id query-interval

```
vlan-id - VLAN ID (Range: 1-4094)
interval - The interval between sending IGMP general gueries.
(Range: 2-31744 seconds)
```

Default Setting

100 (10 seconds)

Command Mode

Global Configuration

Command Usage

- An IGMP general query message is sent by the switch at the interval specified by this command. When this message is received by downstream hosts, all receivers build an IGMP report for the multicast groups they have joined.
- ◆ This command applies when the switch is serving as the guerier (page 659), or as a proxy host when IGMP snooping proxy reporting is enabled (page 659).

Example

```
Console(config) #ip igmp snooping vlan 1 query-interval 150
Console(config)#
```

ip igmp snooping vlan This command configures the maximum time the system waits for a response to query-resp-intvl general queries. Use the no form to restore the default.

Syntax

```
ip igmp snooping vlan vlan-id query-resp-intvl interval
no ip igmp snooping vlan vlan-id query-resp-intvl
```

```
vlan-id - VLAN ID (Range: 1-4094)
```

interval - The maximum time the system waits for a response to general queries. (Range: 10-31740 tenths of a second)

Default Setting

100 (10 seconds)

Command Mode

Global Configuration

Command Usage

This command applies when the switch is serving as the querier (page 659), or as a proxy host when IGMP snooping proxy reporting is enabled (page 659).

Example

```
Console(config) #ip igmp snooping vlan 1 query-resp-intvl 20
Console(config)#
```

static port.

ip igmp snooping vlan This command adds a port to a multicast group. Use the no form to remove the

Syntax

```
[no] ip igmp snooping vlan vlan-id static ip-address interface
```

```
vlan-id - VLAN ID (Range: 1-4094)
ip-address - IP address for multicast group
interface
    ethernet unit/port
```

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Static multicast entries are never aged out.
- When a multicast entry is assigned to an interface in a specific VLAN, the corresponding traffic can only be forwarded to ports within that VLAN.

Example

The following shows how to statically configure a multicast group on a port.

```
Console(config)#ip igmp snooping vlan 1 static 224.0.0.12 ethernet 1/5
Console(config)#
```

snooping groups IGMP snooping. dynamic

clear ip igmp This command clears multicast group information dynamically learned through

Syntax

clear ip igmp snooping groups dynamic

Command Mode

Privileged Exec

Command Usage

This command only clears entries learned though IGMP snooping. Statically configured multicast address are not cleared.

Example

```
Console#clear ip igmp snooping groups dynamic
Console#
```

snooping statistics

clear ip igmp This command clears IGMP snooping statistics.

Syntax

clear ip igmp snooping statistics [interface interface]

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
   port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
vlan vlan-id - VLAN identifier (Range: 1-4094)
```

Command Mode

Privileged Exec

Example

```
Console#clear ip igmp snooping statistics
Console#
```

show ip igmp snooping

This command shows the IGMP snooping, proxy, and query configuration settings.

Syntax

show ip igmp snooping [vlan vlan-id]

vlan-id - VLAN ID (1-4094)

Command Mode

Privileged Exec

Command Usage

This command displays global and VLAN-specific IGMP configuration settings.

Example

The following shows the current IGMP snooping configuration:

```
Console#show ip igmp snooping
IGMP Snooping : Enabled
Router Port Expire Time : 300 s
Router Alert Check : Disabled
Router Port Mode : Forward
TCN Flood : Disabled
TCN Query Solicit : Disabled
Unregistered Data Flood : Disabled
802.1p Forwarding Priority : Disabled
Unsolicited Report Interval : 400 s
Version Exclusive : Disabled
 Version Exclusive
                                                       : Disabled
 Version
Proxy Reporting
Report Suppression
 Version
                                                      : Disabled
                                                       : Disabled
 Querier
                                                       : Disabled
 VLAN 1:
 IGMP Snooping
                                                     : Enabled
 IGMP Snooping : Enabled : Inactive
                                                     : Using global Version (2)
 Version
                                                     : Using global status (Disabled)
 Version Exclusive
                                                      : Disabled
: 10 (unit: 1/10s)
 Immediate Leave
Immediate Leave : Disabled
Last Member Query Interval : 10 (unit
Last Member Query Count : 2
General Query Suppression : Disabled
 Query Interval
                                                     : 125
 Query Response Interval
Proxy Query Address
Proxy Reporting
                                                     : 100 (unit: 1/10s)
                                                      : 0.0.0.0
 Proxy Reporting
                                                     : Using global status (Disabled)
 Report Suppression
                                                      : Using global status (Disabled)
```

```
Multicast Router Discovery
                               : Disabled
VLAN Static Group
                Port
   224.1.1.1 Eth 1/ 1
```

show ip igmp This command shows known multicast group, source, and host port mappings for **snooping group** the specified VLAN interface, or for all interfaces if none is specified.

Syntax

```
show ip igmp snooping group [host-ip-addr ip-address interface | igmpsnp |
 sort-by-port | user | vlan vlan-id [user | igmpsnp]]
   ip-address - IP address for multicast group
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
   igmpsnp - Display only entries learned through IGMP snooping.
   sort-by-port - Display entries sorted by port.
   user - Display only the user-configured multicast entries.
   vlan-id - VLAN ID (1-4094)
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Member types displayed include IGMP or USER, depending on selected options.

Example

The following shows the multicast entries learned through IGMP snooping for VLAN 1.

```
Console#show ip igmp snooping group vlan 1
Bridge Multicast Forwarding Entry Count:1
Flag: R - Router port, M - Group member port
     H - Host counts (number of hosts join the group on this port).
      P - Port counts (number of ports join the group).
Up time: Group elapsed time (d:h:m:s).
 Expire : Group remaining time (m:s).
```

IGMP Snooping

VLAN Group	Port	Up time	Expire Count
1 224.1.1.1		00:00:00:37	2 (P)
	Eth 1/ 1(R)		
	Eth 1/ 2(M)		0 (H)
Console#			

show ip igmp This command displays information on statically configured and dynamically **snooping mrouter** learned multicast router ports.

Syntax

show ip igmp snooping mrouter [vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Displays multicast router ports for all configured VLANs.

Command Mode

Privileged Exec

Command Usage

Multicast router port types displayed include Static or Dynamic.

Example

The following shows the ports in VLAN 1 which are attached to multicast routers.

```
Console#show ip igmp snooping mrouter vlan 1
VLAN M'cast Router Port Type Expire
 ---- ------
    Eth 1/4 Dynamic 0:4:28 Eth 1/10 Static
1 Eth 1/10
Console#
```

snooping statistics

show ip igmp This command shows IGMP snooping protocol statistics for the specified interface.

Syntax

```
show ip igmp snooping statistics
  {input [interface interface] |
  output [interface interface] |
  query [vlan vlan-id]}
    interface
        ethernet unit/port
            unit - Unit identifier. (Range: 1-8)
            port - Port number. (Range: 1-28/52)
```

port-channel channel-id (Range: 1-16)

vlan vlan-id - VLAN ID (Range: 1-4094)

query - Displays IGMP snooping-related statistics.

Default Setting

None

Command Mode

Privileged Exec

Example

The following shows IGMP protocol statistics input:

```
Console#show ip igmp snooping statistics input interface ethernet 1/1

Interface Report Leave G Query G(-S)-S Query Drop Join Succ Group

Eth 1/ 1 23 11 4 10 5 14 5

Console#
```

Table 125: show ip igmp snooping statistics input - display description

Field	Description
Interface	Shows interface.
Report	The number of IGMP membership reports received on this interface.
Leave	The number of leave messages received on this interface.
G Query	The number of general query messages received on this interface.
G(-S)-S Query	The number of group specific or group-and-source specific query messages received on this interface.
Drop	The number of times a report, leave or query was dropped. Packets may be dropped due to invalid format, rate limiting, or packet content not allowed.
Join Succ	The number of times a multicast group was successfully joined.
Group	The number of multicast groups active on this interface.

The following shows IGMP protocol statistics output:

```
Console#show ip igmp snooping statistics output interface ethernet 1/1
Output Statistics:
Interface Report Leave G Query G(-S)-S Query
------
Eth 1/ 1 12 0 1 0
Console#
```

Table 126: show ip igmp snooping statistics output - display description

Field	Description
Interface	Shows interface.
Report	The number of IGMP membership reports sent from this interface.
Leave	The number of leave messages sent from this interface.
G Query	The number of general query messages sent from this interface.
G(-S)-S Query	The number of group specific or group-and-source specific query messages sent from this interface.

The following shows IGMP query-related statistics for VLAN 1:

```
Console#show ip igmp snooping statistics query vlan 1
Querier IP Address : 192.168.1.1
Querier Expire Time : 00:00:30
General Query Received : 10
General Query Sent : 0
Specific Query Received : 2
Specific Query Sent : 0
Number of Reports Sent : 2
Number of Leaves Sent : 0
Console#
```

Table 127: show ip igmp snooping statistics vlan query - display description

Field	Description
Querier IP Address	The IP address of the querier on this interface.
Querier Expire Time	The time after which this querier is assumed to have expired.
General Query Received	The number of general queries received on this interface.
General Query Sent	The number of general queries sent from this interface.
Specific Query Received	The number of specific queries received on this interface.
Specific Query Sent	The number of specific queries sent from this interface.
Number of Reports Sent	The number of reports sent from this interface.
Number of Leaves Sent	The number of leaves sent from this interface.

Static Multicast Routing

This section describes commands used to configure static multicast routing on the switch.

Table 128: Static Multicast Interface Commands

Command	Function	Mode
ip igmp snooping vlan mrouter	Adds a multicast router port	GC
show ip igmp snooping mrouter	Shows multicast router ports	PE

ip igmp snooping vlan This command statically configures a (Layer 2) multicast router port on the mrouter specified VLAN. Use the **no** form to remove the configuration.

Syntax

[no] ip igmp snooping vlan vlan-id mrouter interface

vlan-id - VLAN ID (Range: 1-4094)

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

No static multicast router ports are configured.

Command Mode

Global Configuration

Command Usage

- Depending on your network connections, IGMP snooping may not always be able to locate the IGMP querier. Therefore, if the IGMP querier is a known multicast router or switch connected over the network to an interface (port or trunk) on this switch, that interface can be manually configured to join all the current multicast groups.
- IGMP Snooping must be enabled globally on the switch (using the ip igmp snooping command) before a multicast router port can take effect.

Example

The following shows how to configure port 10 as a multicast router port within VLAN 1.

```
Console(config) #ip igmp snooping vlan 1 mrouter ethernet 1/10 Console(config) #
```

IGMP Filtering and Throttling

In certain switch applications, the administrator may want to control the multicast services that are available to end users. For example, an IP/TV service based on a specific subscription plan. The IGMP filtering feature fulfills this requirement by restricting access to specified multicast services on a switch port, and IGMP throttling limits the number of simultaneous multicast groups a port can join.

Table 129: IGMP Filtering and Throttling Commands

Command	Function	Mode
ip igmp filter	Enables IGMP filtering and throttling on the switch	GC
ip igmp profile	Sets a profile number and enters IGMP filter profile configuration mode	GC
permit, deny	Sets a profile access mode to permit or deny	IPC
range	Specifies one or a range of multicast addresses for a profile	IPC
ip igmp authentication	Enables RADIUS authentication for IGMP JOIN requests.	IC
ip igmp filter	Assigns an IGMP filter profile to an interface	IC
ip igmp max-groups	Specifies an IGMP throttling number for an interface	IC
ip igmp max-groups action	Sets the IGMP throttling action for an interface	IC
ip igmp query-drop	Drops any received IGMP query packets	IC
ip multicast-data-drop	Drops all multicast data packets	IC
show ip igmp authentication	Displays IGMP authentication settings for interfaces	PE
show ip igmp filter	Displays the IGMP filtering status	PE
show ip igmp profile	Displays IGMP profiles and settings	PE
show ip igmp query-drop	Shows if the interface is configured to drop IGMP query packets	PE
show ip igmp throttle interface	Displays the IGMP throttling setting for interfaces	PE
show ip multicast-data- drop	Shows if the interface is configured to drop multicast data packets	PE

ip igmp filter This command globally enables IGMP filtering and throttling on the switch. Use the (Global Configuration) **no** form to disable the feature.

Syntax

[no] ip igmp filter

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- IGMP filtering enables you to assign a profile to a switch port that specifies multicast groups that are permitted or denied on the port. An IGMP filter profile can contain one or more, or a range of multicast addresses; but only one profile can be assigned to a port. When enabled, IGMP join reports received on the port are checked against the filter profile. If a requested multicast group is permitted, the IGMP join report is forwarded as normal. If a requested multicast group is denied, the IGMP join report is dropped.
- IGMP filtering and throttling only applies to dynamically learned multicast groups, it does not apply to statically configured groups.
- The IGMP filtering feature operates in the same manner when MVR is used to forward multicast traffic.

Example

```
Console(config) #ip igmp filter
Console(config)#
```

ip igmp profile This command creates an IGMP filter profile number and enters IGMP profile configuration mode. Use the **no** form to delete a profile number.

Syntax

[no] ip igmp profile profile-number

profile-number - An IGMP filter profile number. (Range: 1-4294967295)

Default Setting

Disabled

Command Mode

Global Configuration

IGMP Filtering and Throttling

Command Usage

A profile defines the multicast groups that a subscriber is permitted or denied to join. The same profile can be applied to many interfaces, but only one profile can be assigned to one interface. Each profile has only one access mode; either permit or deny.

Example

```
Console(config) #ip igmp profile 19
Console(config-igmp-profile)#
```

permit, deny This command sets the access mode for an IGMP filter profile. Use the **no** form to delete a profile number.

Syntax

{permit | deny}

Default Setting

Deny

Command Mode

IGMP Profile Configuration

Command Usage

- Each profile has only one access mode; either permit or deny.
- When the access mode is set to permit, IGMP join reports are processed when a multicast group falls within the controlled range. When the access mode is set to deny, IGMP join reports are only processed when a multicast group is not in the controlled range.

Example

```
Console(config) #ip igmp profile 19
Console(config-igmp-profile) #permit
Console(config-igmp-profile)#
```

range This command specifies multicast group addresses for a profile. Use the **no** form to delete addresses from a profile.

Syntax

[no] range low-ip-address [high-ip-address]

low-ip-address - A valid IP address of a multicast group or start of a group range.

high-ip-address - A valid IP address for the end of a multicast group range.

Default Setting

None

Command Mode

IGMP Profile Configuration

Command Usage

Enter this command multiple times to specify more than one multicast address or address range for a profile.

Example

```
Console(config) #ip igmp profile 19
Console(config-igmp-profile)#range 239.1.1.1
Console(config-igmp-profile) #range 239.2.3.1 239.2.3.100
Console(config-igmp-profile)#
```

authentication

ip igmp This command enables IGMP authentication on the specified interface. When enabled and an IGMP JOIN request is received, an authentication request is sent to a configured RADIUS server. Use the **no** form to disable IGMP authentication.

Syntax

[no] ip igmp authentication

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- If IGMP authentication is enabled on an interface, and a join report is received on the interface, the switch will send an access request to the RADIUS server to perform authentication.
- Only when the RADIUS server responds with an authentication success message will the switch learn the group report. Once the group is learned, the switch will not send an access request to the RADIUS server when receiving the same report again within a one (1) day period.
- If the RADIUS server responds that authentication failed or the timer expires, the report will be dropped and the group will not be learned. The entry (host MAC, port number, VLAN ID, and group IP) will be put in the "authentication failed list".
- The "authentication failed list" is valid for the period of the interval defined by the command ip igmp snooping vlan query-interval. When receiving the same

IGMP Filtering and Throttling

report during this interval, the switch will not send the access request to the RADIUS server.

- If the interface leaves the group and subsequently rejoins the same group, the join report needs to again be authenticated.
- When receiving an IGMP v3 report message, the switch will send the access request to the RADIUS server only when the record type is either IS_EX or TO_EX, and the source list is empty. Other types of packets will not initiate RADIUS authentication.

IS_EX (MODE_IS_EXCLUDE) - Indicates that the interface's filter mode is EXCLUDE for the specified multicast address. The Source Address fields in this Group Record contain the interface's source list for the specified multicast address, if not empty.

TO_EX (CHANGE_TO_EXCLUDE_MODE) - Indicates that the interface has changed to EXCLUDE filter mode for the specified multicast address. The Source Address fields in this Group Record contain the interface's new source list for the specified multicast address, if not empty.

- When a report is received for the first time and is being authenticated, whether authentication succeeds or fails, the report will still be sent to the multicastrouter port.
- The following table shows the RADIUS server Attribute Value Pairs used for authentication:

Table 130: IGMP Authentication RADIUS Attribute Value Pairs

Attribute Name	AVP Type	Entry	
USER_NAME	1	User MAC address	
USER_PASSWORD	2	User MAC address	
NAS_IP_ADDRESS	4	Switch IP address	
NAS_PORT	5	User Port Number	
FRAMED_IP_ADDRESS	8	Multicast Group ID	

Example

This example shows how to enable IGMP Authentication on all of the switch's Ethernet interfaces.

Console(config)#interface ethernet 1/1-28 Console(config-if)#ip igmp authentication Console#

Related Commands

show ip igmp authentication

ip igmp filter This command assigns an IGMP filtering profile to an interface on the switch. Use (Interface Configuration) the **no** form to remove a profile from an interface.

Syntax

[no] ip igmp filter profile-number

profile-number - An IGMP filter profile number. (Range: 1-4294967295)

Default Setting

None

Command Mode

Interface Configuration

Command Usage

- ◆ The IGMP filtering profile must first be created with the ip igmp profile command before being able to assign it to an interface.
- Only one profile can be assigned to an interface.
- A profile can also be assigned to a trunk interface. When ports are configured as trunk members, the trunk uses the filtering profile assigned to the first port member in the trunk.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #ip igmp filter 19
Console(config-if)#
```

ip igmp max-groups This command sets the IGMP throttling number for an interface on the switch. Use the **no** form to restore the default setting.

Syntax

ip igmp max-groups number

no ip igmp max-groups

number - The maximum number of multicast groups an interface can join at the same time. (Range: 1-1024)

Default Setting

1024

Command Mode

Interface Configuration (Ethernet)

Command Usage

- ◆ IGMP throttling sets a maximum number of multicast groups that a port can join at the same time. When the maximum number of groups is reached on a port, the switch can take one of two actions; either "deny" or "replace" (see the ip igmp max-groups action command). If the action is set to deny, any new IGMP join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group.
- ◆ IGMP throttling can also be set on a trunk interface. When ports are configured as trunk members, the trunk uses the throttling settings of the first port member in the trunk.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip igmp max-groups 10
Console(config-if)#
```

ip igmp max-groups action

ip igmp This command sets the IGMP throttling action for an interface on the switch.

Syntax

ip igmp max-groups action {deny | replace}

deny - The new multicast group join report is dropped.

replace - The new multicast group replaces an existing group.

Default Setting

Deny

Command Mode

Interface Configuration (Ethernet)

Command Usage

When the maximum number of groups is reached on a port, the switch can take one of two actions; either "deny" or "replace." If the action is set to deny, any new IGMP join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group.

```
Console(config) #interface ethernet 1/1
Console(config-if) #ip igmp max-groups action replace
Console(config-if) #
```

ip igmp query-drop This command drops any received IGMP query packets. Use the no form to restore the default setting.

Syntax

[no] ip igmp query-drop

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

This command can be used to drop any query packets received on the specified interface. If this switch is acting as a Querier, this prevents it from being affected by messages received from another Querier.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #ip igmp query-drop
Console(config-if)#
```

ip multicast-data-drop This command drops all multicast data packets. Use the **no** form to disable this feature.

Syntax

[no] ip multicast-data-drop

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

This command can be used to stop multicast services from being forwarded to users attached to the downstream port (i.e., the interfaces specified by this command).

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip multicast-data-drop
Console(config-if)#
```

IGMP Filtering and Throttling

show ip igmp authentication

show ip igmp This command displays the interface settings for IGMP authentication.

Syntax

```
show ip igmp authentication interface [interface]
```

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)port - Port number. (Range: 1-28/52)port-channel channel-id (Range: 1-16)
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command without specifying an interface displays information for all interfaces.

Example

```
Console#show ip igmp authentication
Ethernet 1/1: Enabled
Ethernet 1/2: Enabled
Ethernet 1/3: Enabled
:
Ethernet 1/27: Enabled
Ethernet 1/27: Enabled
Ethernet 1/28: Enabled
Console#
```

show ip igmp filter This command displays the global and interface settings for IGMP filtering.

Syntax

```
show ip igmp filter [interface interface]
interface
ethernet unit/port
    unit - Unit identifier. (Range: 1-8)
    port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Default Setting

None

Command Mode

Privileged Exec

Example

show ip igmp profile This command displays IGMP filtering profiles created on the switch.

Syntax

```
show ip igmp profile [profile-number]
```

profile-number - An existing IGMP filter profile number. (Range: 1-4294967295)

Default Setting

None

Command Mode

Privileged Exec

```
Console#show ip igmp profile
IGMP Profile 19
IGMP Profile 50
Console#show ip igmp profile 19
IGMP Profile 19
Deny
Range 239.1.1.1 239.1.1.1
Range 239.2.3.1 239.2.3.100
Console#
```

IGMP Filtering and Throttling

query-drop packets.

show ip igmp This command shows if the specified interface is configured to drop IGMP query

Syntax

show ip igmp throttle interface [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command without specifying an interface displays all interfaces.

Example

```
Console#show ip igmp query-drop interface ethernet 1/1
Ethernet 1/1: Enabled
Console#
```

interface

show ip igmp throttle This command displays the interface settings for IGMP throttling.

Syntax

show ip igmp throttle interface [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command without specifying an interface displays information for all interfaces.

Example

```
Console#show ip igmp throttle interface ethernet 1/1
Eth 1/1 Information
Status: TRUE
Action: Deny
Max Multicast Groups: 32
Current Multicast Groups: 0
Console#
```

show ip multicast-data-drop

show ip This command shows if the specified interface is configured to drop multicast data tadrop packets.

Syntax

```
show ip igmp throttle interface [interface]
```

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)port - Port number. (Range: 1-28/52)port-channel channel-id (Range: 1-16)
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command without specifying an interface displays all interfaces.

```
Console#show ip multicast-data-drop interface ethernet 1/1
Ethernet 1/1: Enabled
Console#
```

MLD Snooping

Multicast Listener Discovery (MLD) snooping operates on IPv6 traffic and performs a similar function to IGMP snooping for IPv4. That is, MLD snooping dynamically configures switch ports to limit IPv6 multicast traffic so that it is forwarded only to ports with users that want to receive it. This reduces the flooding of IPv6 multicast packets in the specified VLANs.

There are two versions of the MLD protocol, version 1 and version 2. MLDv1 control packets include Listener Query, Listener Report, and Listener Done messages (equivalent to IGMPv2 query, report, and leave messages). MLDv2 control packets include MLDv2 query and report messages, as well as MLDv1 report and done messages.

Remember that IGMP Snooping and MLD Snooping are independent functions, and can therefore both function at the same time.

Table 131: MLD Snooping Commands

Command	Function	Mode
ipv6 mld snooping	Enables MLD Snooping globally	GC
ipv6 mld snooping querier	Allows the switch to act as the querier for MLD snooping	GC
ipv6 mld snooping query-interval	Configures the interval between sending MLD general query messages	GC
ipv6 mld snooping query- max-response-time	Configures the maximum response time for a general queries	GC
ipv6 mld snooping robustness	Configures the robustness variable	GC
ipv6 mld snooping router-port-expire-time	Configures the router port expire time	GC
ipv6 mld snooping unknown-multicast mode	Sets an action for unknown multicast packets	GC
ipv6 mld snooping version	Configures the MLD Snooping version	GC
ipv6 mld snooping vlan immediate-leave	Removes a member port of an IPv6 multicast service if a leave packet is received at that port and MLD immediate-leave is enabled for the parent VLAN	GC
ipv6 mld snooping vlan mrouter	Adds an IPv6 multicast router port	GC
ipv6 mld snooping vlan static	Adds an interface as a member of a multicast group	GC
clear ipv6 mld snooping groups dynamic	Clears multicast group information dynamically learned through MLD snooping	PE
clear ipv6 mld snooping statistics	Clears MLD snooping statistics	PE
show ipv6 mld snooping	Displays MLD Snooping configuration	PE
show ipv6 mld snooping group	Displays the learned groups	PE

Table 131: MLD Snooping Commands (Continued)

Command	Function	Mode
show ipv6 mld snooping group source-list	Displays the learned groups and corresponding source list	PE
show ipv6 mld snooping mrouter	Displays the information of multicast router ports	PE

ipv6 mld snooping This command enables MLD Snooping globally on the switch. Use the **no** form to disable MLD Snooping.

Syntax

[no] ipv6 mld snooping

Default Setting

Disabled

Command Mode

Global Configuration

Example

The following example enables MLD Snooping:

```
Console(config) #ipv6 mld snooping
Console(config)#
```

ipv6 mld snooping This command allows the switch to act as the querier for MLDv2 snooping. Use the querier no form to disable this feature.

Syntax

[no] ipv6 mld snooping querier

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- If enabled, the switch will serve as querier if elected. The querier is responsible for asking hosts if they want to receive multicast traffic.
- ◆ An IPv6 address must be configured on the VLAN interface from which the querier will act if elected. When serving as the querier, the switch uses its own IPv6 address as the query source address.

 The querier will not start or will disable itself after having started if it detects an IPv6 multicast router on the network.

Example

```
Console(config)#ipv6 mld snooping querier
Console(config)#
```

ipv6 mld snooping This command configures the interval between sending MLD general queries. Use **query-interval** the **no** form to restore the default.

Syntax

ipv6 mld snooping query-interval interval no ipv6 mld snooping query-interval

interval - The interval between sending MLD general queries. (Range: 60-125 seconds)

Default Setting

125 seconds

Command Mode

Global Configuration

Command Usage

- ◆ This command applies when the switch is serving as the querier.
- An MLD general query message is sent by the switch at the interval specified by this command. When this message is received by downstream hosts, all receivers build an MLD report for the multicast groups they have joined.

Example

```
Console(config) #ipv6 mld snooping query-interval 150
Console(config)#
```

query-max-responsetime

ipv6 mld snooping This command configures the maximum response time advertised in MLD general queries. Use the **no** form to restore the default.

Syntax

ipv6 mld snooping query-max-response-time seconds no ipv6 mld snooping query-max-response-time

seconds - The maximum response time allowed for MLD general queries. (Range: 5-25 seconds)

Default Setting

10 seconds

Command Mode

Global Configuration

Command Usage

This command controls how long the host has to respond to an MLD Query message before the switch deletes the group if it is the last member.

Example

```
Console(config) #ipv6 mld snooping query-max-response-time seconds 15
Console(config)#
```

ipv6 mld snooping This command configures the MLD Snooping robustness variable. Use the no form robustness to restore the default value.

Syntax

ipv6 mld snooping robustness value

no ipv6 mld snooping robustness

value - The number of the robustness variable. (Range: 2-10)

Default Setting

2

Command Mode

Global Configuration

Command Usage

A port will be removed from the receiver list for a multicast service when no MLD reports are detected in response to a number of MLD queries. The robustness variable sets the number of queries on ports for which there is no report.

```
Console(config) #ipv6 mld snooping robustness 2
Console(config)#
```

router-port- default. expire-time

ipv6 mld snooping This command configures the MLD query timeout. Use the no form to restore the

Syntax

ipv6 mld snooping router-port-expire-time time no ipv6 mld snooping router-port-expire-time

time - Specifies the timeout of a dynamically learned router port. (Range: 300-500 seconds)

Default Setting

300 seconds

Command Mode

Global Configuration

Command Usage

The router port expire time is the time the switch waits after the previous querier stops before it considers the router port (i.e., the interface that had been receiving query packets) to have expired.

Example

```
Console(config) #ipv6 mld snooping router-port-expire-time 300
Console(config)#
```

mode

ipv6 mld snooping This command sets the action for dealing with unknown multicast packets. Use the unknown-multicast no form to restore the default.

Syntax

ipv6 mld snooping unknown-multicast mode {flood | to-router-port} no ipv6 mld snooping unknown-multicast mode

flood - Floods the unknown multicast data packets to all ports.

to-router-port - Forwards the unknown multicast data packets to router ports.

Default Setting

to-router-port

Command Mode

Global Configuration

Command Usage

 When set to "flood," any received IPv6 multicast packets that have not been requested by a host are flooded to all ports in the VLAN.

♦ When set to "router-port," any received IPv6 multicast packets that have not been requested by a host are forwarded to ports that are connected to a detected multicast router.

Example

```
Console(config) #ipv6 mld snooping unknown-multicast mode flood
Console(config)#
```

ipv6 mld snooping This command configures the MLD snooping version. Use the no form to restore version the default.

Syntax

ipv6 mld snooping version {1 | 2}

- 1 MLD version 1.
- 2 MLD version 2.

Default Setting

Version 2

Command Mode

Global Configuration

Example

```
Console(config) #ipv6 mld snooping version 1
Console(config)#
```

ipv6 mld snooping This command immediately deletes a member port of an IPv6 multicast service vlan immediate-leave when a leave packet is received at that port and immediate-leave is enabled for the parent VLAN. Use the **no** form to restore the default.

Syntax

[no] ipv6 mld snooping vlan vlan-id immediate-leave

vlan-id - A VLAN identification number. (Range: 1-4094)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- If MLD immediate-leave is not used, a multicast router (or querier) will send a group-specific guery message when an MLD group leave message is received. The router/querier stops forwarding traffic for that group only if no host replies to the query within the specified timeout period.
- If MLD immediate-leave is enabled, the switch assumes that only one host is connected to the interface. Therefore, immediate leave should only be enabled on an interface if it is connected to only one MLD-enabled device, either a service host or a neighbor running MLD snooping.

Example

The following shows how to enable MLD immediate leave.

```
Console(config) #interface vlan 1
Console(config-if) #ipv6 mld snooping immediate-leave
Console(config-if)#
```

ipv6 mld snooping This command statically configures an IPv6 multicast router port. Use the no form **vlan mrouter** to remove the configuration.

Syntax

```
[no] ipv6 mld snooping vlan vlan-id mrouter interface
```

```
vlan-id - VLAN ID (Range: 1-4094)
interface
    ethernet unit/port
       unit - Unit identifier. (Range: 1-8)
       port - Port number. (Range: 1-28/52)
    port-channel channel-id (Range: 1-16)
```

Default Setting

No static multicast router ports are configured.

Command Mode

Global Configuration

Command Usage

Depending on your network connections, MLD snooping may not always be able to locate the MLD querier. Therefore, if the MLD querier is a known multicast router/ switch connected over the network to an interface (port or trunk) on the switch, you can manually configure that interface to join all the current multicast groups.

Example

The following shows how to configure port 1 as a multicast router port within VLAN

```
Console(config) #ipv6 mld snooping vlan 1 mrouter ethernet 1/1
Console(config)#
```

vlan static the port.

ipv6 mld snooping This command adds a port to an IPv6 multicast group. Use the **no** form to remove

Syntax

```
[no] ipv6 mld snooping vlan vlan-id static ipv6-address interface
   vlan - VLAN ID (Range: 1-4094)
   ipv6-address - An IPv6 address of a multicast group. (Format: X:X:X:X:X)
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
```

Default Setting

None

Command Mode

Global Configuration

Example

```
Console(config) #ipv6 mld snooping vlan 1 static FF00:0:0:0:0:0:0:0:10C ethernet
Console(config)#
```

snooping groups dynamic

clear ipv6 mld This command clears multicast group information dynamically learned through MLD snooping.

Syntax

clear ipv6 mld snooping groups dynamic

Command Mode

Privileged Exec

Command Usage

This command only clears entries learned though MLD snooping. Statically configured multicast address are not cleared.

Example

```
Console#clear ipv6 mld snooping groups dynamic Console#
```

clear ipv6 mld snooping statistics

clear ipv6 mld This command clears MLD snooping statistics.

Syntax

clear ipv6 mld snooping statistics [interface interface]

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)
```

port-channel channel-id (Range: 1-16)

vlan vlan-id - VLAN identifier (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#clear ipv6 mld snooping statistics Console#
```

show ipv6 mld snooping

show ipv6 This command shows the current MLD Snooping configuration.

Syntax

show ipv6 mld snooping

Command Mode

Privileged Exec

Example

The following shows MLD Snooping configuration information

```
Console#show ipv6 mld snooping
Service Status : Disabled
Querier Status : Disabled
Robustness : 2
Query Interval : 125 sec
```

```
Query Max Response Time
                        : 10 sec
Router Port Expiry Time
                         : 300 sec
Immediate Leave
                         : Disabled on all VLAN
Unknown Flood Behavior
                        : To Router Port
MLD Snooping Version : Version 2
Console#
```

show ipv6 mld This command shows known multicast groups, member ports, and the means by snooping group which each group was learned.

Syntax

show ipv6 mld snooping group

Command Mode

Privileged Exec

Example

The following shows MLD Snooping group configuration information:

```
Console#show ipv6 mld snooping group
VLAN Multicast IPv6 Address
                                 Member port Type
Eth 1/1 MLD Snooping
Eth 1/1 Multicast Data
 1 FF02::01:01:01:01
  1 FF02::01:01:01:02
  1 FF02::01:01:01:02
                                Eth 1/1 User
Console#
```

snooping group source-list

show ipv6 mld This command shows known multicast groups, member ports, the means by which each group was learned, and the corresponding source list.

Syntax

show ipv6 mld snooping group source-list

Command Mode

Privileged Exec

Example

The following shows MLD Snooping group mapping information:

```
Console#show ipv6 mld snooping group source-list
Console#show ipv6 mld snooping group source-list
           : 1
VLAN ID
Mutlicast IPv6 Address
                      : FF02::01:01:01:01
Member Port
                      : Eth 1/1
                       : MLD Snooping
Туре
```

Chapter 24 | Multicast Filtering Commands

MLD Filtering and Throttling

```
Filter Mode
                           : Include
(if exclude filter mode)
Filter Timer elapse
                           : 10 sec.
Request List
                          : ::01:02:03:04, ::01:02:03:05, ::01:02:03:06,
                             ::01:02:03:07
Exclude List
                           : ::02:02:03:04, ::02:02:03:05, ::02:02:03:06,
                             ::02:02:03:07
(if include filter mode)
Include List
                           : ::02:02:03:04, ::02:02:03:05, ::02:02:03:06,
                             ::02:02:03:06
Option:
Filter Mode: Include, Exclude
Console#
```

show ipv6 mld snooping mrouter

show ipv6 mld This command shows MLD Snooping multicast router information.

Syntax

show ipv6 mld snooping mrouter vlan vlan-id

vlan-id - A VLAN identification number. (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 mld snooping mrouter vlan 1
VLAN Multicast Router Port Type Expire

1 Eth 1/ 2 Static

Console#
```

MLD Filtering and Throttling

In certain switch applications, the administrator may want to control the multicast services that are available to end users. For example, an IP/TV service based on a specific subscription plan. The MLD filtering feature fulfills this requirement by restricting access to specified multicast services on a switch port, and MLD throttling limits the number of simultaneous multicast groups a port can join.

Table 132: MLD Filtering and Throttling Commands

Command	Function	Mode
ipv6 mld filter	Enables MLD filtering and throttling on the switch	GC
ipv6 mld profile	Sets a profile number and enters MLD filter profile configuration mode	GC
permit, deny	Sets a profile access mode to permit or deny	IPC

Table 132: MLD Filtering and Throttling Commands (Continued)

Command	Function	Mode
range	Specifies one or a range of multicast addresses for a profile	IPC
ipv6 mld filter	Assigns an MLD filter profile to an interface	IC
ipv6 mld max-groups	Specifies an M:D throttling number for an interface	IC
ipv6 mld max-groups action	Sets the MLD throttling action for an interface	IC
ipv6 mld query-drop	Drops any received MLD query packets	IC
ipv6 multicast-data-drop	Enable multicast data guard mode on a port interface	IC
show ipv6 mld filter	Displays the MLD filtering status	PE
show ipv6 mld profile	Displays MLD profiles and settings	PE
show ipv6 mld query-drop	Shows if the interface is configured to drop MLD query packets	PE
show ipv6 mld throttle interface	Displays the MLD throttling setting for interfaces	PE

ipv6 mld filter This command globally enables MLD filtering and throttling on the switch. Use the (Global Configuration) **no** form to disable the feature.

Syntax

[no] ipv6 mld filter

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- MLD filtering enables you to assign a profile to a switch port that specifies multicast groups that are permitted or denied on the port. An MLD filter profile can contain one or more, or a range of multicast addresses; but only one profile can be assigned to a port. When enabled, MLD join reports received on the port are checked against the filter profile. If a requested multicast group is permitted, the MLD join report is forwarded as normal. If a requested multicast group is denied, the MLD join report is dropped.
- MLD filtering and throttling only applies to dynamically learned multicast groups, it does not apply to statically configured groups.
- The MLD filtering feature operates in the same manner when MVR6 is used to forward multicast traffic.

Chapter 24 | Multicast Filtering Commands

MLD Filtering and Throttling

Example

```
Console(config) #ipv6 mld filter
Console(config)#
```

Related Commands

show ipv6 mld filter

ipv6 mld profile This command creates an MLD filter profile number and enters MLD profile configuration mode. Use the **no** form to delete a profile number.

Syntax

[no] ipv6 mld profile profile-number

profile-number - An MLD filter profile number. (Range: 1-4294967295)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

A profile defines the multicast groups that a subscriber is permitted or denied to join. The same profile can be applied to many interfaces, but only one profile can be assigned to one interface. Each profile has only one access mode; either permit or deny.

Example

```
Console(config) #ipv6 mld profile 19
Console(config-mld-profile)#
```

Related Commands

show ipv6 mld profile

permit, deny This command sets the access mode for an MLD filter profile. Use the **no** form to delete a profile number.

Syntax

{permit | deny}

Default Setting

deny

Command Mode

MLD Profile Configuration

Command Usage

- Each profile has only one access mode; either permit or deny.
- When the access mode is set to permit, MLD join reports are processed when a multicast group falls within the controlled range. When the access mode is set to deny, MLD join reports are only processed when a multicast group is not in the controlled range.

Example

```
Console(config) #ipv6 mld profile 19
Console(config-mld-profile) #permit
Console(config-mld-profile) #
```

range This command specifies multicast group addresses for a profile. Use the **no** form to delete addresses from a profile.

Syntax

[no] range low-ipv6-address [high-ipv6-address]

low-ipv6-address - A valid IPv6 address (X:X:X:X:X) of a multicast group or start of a group range.

high-ipv6-address - A valid IPv6 address (X:X:X:X:X) for the end of a multicast group range.

Default Setting

None

Command Mode

MLD Profile Configuration

Command Usage

Enter this command multiple times to specify more than one multicast address or address range for a profile.

```
Console(config-mld-profile) #range ff01::0101 ff01::0202 Console(config-mld-profile) #
```

MLD Filtering and Throttling

ipv6 mld filter This command assigns an MLD filtering profile to an interface on the switch. Use (Interface Configuration) the **no** form to remove a profile from an interface.

Syntax

```
[no] ipv6 mld filter profile-number
```

profile-number - An MLD filter profile number. (Range: 1-4294967295)

Default Setting

None

Command Mode

Interface Configuration

Command Usage

- ◆ The MLD filtering profile must first be created with the ipv6 mld profile command before being able to assign it to an interface.
- Only one profile can be assigned to an interface.
- A profile can also be assigned to a trunk interface. When ports are configured as trunk members, the trunk uses the filtering profile assigned to the first port member in the trunk.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #ipv6 mld filter 19
Console(config-if)#
```

ipv6 mld max-groups This command configures the maximum number of MLD groups that an interface can join. Use the **no** form to restore the default setting.

Syntax

ipv6 mld max-groups number

no ipv6 mld max-groups

number - The maximum number of multicast groups an interface can join at the same time. (Range: 1-1024)

Default Setting

1024

Command Mode

Interface Configuration (Ethernet)

Command Usage

- MLD throttling sets a maximum number of multicast groups that a port can join at the same time. When the maximum number of groups is reached on a port, the switch can take one of two actions; either "deny" or "replace." If the action is set to deny, any new MLD join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group.
- MLD throttling can also be set on a trunk interface. When ports are configured as trunk members, the trunk uses the throttling settings of the first port member in the trunk.
- If the maximum number of MLD groups is set to the default value, the running status of MLD throttling will change to false. This means that any configuration for MLD throttling will have no effect until the maximum number of MLD groups is configured to another value.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#ipv6 mld max-groups 10
Console(config-if)#
```

ipv6 mld max-groups action

ipv6 mld max-groups This command sets the MLD throttling action for an interface on the switch.

Syntax

ipv6 mld max-groups action {deny | replace}

deny - The new multicast group join report is dropped.

replace - The new multicast group replaces an existing group.

Default Setting

Deny

Command Mode

Interface Configuration (Ethernet)

Command Usage

When the maximum number of groups is reached on a port, the switch can take one of two actions; either "deny" or "replace." If the action is set to deny, any new MLD join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group.

```
Console(config) #interface ethernet 1/1
Console(config-if) #ipv6 mld max-groups action replace
Console(config-if)#
```

Chapter 24 | Multicast Filtering Commands

MLD Filtering and Throttling

ipv6 mld query-drop This command drops any received MLD query packets. Use the no form to restore the default setting.

Syntax

[no] ipv6 mld query-drop

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

This command can be used to drop any query packets received on the specified interface. If this switch is acting as a Querier, this prevents it from being affected by messages received from another Querier.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #ipv6 mld query-drop
Console(config-if)#
```

ipv6 Use this command to enable multicast data guard mode on a port interface. Use multicast-data-drop the no form of the command to disable multicast data guard.

Syntax

[no] ipv6 multicast-data-drop

Default Setting

Disabled

Command Mode

Interface Configuration

```
Console(config)#interface ethernet 1/3
Console(config-if)#ipv6 multicast-data-drop
Console(config-if)#
```

show ipv6 mld filter This command displays the global and interface settings for MLD filtering.

Syntax

show ipv6 mld filter [interface interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

None

Command Mode

Privileged Exec

Example

show ipv6 mld profile This command displays MLD filtering profiles created on the switch.

Syntax

show ipv6 mld profile [profile-number]

profile-number - An existing MLD filter profile number. (Range: 1-4294967295)

Default Setting

None

Command Mode

Privileged Exec

```
Console#show ipv6 mld profile
MLD Profile 19
MLD Profile 50
Console#show ipv6 mld profile 19
```

Chapter 24 | Multicast Filtering Commands

MLD Filtering and Throttling

```
Console#show ipv6 mld profile 5
MLD Profile 19
Denv
Range ff01::101
                       ff01::faa
Console#
```

query-drop packets.

show ipv6 mld This command shows if the specified interface is configured to drop MLD query

Syntax

show ipv6 mld throttle interface [interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command without specifying an interface displays all interfaces.

Example

```
Console#show ipv6 mld query-drop interface ethernet 1/1
Ethernet 1/1: Enabled
Console#
```

interface

show ipv6 mld throttle This command displays the interface settings for MLD throttling.

Syntax

show ipv6 mld throttle interface [interface]

interface

```
ethernet unit/port
```

```
unit - Unit identifier. (Range: 1-8)
    port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command without specifying an interface displays information for all interfaces.

Example

```
Console#show ipv6 mld throttle interface ethernet 1/3
Eth 1/3 Information
Status : TRUE
Action : Replace
Max Multicast Groups : 10
Current Multicast Groups : 0

Console#
```

MVR for IPv4

This section describes commands used to configure Multicast VLAN Registration for IPv4 (MVR). A single network-wide VLAN can be used to transmit multicast traffic (such as television channels) across a service provider's network. Any multicast traffic entering an MVR VLAN is sent to all subscribers. This can significantly reduce to processing overhead required to dynamically monitor and establish the distribution tree for a normal multicast VLAN. Also note that MVR maintains the user isolation and data security provided by VLAN segregation by passing only multicast traffic into other VLANs to which the subscribers belong.

Table 133: Multicast VLAN Registration for IPv4 Commands

Command	Function	Mode
mvr	Globally enables MVR	GC
mvr associated-profile	Binds the MVR group addresses specified in a profile to an MVR domain	GC
mvr domain	Enables MVR for a specific domain	GC
mvr priority	Assigns a priority to all multicast traffic in the MVR VLAN	GC
mvr profile	Maps a range of MVR group addresses to a profile	GC
mvr proxy-query-interval	Configures the interval at which the receiver port sends out general queries.	GC
mvr proxy-switching	Enables MVR proxy switching, where the source port acts as a host, and the receiver port acts as an MVR router with querier service enabled	GC

Table 133: Multicast VLAN Registration for IPv4 Commands (Continued)

Command	Function	Mode
mvr robustness-value	Configures the expected packet loss, and thereby the number of times to generate report and group-specific queries	GC
mvr source-port-mode dynamic	Configures the switch to only forward multicast streams which the source port has dynamically joined	GC
mvr upstream-source-ip	Configures the source IP address assigned to all control packets sent upstream	GC
mvr vlan	Specifies the VLAN through which MVR multicast data is received	GC
mvr immediate-leave	Enables immediate leave capability	IC
mvr type	Configures an interface as an MVR receiver or source port	IC
mvr vlan group	Statically binds a multicast group to a port	IC
clear mrv groups dynamic	Clears multicast group information dynamically learned through MVR	PE
clear mrv statistics	Clears MRV statistics	PE
show mvr	Shows information about MVR domain settings, including MVR operational status, the multicast VLAN, the current number of group addresses, and the upstream source IP address	PE
show mvr associated-profile	Shows the profiles bound the specified domain	PE
show mvr interface	Shows MVR settings for interfaces attached to the MVR VLAN	PE
show mvr members	Shows information about the current number of entries in the forwarding database, or detailed information about a specific multicast address	PE
show mvr profile	Shows all configured MVR profiles	PE
show mvr statistics	Shows MVR protocol statistics for the specified interface	PE

mvr This command enables Multicast VLAN Registration (MVR) globally on the switch. Use the **no** form of this command to globally disable MVR.

Syntax

[no] mvr

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

Only IGMP version 2 or 3 hosts can issue multicast join or leave messages. If MVR must be configured for an IGMP version 1 host, the multicast groups must be statically assigned using the mvr vlan group command.

Example

The following example enables MVR globally.

```
Console(config) #mvr
Console(config)#
```

mvr associated-profile This command binds the MVR group addresses specified in a profile to an MVR domain. Use the **no** form of this command to remove the binding.

Syntax

[no] mvr domain domain-id associated-profile profile-name

domain-id - An independent multicast domain. (Range: 1-5)

profile-name - The name of a profile containing one or more MVR group addresses. (Range: 1-21 characters)

Default Setting

Disabled

Command Mode

Global Configuration

Example

The following an MVR group address profile to domain 1:

```
Console(config) #mvr domain 1 associated-profile rd
Console(config)#
```

Related Commands

mvr profile (715)

mvr domain This command enables Multicast VLAN Registration (MVR) for a specific domain. Use the **no** form of this command to disable MVR for a domain.

Syntax

[no] mvr domain domain-id

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

Only IGMP version 2 or 3 hosts can issue multicast join or leave messages. If MVR must be configured for an IGMP version 1 host, the multicast groups must be statically assigned using the mvr vlan group command.

Example

The following example enables MVR for domain 1:

```
Console(config) #mvr domain 1
Console(config)#
```

mvr priority This command assigns a priority to all multicast traffic in the MVR VLAN. Use the no form of this command to restore the default setting.

Syntax

mvr priority priority

no mvr priority

priority - The CoS priority assigned to all multicast traffic forwarded into the MVR VLAN. (Range: 0-7, where 7 is the highest priority)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

This command can be used to set a high priority for low-latency multicast traffic such as a video-conference, or to set a low priority for normal multicast traffic not sensitive to latency.

Example

```
Console(config) #mvr priority 6
Console(config)#
```

Related Commands

show mvr

mvr profile This command maps a range of MVR group addresses to a profile. Use the **no** form of this command to remove the profile.

Syntax

mvr profile profile-name start-ip-address end-ip-address

profile-name - The name of a profile containing one or more MVR group addresses. (Range: 1-21 characters)

start-ip-address - Starting IPv4 address for an MVR multicast group. (Range: 224.0.1.0 - 239.255.255.255)

end-ip-address - Ending IPv4 address for an MVR multicast group.

(Range: 224.0.1.0 - 239.255.255.255)

Default Setting

No profiles are defined

Command Mode

Global Configuration

Command Usage

- Use this command to statically configure all multicast group addresses that will join the MVR VLAN. Any multicast data associated an MVR group is sent from all source ports to all receiver ports that have registered to receive data from that multicast group.
- The IP address range from 224.0.0.0 to 239.255.255.255 is used for multicast streams. MVR group addresses cannot fall within the reserved IP multicast address range of 224.0.0.x.
- IGMP snooping and MVR share a maximum number of 1024 groups. Any multicast streams received in excess of this limitation will be flooded to all ports in the associated domain.

Example

The following example maps a range of MVR group addresses to a profile:

Console(config) #mvr profile rd 228.1.23.1 228.1.23.10 Console(config)#

mvr This command configures the interval at which the receiver port sends out general proxy-query-interval queries. Use the **no** form to restore the default setting.

Syntax

mvr proxy-query-interval interval

no mvr proxy-query-interval

interval - The interval at which the receiver port sends out general queries. (Range: 2-31744 seconds)

Default Setting

125 seconds

Command Mode

Global Configuration

Command Usage

This command sets the general query interval at which active receiver ports send out general gueries. This interval is only effective when proxy switching is enabled with the mvr proxy-switching command.

Example

This example sets the proxy query interval for MVR proxy switching.

```
Console(config) #mvr proxy-query-interval 250
Console(config)#
```

mvr proxy-switching

This command enables MVR proxy switching, where the source port acts as a host, and the receiver port acts as an MVR router with guerier service enabled. Use the **no** form to disable this function.

Syntax

[no] mvr proxy-switching

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

 When MVR proxy-switching is enabled, an MVR source port serves as the upstream or host interface. The source port performs only the host portion of MVR by sending summarized membership reports, and automatically disables MVR router functions.

- Receiver ports are known as downstream or router interfaces. These interfaces perform the standard MVR router functions by maintaining a database of all MVR subscriptions on the downstream interface. Receiver ports must therefore be configured on all downstream interfaces which require MVR proxy service.
- When the source port receives report and leave messages, it only forwards them to other source ports.
- When receiver ports receive any query messages, they are dropped.
- When changes occurring in the downstream MVR groups are learned by the receiver ports through report and leave messages, an MVR state change report is created and sent to the upstream source port, which in turn forwards this information upstream.
- When MVR proxy switching is disabled:
 - Any membership reports received from receiver/source ports are forwarded to all source ports.
 - When a source port receives a guery message, it will be forwarded to all downstream receiver ports.
 - When a receiver port receives a query message, it will be dropped.

Example

The following example enable MVR proxy switching.

```
Console(config) #mvr proxy-switching
Console(config)#
```

Related Commands

mvr robustness-value (717)

mvr robustness-value This command configures the expected packet loss, and thereby the number of times to generate report and group-specific queries. Use the **no** form to restore the default setting.

Syntax

mvr robustness-value value

no mvr robustness-value

value - The robustness used for all interfaces. (Range: 1-255)

Default Setting

2

Command Mode

Global Configuration

Command Usage

- This command is used to set the number of times report messages are sent upstream when changes are learned about downstream groups, and the number of times group-specific queries are sent to downstream receiver ports.
- ◆ This command only takes effect when MVR proxy switching is enabled.

Example

```
Console(config) #mvr robustness-value 5
Console(config)#
```

Related Commands

mvr proxy-switching (716)

mvr source-port-mode This command configures the switch to only forward multicast streams which the **dynamic** source port has dynamically joined. Use the **no** form to restore the default setting.

Syntax

[no] mvr source-port-mode dynamic

Default Setting

Forwards all multicast streams which have been specified in a profile and bound to a domain.

Command Mode

Global Configuration

Command Usage

- By default, the switch forwards any multicast streams within the address range set by a profile, and bound to a domain. The multicast streams are sent to all source ports on the switch and to all receiver ports that have elected to receive data on that multicast address.
- When the mvr source-port-mode dynamic command is used, the switch only forwards multicast streams which the source port has dynamically joined. In other words, both the receiver port and source port must subscribe to a multicast group before a multicast stream is forwarded to any attached client. Note that the requested streams are still restricted to the address range which has been specified in a profile and bound to a domain.

Example

```
Console(config) #mvr source-port-mode dynamic
Console(config)#
```

mvr This command configures the source IP address assigned to all MVR control packets upstream-source-ip sent upstream on all domains or on a specified domain. Use the **no** form to restore the default setting.

Syntax

mvr [domain domain-id] upstream-source-ip source-ip-address

no mvr [domain domain-id] upstream-source-ip

domain-id - An independent multicast domain. (Range: 1-5)

source-ip-address – The source IPv4 address assigned to all MVR control packets sent upstream.

Default Setting

All MVR reports sent upstream use a null source IP address

Command Mode

Global Configuration

Example

```
Console(config) #mvr domain 1 upstream-source-ip 192.168.0.3
Console(config)#
```

mvr vlan This command specifies the VLAN through which MVR multicast data is received. Use the **no** form of this command to restore the default MVR VLAN.

Syntax

mvr [domain domain-id] vlan vlan-id

no [mvr domain domain-id] vlan

domain-id - An independent multicast domain. (Range: 1-5)

vlan-id - Specifies the VLAN through which MVR multicast data is received. This is also the VLAN to which all source ports must be assigned. (Range: 1-4094)

Default Setting

VLAN 1

Command Mode

Global Configuration

Command Usage

- This command specifies the VLAN through which MVR multicast data is received. This is the VLAN to which all source ports must be assigned.
- The VLAN specified by this command must be an existing VLAN configured with the vlan command.
- MVR source ports can be configured as members of the MVR VLAN using the switchport allowed vlan command and switchport native vlan command, but MVR receiver ports should not be statically configured as members of this VLAN.

Example

The following example sets the MVR VLAN to VLAN 2:

```
Console(config) #mvr
Console(config) #mvr domain 1 vlan 2
Console(config)#
```

mvr immediate-leave This command causes the switch to immediately remove an interface from a multicast stream as soon as it receives a leave message for that group. Use the **no** form to restore the default settings.

Syntax

```
mvr [domain domain-id] immediate-leave [by-host-ip]
no mvr [domain domain-id] immediate-leave
```

domain-id - An independent multicast domain. (Range: 1-5)

by-host-ip - Specifies that the member port will be deleted only when there are no hosts joining this group.

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Immediate leave applies only to receiver ports. When enabled, the receiver port is immediately removed from the multicast group identified in the leave message. When immediate leave is disabled, the switch follows the standard rules by sending a group-specific query to the receiver port and waiting for a response to determine if there are any remaining subscribers for that multicast group before removing the port from the group list.
- If the "by-host-ip" option is used, the router/querier will not send out a groupspecific query when an IGMPv2/v3 leave message is received (the same as it

would without this option having been used). Instead of immediately deleting that group, it will look up the record, and only delete the group if there are no other subscribers for it on the member port. Only when all hosts on that port leave the group will the member port be deleted.

- Using immediate leave can speed up leave latency, but should only be enabled on a port attached to only one multicast subscriber to avoid disrupting services to other group members attached to the same interface.
- ◆ Immediate leave does not apply to multicast groups which have been statically assigned to a port with the mvr vlan group command.

Example

The following enables immediate leave on a receiver port.

```
Console(config)#interface ethernet 1/5
Console(config-if)#mvr domain 1 immediate-leave
Console(config-if)#
```

mvr type This command configures an interface as an MVR receiver or source port. Use the **no** form to restore the default settings.

Syntax

[no] mvr [domain domain-id] type {receiver | source}

domain-id - An independent multicast domain. (Range: 1-5)

receiver - Configures the interface as a subscriber port that can receive multicast data.

source - Configures the interface as an uplink port that can send and receive multicast data for the configured multicast groups.

Default Setting

The port type is not defined.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- A port which is not configured as an MVR receiver or source port can use IGMP snooping to join or leave multicast groups using the standard rules for multicast filtering.
- Receiver ports can belong to different VLANs, but should not normally be configured as a member of the MVR VLAN. IGMP snooping can also be used to allow a receiver port to dynamically join or leave multicast groups not sourced through the MVR VLAN. Also, note that VLAN membership for MVR receiver ports cannot be set to access mode (see the switchport mode command).

- One or more interfaces may be configured as MVR source ports. A source port is able to both receive and send data for multicast groups which it has joined through the MVR protocol or which have been assigned through the mvr vlan group command.
- Only IGMP version 2 or 3 hosts can issue multicast join or leave messages. If MVR must be configured for an IGMP version 1 host, the multicast groups must be statically assigned using the mvr vlan group command.

Example

The following configures one source port and several receiver ports on the switch.

```
Console(config) #interface ethernet 1/5
Console(config-if) #mvr domain 1 type source
Console(config-if) #exit
Console(config) #interface ethernet 1/6
Console(config-if) #mvr domain 1 type receiver
Console(config-if) #exit
Console(config) #interface ethernet 1/7
Console(config-if) #mvr domain 1 type receiver
Console(config-if) #mvr domain 1 type receiver
Console(config-if) #
```

mvr vlan group

This command statically binds a multicast group to a port which will receive long-term multicast streams associated with a stable set of hosts. Use the **no** form to restore the default settings.

Syntax

[no] mvr [domain domain-id] vlan vlan-id group ip-address

domain-id - An independent multicast domain. (Range: 1-5)

vlan-id - Receiver VLAN to which the specified multicast traffic is flooded. (Range: 1-4094)

group - Defines a multicast service sent to the selected port.

ip-address - Statically configures an interface to receive multicast traffic from the IPv4 address specified for an MVR multicast group. (Range: 224.0.1.0 - 239.255.255.255)

Default Setting

No receiver port is a member of any configured multicast group.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

 Multicast groups can be statically assigned to a receiver port using this command.

- The IP address range from 224.0.0.0 to 239.255.255.255 is used for multicast streams. MVR group addresses cannot fall within the reserved IP multicast address range of 224.0.0.x.
- Only IGMP version 2 or 3 hosts can issue multicast join or leave messages. If MVR must be configured for an IGMP version 1 host, the multicast groups must be statically assigned using the mvr vlan group command.
- The MVR VLAN cannot be specified as the receiver VLAN for static bindings.

Example

The following statically assigns a multicast group to a receiver port:

```
Console(config)#interface ethernet 1/7
Console(config-if) #mvr domain 1 type receiver
Console(config-if) #mvr domain 1 vlan 3 group 225.0.0.5
Console(config-if)#
```

dynamic MRV.

clear mrv groups This command clears multicast group information dynamically learned through

Syntax

clear mrv groups dynamic

Command Mode

Privileged Exec

Command Usage

This command only clears entries learned though MRV. Statically configured multicast address are not cleared.

Example

```
Console#clear mrv groups dynamic
Console#
```

clear mrv statistics This command clears MRV statistics.

Syntax

clear mrv statistics [interface interface]

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8) port - Port number. (Range: 1-28/52) port-channel channel-id (Range: 1-16)

vlan vlan-id - VLAN identifier (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#clear ip igmp snooping statistics
Console#
```

show mvr This command shows information about MVR domain settings, including MVR operational status, the multicast VLAN, the current number of group addresses, and the upstream source IP address.

Syntax

show mvr [domain domain-id]

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Displays configuration settings for all MVR domains.

Command Mode

Privileged Exec

Example

The following shows the MVR settings:

```
Console#show mvr
MVR 802.1p Forwarding Priority : Disabled
MVR Proxy Switching : Enabled MVR Robustness Value : 1
MVR Domain
                        : 1
MVR Config Status
MVR Running Status
MVR Multicast VLAN
                        : Enabled
                         : Active
                         : 1
MVR Multicast VLAN
: 192.168.0.3
MVR Upstream Source IP
```

Table 134: show mvr - display description

Field	Description
MVR 802.1p Forwarding Priority	Priority assigned to multicast traffic forwarded into the MVR VLAN
MVR Proxy Switching	Shows if MVR proxy switching is enabled
MVR Robustness Value	Shows the number of reports or query messages sent when proxy switching is enabled
MVR Proxy Query Interval	Shows the interval at which the receiver port sends out general queries
MVR Source Port Mode	Shows if the switch forwards all multicast streams, or only those which the source port has dynamically joined
MVR Domain	An independent multicast domain.
MVR Config Status	Shows if MVR is globally enabled on the switch.
MVR Running Status	Indicates whether or not all necessary conditions in the MVR environment are satisfied. (Running status is true as long as MVR Status is enabled, and the specified MVR VLAN exists.)
MVR Multicast VLAN	Shows the VLAN used to transport all MVR multicast traffic.
MVR Current Learned Groups	The current number of MVR group addresses
MVR Upstream Source IP	The source IP address assigned to all upstream control packets.

show mvr associated-profile

show mvr This command shows the profiles bound the specified domain.

Syntax

show mvr [domain domain-id] associated-profile

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Displays profiles bound to all MVR domains.

Command Mode

Privileged Exec

Example

The following displays the profiles bound to domain 1:

Console#show mvr dor Domain ID : 1	main 1 associated-pro	ofile
MVR Profile Name	Start IP Addr. E	nd IP Addr.
rd	228.1.23.1	228.1.23.10
testing	228.2.23.1	228.2.23.10
Console#		

show mvr interface This command shows MVR configuration settings for interfaces attached to the MVR VLAN.

Syntax

show mvr [domain domain-id] **interface**

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Displays configuration settings for all attached interfaces.

Command Mode

Privileged Exec

Example

The following displays information about the interfaces attached to the MVR VLAN in domain 1:

IVR Domair	ı: 1	omain 1 interface		
Port	Туре	Status	Immediate	Static Group Address
Eth 1/ 1	Source	Active/Forwarding		
Eth 1/ 2	Receiver	Inactive/Discarding	Disabled	234.5.6.8(VLAN2)
Eth 1/ 3	Source	Inactive/Discarding		
Eth 1/ 1	Receiver	Active/Forwarding	Disabled	225.0.0.1(VLAN1)
				225.0.0.9(VLAN3)
Eth 1/ 4	Receiver	Active/Discarding	Disabled	
Console#				

Table 135: show mvr interface - display description

Field	Description
MVR Domain	An independent multicast domain.
Port	Shows interfaces attached to the MVR.
Туре	Shows the MVR port type.
Status	Shows the MVR status and interface status. MVR status for source ports is "ACTIVE" if MVR is globally enabled on the switch. MVR status for receiver ports is "ACTIVE" only if there are subscribers receiving multicast traffic from one of the MVR groups, or a multicast group has been statically assigned to an interface. Also shows if MVR traffic is being forwarded or discarded.
Immediate	Shows if immediate leave is enabled or disabled.
Static Group Address	Shows any static MVR group assigned to an interface, and the receiver VLAN.

show mvr members This command shows information about the current number of entries in the forwarding database, detailed information about a specific multicast address, the IP address of the hosts subscribing to all active multicast groups, or the multicast groups associated with each port.

Syntax

```
show mvr [domain domain-id] members [ip-address]
 host-ip-address [interface] | igmp | sort-by-port [interface | unknown |
 user]]]
   domain-id - An independent multicast domain. (Range: 1-5)
   ip-address - IPv4 address for an MVR multicast group.
   (Range: 224.0.1.0 - 239.255.255.255)
   members - The multicast groups assigned to the MVR VLAN.
   host-ip-address - The subscriber IP addresses.
   igmp - Entry created by IGMP protocol.
   sort-by-port - The multicast groups associated with an interface.
   interface
           ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
   unknown - Entry created by receiving a multicast stream.
   user - Snooping entry learned from user's configuration settings.
```

Default Setting

Displays configuration settings for all domains and all forwarding entries.

Command Mode

Privileged Exec

Example

The following shows information about the number of multicast forwarding entries currently active in domain 1:

```
Console#show mvr domain 1 members
MVR Domain : 1
MVR Forwarding Entry Count :1
Flag: S - Source port, R - Receiver port.
      H - Host counts (number of hosts joined to group on this port).
      P - Port counts (number of ports joined to group).
Up time: Group elapsed time (d:h:m:s).
 Expire: Group remaining time (m:s).
```

Group Address	VLAN	Port	Up time	Expire Count
234.5.6.7	1		00:00:09:17	
234.5.6.7	_	Eth 1/ 1(S)	00:00:09:17	2 (P)
	2	Eth 1/ 2(R)		
Console#				

The following example shows detailed information about a specific multicast address:

```
Console#show mvr domain 1 members 234.5.6.7
MVR Domain : 1
MVR Forwarding Entry Count :1
Flag: S - Source port, R - Receiver port.
     H - Host counts (number of hosts joined to group on this port).
     P - Port counts (number of ports joined to group).
Up time: Group elapsed time (d:h:m:s).
 Expire : Group remaining time (m:s).
Group Address VLAN Port
                         Up time Expire Count
 234.5.6.7
                                                 2(P)
                 1 Eth 1/ 1(S)
                 2 Eth 1/ 2(R)
Console#
```

Table 136: show mvr members - display description

Field	Description	
Group Address	Multicast group address.	
VLAN	VLAN to which this address is forwarded.	
Port	Port to which this address is forwarded.	
Uptime	Time that this multicast group has been known.	
Expire	The time until this entry expires.	
Count	The number of times this address has been learned by IGMP snooping.	

show mvr profile This command shows all configured MVR profiles.

Command Mode

Privileged Exec

Example

The following shows all configured MVR profiles:

show mvr statistics This command shows MVR protocol-related statistics for the specified interface.

Syntax

```
show mvr [domain domain-id] statistics
input [interface interface] | output [interface interface] |
query | summary interface [interface | mvr-vlan]

domain-id - An independent multicast domain. (Range: 1-5)
interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

vlan vlan-id - VLAN ID (Range: 1-4094)

query - Displays MVR query-related statistics.

summary - Displays summary of MVR statistics.

mvr vlan - Displays summary statistics for the MVR VLAN.
```

Default Setting

Displays statistics for all domains.

Command Mode

Privileged Exec

Example

The following shows MVR protocol-related statistics received:

Console#show move Domain :	1 , MVR		stics input				
Input Statis Interface Re		2770 C (Duorus C.L.S	S)-S Query Drop	то:	in Succ Gr	20110
incertace ke	рогс ве	ave G (G(-:	Query Drop			
Eth 1/ 1	23	11	4	10	5	20	9
Eth 1/ 2	12	15	8	3	5	19	4
DVLAN 1	2	0	0	2	2	20	9
MVLAN 1	2	0	0	2	2	20	9
Console#							

Table 137: show mvr statistics input - display description

Field	Description
Interface	Shows interfaces attached to the MVR.
Report	The number of IGMP membership reports received on this interface.
Leave	The number of leave messages received on this interface.
G Query	The number of general query messages received on this interface.
G(-S)-S Query	The number of group specific or group-and-source specific query messages received on this interface.
Drop	The number of times a report, leave or query was dropped. Packets may be dropped due to invalid format, rate limiting, packet content not allowed, or MVR group report received
Join Succ	The number of times a multicast group was successfully joined.
Group	The number of MVR groups active on this interface.

The following shows MVR protocol-related statistics sent:

Table 138: show mvr statistics output - display description

Field	Description
Interface	Shows interfaces attached to the MVR.
Report	The number of IGMP membership reports sent from this interface.
Leave	The number of leave messages sent from this interface.

Table 138: show mvr statistics output - display description (Continued)

Field	Description
G Query	The number of general query messages sent from this interface.
G(-S)-S Query	The number of group specific or group-and-source specific query messages sent from this interface.

The following shows MVR query-related statistics:

```
Console#show mvr domain 1 statistics query
Domain 1:

Other Querier : None
Other Querier Expire : O(m):O(s)
Other Querier Uptime : O(h):O(m):O(s)
Self Querier : None
Self Querier Expire : O(m):30(s)
Self Querier Uptime : O(h):9(m):55(s)
General Query Received : O
General Query Sent : 8
Specific Query Sent : 3
Warn Rate Limit : O sec.
V1 Warning Count : O
V2 Warning Count : O
Console#
```

Table 139: show mvr statistics query - display description

Field	Description
Other Querier	The IP address of the querier on this interface.
Other Querier Expire	The time after which this querier is assumed to have expired.
Other Querier Uptime	Other querier's time up.
Self Querier	This querier's IP address.
Self Querier Expire	This querier's expire time.
Self Querier Uptime	This querier's time up.
General Query Received	The number of general queries received on this interface.
General Query Sent	The number of general queries sent from this interface.
Specific Query Received	The number of specific queries received on this interface.
Specific Query Sent	The number of specific queries sent from this interface.
Warn Rate Limit	Count down from 15 seconds after receiving a Query different from the configured version.
V# Warning Count	Number of queries received on MVR that were configured for IGMP version 1, 2 or 3.

The following shows MVR summary statistics for an interface:

```
{\tt Console \# show \ mvr \ domain \ 1 \ statistics \ summary \ interface \ ethernet \ 1/1}
Domain 1:
Number of Groups: 0
Querier:
                                  Report & Leave: :
                :
 Transmit
                                   Transmit
 General
               : 0
                                                  : 7
                                   Report
 Group Specific : 0
                                    Leave
                                                  : 4
 Received :
                                  Received
                : 0
  General
                                   Report
                                                  : 0
  Group Specific : 0
                                    Leave
                                    Join Success : 0
  V1 Warning Count: 0
  V2 Warning Count: 0
                                     Filter Drop : 0
  V3 Warning Count: 0
                                     Source Port Drop: 0
                                     Others Drop : 0
Console#
```

Table 140: show mvr statistics summary interface - display description

Field	Description
Domain	An independent multicast domain.
Number of Groups	Number of groups learned on this port.
Querier	
Transmit	
General	Number of general queries transmitted.
Group Specific	Number of group specific queries transmitted.
Received	
General	Number of general queries received.
Group Specific	Number of group specific queries received.
V# Warning Count	Number of queries received on MVR that were configured for IGMP version 1, 2 or 3. $$
Report & Leave	
Transmit	
Report	Number of transmitted reports.
Leave	Number of transmitted leaves.
Received	
Report	Number of reports received.
Leave	Number of leaves received.
Join Success	Number of join reports processed successfully.
Filter Drop	Number of report/leave messages dropped by IGMP filter.
Source Port Drop	Number of report/leave messages dropped by MVR source port.
Others Drop	Number of report/leave messages dropped for other reasons.

The following shows MVR summary statistics for the MVR VLAN:

```
Console#show mvr domain 1 statistics summary interface mvr-vlan
Domain 1:
Number of Groups: 0
                                             Report & Leave: :
 Querier:
  Other Querier : None
                                              Host IP Addr : 192.168.0.66
 other Querier : None
Other Expire : 0(m):0(s)
Other Uptime : 0(h):0(m):0(s)
                                             Unsolicit Expire : 5(m):4(s)
  Self Querier : None
   \begin{array}{lll} \text{Self Expire} & : 1 \, (\text{m}) : 45 \, (\text{s}) \\ \text{Self Uptime} & : 0 \, (\text{h}) : 14 \, (\text{m}) \\ \end{array} 
                    : 0(h):14(m):54(s)
  Transmit
                                               Transmit
  General : 11
Group Specific : 3
                                                Report
                                                Leave
  Received
                                               Received
                     : 0
                                               Report
                                                                   : 6
   General
   Group Specific : 0
                                                                  : 0
                                               Leave
   V1 Warning Count: 0
                                              Join Success : 6
   V2 Warning Count: 0
                                                Filter Drop : 0
   V3 Warning Count: 0
                                                Source Port Drop: 0
                                                 Others Drop : 0
Console#
```

Table 141: show mvr statistics summary interface mvr vlan - description

Field	Description
Domain	An independent multicast domain.
Number of Groups	Number of groups learned on this port.
Querier	
Other Querier	Other IGMP querier's IP address.
Other Expire	Other querier's expire time.
Other Uptime	Other querier's time up.
Self Querier	This querier's IP address.
Self Expire	This querier's expire time.
Self Uptime	This querier's time up.
Transmit	
General	Number of general queries sent from receiver port.
Group Specific	Number of group specific queries sent from receiver port.
Received	
General	Number of general queries received.
Group Specific	Number of group specific queries received.
V# Warning Count	Number of queries received on MVR that were configured by IGMP version 1, 2 or 3.
Report & Leave	
Host IP Addr	Source IP address used to send report/leave messages from source port.
Unsolicit Expire	Expiration time for unsolicit reports sent out from source port

Table 141: show mvr statistics summary interface mvr vlan - description

Field	Description
Transmit	
Report	Number of reports sent out from source port.
Leave	Number of leaves sent out from source port.
Received	Field header
Report	Number of reports received.
Leave	Number of leaves received.
Join Success	Number of join reports processed successfully.
Filter Drop	Number of report/leave messages dropped by IGMP filter.
Source Port Drop	Number of report/leave messages dropped by MVR source port.
Others Drop	Number of report/leave messages dropped for other reasons.

MVR for IPv6

This section describes commands used to configure Multicast VLAN Registration for IPv6 (MVR6). A single network-wide VLAN can be used to transmit multicast traffic (such as television channels) across a service provider's network. Any multicast traffic entering an MVR VLAN is sent to all subscribers. This can significantly reduce to processing overhead required to dynamically monitor and establish the distribution tree for a normal multicast VLAN. Also note that MVR maintains the user isolation and data security provided by VLAN segregation by passing only multicast traffic into other VLANs to which the subscribers belong.

Table 142: Multicast VLAN Registration for IPv6 Commands

Command	Function	Mode
mvr6 associated-profile	Binds the MVR group addresses specified in a profile to an MVR domain	GC
mvr6 domain	Enables MVR for a specific domain	GC
mvr6 priority	Assigns a priority to all multicast traffic in the MVR VLAN	GC
mvr6 profile	Maps a range of MVR group addresses to a profile	GC
mvr6 proxy-query-interval	Configures the interval at which the receiver port sends out general queries.	GC
mvr6 proxy-switching	Enables MVR proxy switching, where the source port acts as a host, and the receiver port acts as an MVR router with querier service enabled	GC
mvr6 robustness-value	Configures the expected packet loss, and thereby the number of times to generate report and group-specific queries	GC
mvr6 source-port-mode dynamic	Configures the switch to only forward multicast streams which the source port has dynamically joined	GC

Table 142: Multicast VLAN Registration for IPv6 Commands (Continued)

Command	Function	Mode
mvr6 upstream-source-ip	Configures the source IP address assigned to all control packets sent upstream	
mvr6 vlan	Specifies the VLAN through which MVR multicast data is received	GC
mvr6 immediate-leave	Enables immediate leave capability	IC
mvr6 type	Configures an interface as an MVR receiver or source port	IC
mvr6 vlan group	Statically binds a multicast group to a port	IC
clear mvr6 groups dynamic	Clears multicast group information dynamically learned through MVR6	PE
clear mvr6 statistics	Clears the MVR statistics globally or on a per-interface basis.	PE
show mvr6	Shows information about MVR domain settings, including MVR operational status, the multicast VLAN, the current number of group addresses, and the upstream source IP address	PE
show mvr6 associated- profile	Shows the profiles bound the specified domain	PE
show mvr6 interface	Shows MVR settings for interfaces attached to the MVR VLAN	PE
show mvr6 members	Shows information about the current number of entries in the forwarding database, or detailed information about a specific multicast address	PE
show mvr6 profile	Shows all configured MVR profiles	PE
show mvr6 statistics	Shows MVR protocol statistics for the specified interface	PE

mvr6 This command binds the MVR group addresses specified in a profile to an MVR associated-profile domain. Use the **no** form of this command to remove the binding.

Syntax

[no] mvr6 domain domain-id associated-profile profile-name

domain-id - An independent multicast domain. (Range: 1-5)

profile-name - The name of a profile containing one or more MVR group addresses. (Range: 1-21 characters)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

MRV6 domains can be associated with more than one MVR6 profile. But since MVR6 domains cannot share the group range, an MRV6 profile can only be associated with one MVR6 domain.

Example

The following an MVR6 group address profile to domain 1:

```
Console(config) #mvr6 domain 1 associated-profile rd
Console(config)#
```

mvr6 domain This command enables Multicast VLAN Registration (MVR) for a specific domain. Use the **no** form of this command to disable MVR for a domain.

Syntax

[no] mvr6 domain domain-id

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

When MVR6 is enabled on a domain, any multicast data associated with an MVR6 group is sent from all designated source ports, to all receiver ports that have registered to receive data from that multicast group.

Example

The following example enables MVR for domain 1:

```
Console(config) #mvr6 domain 1
Console(config)#
```

mvr6 priority This command assigns a priority to all multicast traffic in the MVR VLAN. Use the no form of this command to restore the default setting.

Syntax

mvr priority priority

no mvr priority

priority - The CoS priority assigned to all multicast traffic forwarded into the MVR VLAN. (Range: 0-7, where 7 is the highest priority)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

This command can be used to set a high priority for low-latency multicast traffic such as a video-conference, or to set a low priority for normal multicast traffic not sensitive to latency.

Example

```
Console(config) #mvr priority 6
Console(config)#
```

RELATED COMMANDS

show mvr6 (746)

mvr6 profile This command maps a range of MVR group addresses to a profile. Use the **no** form of this command to remove the profile.

Syntax

mvr6 profile profile-name start-ip-address end-ip-address

profile-name - The name of a profile containing one or more MVR group addresses. (Range: 1-21 characters)

start-ip-address - Starting IPv6 address for an MVR multicast group. This parameter must be a full IPv6 address including the network prefix and host address bits.

end-ip-address - Ending IPv6 address for an MVR multicast group. This parameter must be a full IPv6 address including the network prefix and host address bits.

Default Setting

No profiles are defined

Command Mode

Global Configuration

Command Usage

- Use this command to statically configure all multicast group addresses that will join the MVR VLAN. Any multicast data associated with an MVR group is sent from all source ports, and to all receiver ports that have registered to receive data from that multicast group.
- All IPv6 addresses must be according to RFC 2373 "IPv6 Addressing" Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields. (Note that the IP address ff02::X is reserved.)

 The MVR6 group address range assigned to a profile cannot overlap with the group address range of any other profile.

Example

The following example maps a range of MVR6 group addresses to a profile:

```
Console(config) #mvr6 profile rd ff01:0:0:0:0:0:0:fe ff01:0:0:0:0:0:6
Console(config)#
```

mvr6 This command configures the interval at which the receiver port sends out general proxy-query-interval queries. Use the **no** form to restore the default setting.

Syntax

mvr proxy-query-interval interval

no mvr proxy-query-interval

interval - The interval at which the receiver port sends out general queries. (Range: 2-31744 seconds)

Default Setting

125 seconds

Command Mode

Global Configuration

Command Usage

This command sets the general query interval at which active receiver ports send out general gueries. This interval is only effective when proxy switching is enabled with the mvr6 proxy-switching command.

Example

This example sets the proxy query interval for MVR6.

```
Console(config) #mvr proxy-query-interval 228
Console(config)#
```

mvr6 proxy-switching

This command enables MVR proxy switching, where the source port acts as a host, and the receiver port acts as an MVR router with querier service enabled. Use the **no** form to disable this function.

Syntax

[no] mvr6 proxy-switching

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- When MVR proxy-switching is enabled, an MVR source port serves as the upstream or host interface, and the MVR receiver port serves as the querier. The source port performs only the host portion of MVR by sending summarized membership reports, and automatically disables MVR router functions.
- Receiver ports are known as downstream or router interfaces. These interfaces
 perform the standard MVR router functions by maintaining a database of all
 MVR subscriptions on the downstream interface. Receiver ports must therefore
 be configured on all downstream interfaces which require MVR proxy service.
- ◆ When the source port receives report and leave messages, it only forwards them to other source ports.
- ♦ When receiver ports receive any query messages, they are dropped.
- When changes occurring in the downstream MVR groups are learned by the receiver ports through report and leave messages, an MVR state change report is created and sent to the upstream source port, which in turn forwards this information upstream.
- When MVR proxy switching is disabled:
 - Any membership reports received from receiver/source ports are forwarded to all source ports.
 - When a source port receives a query message, it will be forwarded to all downstream receiver ports.
 - When a receiver port receives a query message, it will be dropped.

Example

The following example enable MVR6 proxy switching.

Console(config) #mvr6 proxy-switching
Console(config) #

Related Commands

mvr6 robustness-value (740)

mvr6 This command configures the expected packet loss, and thereby the number of robustness-value times to generate report and group-specific queries. Use the no form to restore the default setting.

Syntax

mvr6 robustness-value value

no mvr6 robustness-value

value - The robustness used for all interfaces. (Range: 1-10)

Default Setting

2

Command Mode

Global Configuration

Command Usage

- This command sets the number of times report messages are sent upstream when changes are learned about downstream groups, and the number of times group-specific queries are sent to downstream receiver ports.
- This command only takes effect when MVR6 proxy switching is enabled.

Example

```
Console(config) #mvr6 robustness-value 5
Console(config)#
```

Related Commands

mvr6 proxy-switching (738)

dynamic

mvr6 This command configures the switch to only forward multicast streams which the source-port-mode source port has dynamically joined. Use the **no** form to restore the default setting.

Syntax

[no] mvr6 source-port-mode dynamic

Default Setting

Forwards all multicast streams which have been specified in a profile and bound to a domain.

Command Mode

Global Configuration

Command Usage

 By default, the switch forwards any multicast streams within the address range set by a profile, and bound to a domain. The multicast streams are sent to all

source ports on the switch and to all receiver ports that have elected to receive data on that multicast address.

When the mvr6 source-port-mode dynamic command is used, the switch only forwards multicast streams which the source port has dynamically joined. In other words, both the receiver port and source port must subscribe to a multicast group before a multicast stream is forwarded to any attached client. Note that the requested streams are still restricted to the address range which has been specified in a profile and bound to a domain.

Example

```
Console(config) #mvr6 source-port-mode dynamic
Console(config)#
```

mvr6 This command configures the source IPv6 address assigned to all MVR control upstream-source-ip packets sent upstream on the specified domain. Use the **no** form to restore the default setting.

Syntax

mvr6 domain domain-id upstream-source-ip source-ip-address

no mvr6 domain domain-id upstream-source-ip

domain-id - An independent multicast domain. (Range: 1-5)

source-ip-address – The source IPv6 address assigned to all MVR control packets sent upstream. This parameter must be a full IPv6 address including the network prefix and host address bits.

Default Setting

All MVR reports sent upstream use a null source IP address

Command Mode

Global Configuration

Command Usage

All IPv6 addresses must be according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields. (Note that the IP address ff02::X is reserved.)

Example

```
Console(config) #mvr6 domain 1 upstream-source-ip 2001:DB8:2222:7223::72
Console(config)#
```

mvr6 vlan This command specifies the VLAN through which MVR multicast data is received. Use the **no** form of this command to restore the default MVR VLAN.

Syntax

mvr6 domain domain-id vlan vlan-id

no mvr6 domain domain-id vlan

domain-id - An independent multicast domain. (Range: 1-5)

vlan-id - Specifies the VLAN through which MVR multicast data is received. This is also the VLAN to which all source ports must be assigned. (Range: 1-4094)

Default Setting

VLAN 1

Command Mode

Global Configuration

Command Usage

MVR source ports can be configured as members of the MVR VLAN using the switchport allowed vlan command and switchport native vlan command, but MVR receiver ports should not be statically configured as members of this VLAN.

Example

The following example sets the MVR6 VLAN to VLAN 1:

```
Console(config) #mvr6 domain 1 vlan 1
Console(config)#
```

mvr6 immediate-leave This command causes the switch to immediately remove an interface from a multicast stream as soon as it receives a leave message for that group. Use the **no** form to restore the default settings.

Syntax

[no] mvr6 domain domain-id immediate-leave [by-host-ip]

domain-id - An independent multicast domain. (Range: 1-5)

by-host-ip - Specifies that the member port will be deleted only when there are no hosts joining this group.

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Immediate leave applies only to receiver ports. When enabled, the receiver port is immediately removed from the multicast group identified in the leave message. When immediate leave is disabled, the switch follows the standard rules by sending a group-specific query to the receiver port and waiting for a response to determine if there are any remaining subscribers for that multicast group before removing the port from the group list.
- If the "by-host-ip" option is enabled, the switch will not send out a groupspecific guery to the receiver port. But it will check if there are other hosts joining the multicast group. Only when all hosts on that port leave the group will the member port be deleted.
- Using immediate leave can speed up leave latency, but should only be enabled on a port attached to only one multicast subscriber to avoid disrupting services to other group members attached to the same interface.
- Immediate leave does not apply to multicast groups which have been statically assigned to a port with the mvr6 vlan group command.

Example

The following enables immediate leave on a receiver port.

```
Console(config)#interface ethernet 1/5
Console(config-if) #mvr6 domain 1 immediate-leave
Console(config-if)#
```

mvr6 type This command configures an interface as an MVR receiver or source port. Use the **no** form to restore the default settings.

Syntax

[no] mvr6 domain domain-id type {receiver | source}

domain-id - An independent multicast domain. (Range: 1-5)

receiver - Configures the interface as a subscriber port that can receive multicast data.

source - Configures the interface as an uplink port that can send and receive multicast data for the configured multicast groups. Note that the source port must be manually configured as a member of the MVR6 VLAN using the switchport allowed vlan command.

Default Setting

The port type is not defined.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- A port configured as an MVR6 receiver or source port can join or leave multicast groups configured under MVR6. A port which is not configured as an MVR receiver or source port can use MLD snooping to join or leave multicast groups using the standard rules for multicast filtering (see "MLD Snooping" on page 692).
- Receiver ports can belong to different VLANs, but should not be configured as a member of the MVR VLAN. MLD snooping can be used to allow a receiver port to dynamically join or leave multicast groups not sourced through the MVR VLAN. Also, note that VLAN membership for MVR receiver ports cannot be set to access mode (see the switchport mode command).
- One or more interfaces may be configured as MVR source ports. A source port is able to both receive and send data for multicast groups which it has joined through the MVR6 protocol or which have been assigned through the mvr6 vlan group command.

All source ports must belong to the MVR6 VLAN.

Subscribers should not be directly connected to source ports.

The same port cannot be configured as a source port in one MVR domain and as a receiver port in another domain.

Example

The following configures one source port and several receiver ports on the switch.

```
Console(config)#interface ethernet 1/5
Console(config-if) #mvr6 domain 1 type source
Console(config-if)#exit
Console(config) #interface ethernet 1/6
Console(config-if) #mvr6 domain 1 type receiver
Console(config-if)#exit
Console(config)#interface ethernet 1/7
Console(config-if) #mvr6 domain 1 type receiver
Console(config-if)#
```

mvr6 vlan group This command statically binds a multicast group to a port which will receive longterm multicast streams associated with a stable set of hosts. Use the **no** form to restore the default settings.

Syntax

[no] mvr6 domain domain-id vlan vlan-id group ip-address

domain-id - An independent multicast domain. (Range: 1-5)

vlan-id - Receiver VLAN to which the specified multicast traffic is flooded. (Range: 1-4094)

group - Defines a multicast service sent to the selected port.

ip-address - Statically configures an interface to receive multicast traffic from the IPv6 address specified for an MVR multicast group. This parameter must be a full IPv6 address including the network prefix and host address bits.

Default Setting

No receiver port is a member of any configured multicast group.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Multicast groups can be statically assigned to a receiver port using this command. The assigned address must fall within the range set by the mvr6 associated-profile command.
- All IPv6 addresses must be according to RFC 2373 "IPv6 Addressing" Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields. (Note that the IP address ff02::X is reserved.)
- The MVR VLAN cannot be specified as the receiver VLAN for static bindings.

Example

The following statically assigns a multicast group to a receiver port:

```
Console(config) #interface ethernet 1/2
Console(config-if) #mvr6 domain 1 type receiver
Console(config-if) #mvr6 domain 1 vlan 2 group ff00::1
Console(config-if)#
```

dynamic MVR6.

clear mvr6 groups This command clears multicast group information dynamically learned through

Syntax

clear mvr6 groups dynamic [domain domain-id]

domain-id - An independent multicast domain. (Range: 1-5)

Command Mode

Privileged Exec

Command Usage

This command only clears entries learned though MVR6. Statically configured multicast addresses are not cleared.

Example

Console#clear mvr6 groups dynamic Console#

clear mvr6 statistics Use this command to clear the MVR6 statistics.

Syntax

clear mvr6 statistics [interface {ethernet unit/port | port-channel channel-id | **vlan** *vlan-id*}]

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

vlan vlan-id (Range: 1-4094)

Command Mode

Privileged Exec

Command Usage

If the interface option is not used then all MVR6 statistics are cleared. Otherwise using the interface option will only clear MVR6 statistics for the specified interface.

Example

The following shows how to clear all the MVR6 statistics:

Console#clear mvr6 statistics Console#

show mvr6 This command shows information about MVR domain settings, including MVR operational status, the multicast VLAN, the current number of group addresses, and the upstream source IP address.

Syntax

show mvr6 [domain domain-id]

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Displays configuration settings for all MVR domains.

Command Mode

Privileged Exec

Example

The following shows the MVR6 settings:

```
Console#show mvr6
MVR6 802.1p Forwarding Priority: Disabled
MVR6 Proxy Switching : Enabled
MVR6 Robustness Value : 1
MVR6 Proxy Query Interval : 125(sec.)
MVR6 Source Port Mode : Always Forward

Domain : 1
MVR6 Config Status : Enabled
MVR6 Running Status : Active
MVR6 Multicast VLAN : 1
MVR6 Current Learned Groups : 0
MVR6 Upstream Source IP : FF05::25
```

Table 143: show mvr6 - display description

Field	Description
MVR6 802.1p Forwarding Priority	Priority assigned to multicast traffic forwarded into the MVR6 VLAN
MVR6 Proxy Switching	Shows if MVR proxy switching is enabled
MVR6 Robustness Value	Shows the number of reports or query messages sent when proxy switching is enabled
MVR6 Proxy Query Interval	The interval at which the receiver port sends out general queries
MVR6 Source Port Mode	Shows if the switch only forwards multicast streams which the source port has dynamically joined or always forwards multicast streams
Domain	An independent multicast domain.
MVR6 Config Status	Shows if MVR is globally enabled on the switch.
MVR6 Running Status	Indicates whether or not all necessary conditions in the MVR environment are satisfied. (Running status is true as long as MVR Status is enabled, and the specified MVR VLAN exists, and a source port with a valid link has been configured (using the mvr6 type command.)
MVR6 Multicast VLAN	Shows the VLAN used to transport all MVR multicast traffic.
MVR6 Upstream Source IP	The source IP address assigned to all upstream control packets.

show mvr6 associated-profile

show mvr6 This command shows the profiles bound the specified domain.

Syntax

show mvr6 [domain domain-id] associated-profile

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Displays profiles bound to all MVR domains.

Command Mode

Privileged Exec

Example

The following displays the profiles bound to domain 1:

```
Console#show mvr6 domain 1 associated-profile
Domain ID : 1
MVR Profile Name Start IPv6 Addr. End IPv6 Addr.
rd
                                ff01::fe
                                                       ff01::ff
Console#
```

show mvr6 interface This command shows MVR configuration settings for interfaces attached to the MVR VLAN.

Syntax

show mvr6 [domain domain-id] interface

domain-id - An independent multicast domain. (Range: 1-5)

Default Setting

Displays configuration settings for all attached interfaces.

Command Mode

Privileged Exec

Example

The following displays information about the interfaces attached to the MVR6 VLAN in domain 1:

```
Console#show mvr6 domain 1 interface
MVR6 Domain : 1
Port Type Status
                                  Immediate Leave Static Group Address
Eth1/ 1 Source Active/Forwarding
Eth1/ 2 Receiver Active/Forwarding Disabled
                                                ff00::1(VLAN2)
Console#
```

Table 144: show mvr6 interface - display description

Field	Description
Port	Shows interfaces attached to the MVR.
Туре	Shows the MVR port type.

Table 144: show mvr6 interface - display description (Continued)

Field	Description
Status	Shows the MVR status and interface status. MVR status for source ports is "ACTIVE" if MVR is globally enabled on the switch. MVR status for receiver ports is "ACTIVE" only if there are subscribers receiving multicast traffic from one of the MVR groups, or a multicast group has been statically assigned to an interface.
Immediate	Shows if immediate leave is enabled or disabled.
Static Group Address	Shows any static MVR group assigned to an interface, and the receiver VLAN.

show mvr6 members This command shows information about the current number of entries in the forwarding database, or detailed information about a specific multicast address.

Syntax

show mvr6 [domain domain-id] members [ip-address]

domain-id - An independent multicast domain. (Range: 1-5)

ip-address - IPv6 address for an MVR multicast group.

Default Setting

Displays configuration settings for all domains and all forwarding entries.

Command Mode

Privileged Exec

Example

The following shows information about the number of multicast forwarding entries currently active in domain 1:

```
Console#show mvr6 domain 1 members
MVR6 Domain : 1
MVR6 Forwarding Entry Count :1
Flag: S - Source port, R - Receiver port.
     H - Host counts (number of hosts join the group on this port).
     P - Port counts (number of forwarding ports).
Up time: Group elapsed time (d:h:m:s).
Expire : Group remaining time (m:s).
                         VLAN Port Up time Expire Count
Group Address
 2
                                      00:00:00:19
ff05::101
                                                         2(P)
                           2 Eth1/ 2(S)
                            1 Eth1/ 4(R)
                                                          0(H)
Console#
```

The following example shows detailed information about a specific multicast

```
Console#show mvr6 domain 1 members ff00::1
MVR6 Domain : 1
MVR6 Forwarding Entry Count :1
Flag: S - Source port, R - Receiver port.
     H - Host counts (number of hosts join the group on this port).
      P - Port counts (number of forwarding ports).
Up time: Group elapsed time (d:h:m:s).
Expire : Group remaining time (m:s).
                             VLAN Port
                                             Up time Expire Count
Group Address
                                 2
ff05::101
                                              00:00:03:18
                                                                    2(P)
                                 2 Eth1/ 2(S)
                                1 Eth1/ 4(R)
                                                                    0(H)
Console#
```

Table 145: show mvr6 members - display description

Field	Description
Group Address	Multicast group address.
VLAN	VLAN to which this address is forwarded.
Port	Port to which this address is forwarded.
Up time	Time that this multicast group has been known.
Expire	The time until this entry expires.
Count	The number of times this address has been learned by MVR (MLD snooping).

show mvr6 profile This command shows all configured MVR profiles.

Command Mode

Privileged Exec

Example

The following shows all configured MVR6 profiles:

```
Console#show mvr6 profile
MVR6 Profile Name Start IPv6 Addr. End IPv6 Addr.
                                  ff01::fe
                                                        ff01::ff
Console#
```

show mvr6 statistics This command shows MVR protocol-related statistics for the specified interface.

Syntax

```
show mvr6 statistics {input | output} [interface interface]
show mvr6 domain domain-id statistics
{input [interface interface] | output [interface interface] | query}
domain-id - An independent multicast domain. (Range: 1-5)
interface
ethernet unit/port
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
vlan vlan-id - VLAN ID (Range: 1-4094)
query - Displays MVR query-related statistics.
```

Default Setting

Displays statistics for all domains.

Command Mode

Privileged Exec

Example

The following shows MVR6 protocol-related statistics received:

Console#sho MVR6 Domai Input Stat	n 1, MVR6		atistics	input			
Interface		Leave	G Query	G(-S)-S Query	Drop	Join Succ	Group
Eth 1/ 1	23	11	4	10	5	20	9
Eth 1/ 2	12	15	8	3	5	19	4
DVLAN 1	2	0	0	2	2	20	9
MVLAN 2	2	0	0	2	2	20	9
Console#							

Table 146: show mvr6 statistics input - display description

Field	Description
Interface	Shows interfaces attached to the MVR.
Report	The number of IGMP membership reports received on this interface.
Leave	The number of leave messages received on this interface.
G Query	The number of general query messages received on this interface.
G(-S)-S Query	The number of group specific or group-and-source specific query messages received on this interface.

Table 146: show mvr6 statistics input - display description (Continued)

Field	Description
Drop	The number of times a report, leave or query was dropped. Packets may be dropped due to invalid format, rate limiting, packet content not allowed, or MVR group report received
Join Succ	The number of times a multicast group was successfully joined.
Group	The number of MVR groups active on this interface.

The following shows MVR protocol-related statistics sent:

```
Console#show mvr6 domain 1 statistics output
MVR6 Domain 1, MVR6 VLAN 2:
Output Statistics:
Interface Report Done G Query G(-S)-S Query Drop
0
                                       0
Eth 1/ 1 12
Eth 1/ 3 5
DVLAN 1 7
MVLAN 2 7
           12
                        1
Eth 1/ 1
                                  0
                        4
                  1
                                  1
                                        0
                 2
                        3
                                  0
                                        0
                 2
                        3
                                        0
                                              0
                                  0
Console#
```

Table 147: show mvr6 statistics output - display description

Field	Description
Interface	Shows interfaces attached to the MVR.
Report	The number of IGMP membership reports sent from this interface.
Leave	The number of leave messages sent from this interface.
G Query	The number of general query messages sent from this interface.
G(-S)-S Query	The number of group specific or group-and-source specific query messages sent from this interface.
Group	The number of MVR groups active on this interface.

The following shows MVR query-related statistics:

```
Console#show mvr6 domain 1 statistics query
Other Querier Address : fe80::2e0:cff:fe00:fb/64
Other Querier Uptime : 0(h):0(m):0(s)
Other Querier Expire Time : 0(m):0(s)
Self Querier Address : None
Self Querier Uptime : 0(h):13(m):16(s)
Self Querier Expire Time : 3(m):23(s)
General Query Received : 0
General Query Sent : 0
Specific Query Received : 0
Specific Query Sent : 0
Console#
```

Table 148: show mvr6 statistics query - display description

Field	Description	
Other Querier Address	The IPv6 address of the querier on this interface.	
Other Querier Uptime	Other querier's time up.	
Other Querier Expire Time	The time after which this querier is assumed to have expired	
Self Querier Address	This querier's IPv6 address.	
Self Querier Uptime	This querier's time up.	
Self Querier Expire Time	This querier's expire time.	
General Query Received	The number of general queries received on this interface.	
General Query Sent	The number of general queries sent from this interface.	
Specific Query Received	The number of specific queries received on this interface.	
Specific Query Sent	The number of specific queries sent from this interface.	

IGMP (Layer 3)

This section describes commands used to configure Layer 3 Internet Group Management Protocol (IGMP) on the switch.

Table 149: IGMP Commands (Layer 3)

Command	Function	Mode
ip igmp	Enables IGMP for the specified interface	IC
ip igmp last-member- query-interval	Configures the frequency at which to send query messages in response to receiving a leave message	IC
ip igmp max-resp-interval	Configures the maximum host response time	IC
ip igmp query-interval	Configures frequency for sending host query messages	IC
ip igmp robustval	Configures the expected packet loss	IC
ip igmp static-group	Configures the router to be a static member of a multicast group on the specified VLAN interface	IC
ip igmp version	Configures IGMP version used on this interface	IC
clear ip igmp group	Deletes entries from the IGMP cache	PE
show ip igmp groups	Displays information for IGMP groups	PE
show ip igmp interface	Displays multicast information for the specified interface	PE

IGMP (Layer 3)

ip igmp This command enables IGMP on a VLAN interface. Use the **no** form of this command to disable IGMP on the specified interface.

Syntax

[no] ip igmp

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- ◆ IGMP (including query functions) can be enabled for specific VLAN interfaces at Layer 3 through the ip igmp command.
- ♦ When a multicast routing protocol, such as PIM, is enabled, IGMP is also enabled.

Example

```
Console(config)#interface vlan 1
Console(config-if)#ip igmp
Console(config-if)#end
Console#show ip igmp interface
  IGMP
                                      : Enabled
  IGMP Version
                                      : 2
  IGMP Proxy
                                      : Disabled
  IGMP Unsolicited Report Interval : 400 sec
  Robustness Variable : 2
                                     : 125 sec
  Ouery Interval
 Query Interval : 125 sec

Query Max Response Time : 100 (resolution in 0.1 sec)

Last Member Query Interval : 10 (resolution in 0.1 sec)
  Ouerier
                                       : 0.0.0.0
  Joined Groups :
  Static Groups :
Console#
```

Related Commands

ip igmp snooping (657) show ip igmp snooping (674)

ip igmp last-member- This command configures the frequency at which to send IGMP group-specific or query-interval IGMPv3 group-source-specific query messages in response to receiving a groupspecific or group-source-specific leave message. Use the **no** form to restore the default setting.

Syntax

ip igmp last-member-guery-interval seconds

no ip igmp last-member-query-interval

seconds - The frequency at which the switch sends group-specific or groupsource-specific queries upon receipt of a leave message. (Range: 1-255 tenths of a second)

Default Setting

10 (1 second)

Command Mode

Interface Configuration (VLAN)

Command Usage

When the switch receives an IGMPv2 or IGMPv3 leave message from a host that wants to leave a multicast group, source or channel, it sends a number of groupspecific or group-source-specific query messages at intervals defined by this command. If no response is received after this period, the switch stops forwarding for the group, source or channel.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip igmp last-member-query-interval 20
Console(config-if)#
```

ip igmp This command configures the maximum response time advertised in IGMP queries. max-resp-interval Use the **no** form of this command to restore the default.

Syntax

ip igmp max-resp-interval seconds

no ip igmp max-resp-interval

seconds - The report delay advertised in IGMP queries. (Range: 0-255 tenths of a second)

Default Setting

100 (10 seconds)

Command Mode

Interface Configuration (VLAN)

IGMP (Layer 3)

Command Usage

- IGMPv1 does not support a configurable maximum response time for query messages. It is fixed at 10 seconds for IGMPv1.
- By varying the Maximum Response Interval, the burstiness of IGMP messages passed on the subnet can be tuned; where larger values make the traffic less bursty, as host responses are spread out over a larger interval.
- ◆ The number of seconds represented by the maximum response interval must be less than the Query Interval (page 756).

Example

The following shows how to configure the maximum response time to 20 seconds.

```
Console(config-if) #ip igmp query-max-response-time 200
Console(config-if)#
```

Related Commands

ip igmp version (759) ip igmp query-interval (756)

ip igmp query-interval This command configures the frequency at which host query messages are sent. Use the **no** form to restore the default.

Syntax

ip igmp query-interval seconds

no ip igmp query-interval

seconds - The frequency at which the switch sends IGMP host-query messages. (Range: 1-255 seconds)

Default Setting

125 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- Multicast routers send host query messages to determine the interfaces that are connected to downstream hosts requesting a specific multicast service. Only the designated multicast router for a subnet sends host query messages, which are addressed to the multicast address 224.0.0.1, and uses a time-to-live (TTL) value of 1.
- For IGMP Version 1, the designated router is elected according to the multicast routing protocol that runs on the LAN. But for IGMP Version 2 and 3, the designated guerier is the lowest IP-addressed multicast router on the subnet.

Example

The following shows how to configure the query interval to 100 seconds.

```
Console(config-if) #ip igmp query-interval 100
Console(config-if)#
```

Related Commands

ip igmp max-resp-interval (755)

ip igmp robustval This command specifies the robustness (expected packet loss) for this interface. Use the **no** form of this command to restore the default value.

Syntax

```
ip igmp robustval robust-value
no ip igmp robustval
   robust-value - The robustness of this interface. (Range: 1-255)
```

Default Setting

Command Mode

Interface Configuration (VLAN)

Command Usage

- The robustness value is used in calculating the appropriate range for other IGMP variables, such as the Group Membership Interval, as well as the Other Querier Present Interval, and the Startup Query Count (RFC 3376).
- Routers adopt the robustness value from the most recently received query. If the querier's robustness variable (QRV) is zero, indicating that the QRV field does not contain a declared robustness value, the switch will set the robustness variable to the value statically configured by this command. If the QRV exceeds 7, the maximum value of the QRV field, the robustness value is set to zero, meaning that this device will not advertise a QRV in any query messages it subsequently sends.

Example

```
Console(config-if) #ip igmp robustness-variable 3
Console(config-if)#
```

ip igmp static-group This command configures the router to be a static member of a multicast group on the specified VLAN interface. Use the **no** form to remove the static mapping.

Syntax

ip igmp static-group *group-address* [**source** *source-address*] no ip igmp static-group

group-address - IP multicast group address. (The group addresses specified cannot be in the range of 224.0.0.1 - 239.255.255.255.)

source-address - Source address for a multicast server transmitting traffic to the corresponding multicast group address.

Default Setting

None

Command Mode

Interface Configuration (VLAN)

Command Usage

- Group addresses within the entire multicast group address range can be specified with this command. However, if any address within the sourcespecific multicast (SSM) address range (default 232/8) is specified, but no source address is included in the command, the request to join the multicast group will fail unless the next node up the reverse path tree has statically mapped this group to a specific source address. Also, if an address outside of the SSM address range is specified, and a specific source address is included in the command, the request to join the multicast group will also fail if the next node up the reverse path tree has enabled the PIM-SSM protocol.
- If a static group is configured for an any-source multicast (*,G), a source address cannot subsequently be defined for this group without first deleting the entry.
- If a static group is configured for one or more source-specific multicasts (S,G), an any-source multicast (*,G) cannot subsequently be defined for this group without first deleting all of the associated (S,G) entries.
- Using the **no** form of this command to delete a static group without specifying the source address will delete all any-source and source-specific multicast entries for the specified group.
- The switch supports a maximum of 16 static group entries.

Example

The following example assigns VLAN 1 as a static member of the specified multicast group.

```
Console(config)#interface vlan1
Console(config-if) #ip igmp static-group 225.1.1.1
```

ip igmp version This command configures the IGMP version used on an interface. Use the **no** form of this command to restore the default.

Syntax

```
ip igmp version \{1 \mid 2 \mid 3\}
no ip igmp version
```

- 1 IGMP Version 1
- 2 IGMP Version 2
- 3 IGMP Version 3

Default Setting

IGMP Version 2

Command Mode

Interface Configuration (VLAN)

Command Usage

- All routers on the subnet must support the same version. However, the multicast hosts on the subnet may support any of the IGMP versions 1 - 3.
- If the switch receives an IGMP Version 1 Membership Report, it sets a timer to note that there are Version 1 hosts which are members of the group for which it heard the report.

If there are Version 1 hosts present for a particular group, the switch will ignore any Leave Group messages that it receives for that group.

Example

```
Console(config-if) #ip igmp version 1
Console(config-if)#
```

clear ip igmp group This command deletes entries from the IGMP cache.

Syntax

```
clear ip igmp group [group-address | interface interface]
   group-address - IP address of the multicast group.
   interface
       vlan vlan-id - VLAN ID. (Range: 1-4094)
```

Default Setting

Deletes all entries in the cache if no options are selected.

Command Mode

Privileged Exec

Command Usage

Enter the address for a multicast group to delete all entries for the specified group. Enter the interface option to delete all multicast groups for the specified interface. Enter no options to clear all multicast groups from the cache.

Example

The following example clears all multicast group entries for VLAN 1.

```
Console#clear ip igmp interface vlan1
Console#
```

show ip igmp groups This command displays information on multicast groups active on the switch and learned through IGMP.

Syntax

show ip igmp groups [{group-address | interface} [**detail**] | **detail**] group-address - IP multicast group address. interface

vlan vlan-id - VLAN ID. (Range: 1-4094)

detail - Displays detailed information about the multicast process and source addresses when available.

Command Mode

Privileged Exec

Command Usage

To display information about multicast groups, IGMP must first be enabled on the interface to which a group has been assigned using the ip igmp command, and multicast routing must be enabled globally on the system using the ip multicastrouting command.

Example

The following shows options for displaying IGMP group information by interface, group address, and static listing.

ш							
	Console#show ip	igmp groups					
	Group Address	Interface VLAN	Last Reporter	Uptime	Expire	V1	Timer
	224.0.17.17	1	192.168.1.10	0:0:1	0:4:19		0:0:0
	Console#show ip	igmp groups 234	.5.6.8				
	Group Address	Interface VLAN	Last Reporter	Uptime	Expire	V1	Timer
	224.0.17.17	1	192.168.1.10	0:0:1	0:4:19		0:0:0

Console#show ip igmp groups interface vlan 1					
Group Address	Interface VLAN	Last Reporter	Uptime	Expire	V1 Timer
224.0.17.17 Console#	1	192.168.1.10	0:0:1	0:4:19	0:0:0

Table 150: show ip igmp groups - display description

Field	Description
Group Address	IP multicast group address with subscribers directly attached or downstream from the switch.
Interface VLAN	The interface on the switch that has received traffic directed to the multicast group address.
Last Reporter	The IP address of the source of the last membership report received for this multicast group address on this interface.
Uptime	The time elapsed since this entry was created.
Expire	The time remaining before this entry will be aged out. (The default is 260 seconds.)
	This field displays "stopped" if the Group Mode is INCLUDE.
V1 Timer	The time remaining until the switch assumes that there are no longer any IGMP Version 1 members on the IP subnet attached to this interface.
	 If the switch receives an IGMP Version 1 Membership Report, it sets a timer to note that there are Version 1 hosts present which are members of the group for which it heard the report.
	 If there are Version 1 hosts present for a particular group, the switch will ignore any Leave Group messages that it receives for that group.

The following shows the information displayed in a detailed listing for a dynamically learned multicast group.

Table 151: show ip igmp groups detail - display description

Field	Description
Interface	The interface on the switch that has received traffic directed to the multicast group address.
Group	IP multicast group address with subscribers directly attached or downstream from the switch, or a static multicast group assigned to this interface.

IGMP (Layer 3)

Table 151: show ip igmp groups detail - display description (Continued)

Field	Description
Uptime	The time elapsed since this entry was created.
Group mode	In INCLUDE mode, reception of packets sent to the specified multicast address is requested only from those IP source addresses listed in the source-list parameter. In EXCLUDE mode, reception of packets sent to the given multicast address is requested from all IP source addresses except for those listed in the source-list parameter, and where the source timer status has expired. Note that EXCLUDE mode does not apply to SSM addresses.
Last Reporter	The IP address of the source of the last membership report received for this multicast group address on this interface.
Group Source List	A list of zero or more IP unicast addresses from which multicast reception is desired or not desired, depending on the filter mode.
Source Address	The address of one of the multicast servers transmitting traffic to the specified group.
Uptime	The time elapsed since this entry was created.
v3 Exp	The time remaining before this entry will be aged out. The V3 label indicates that the expire time is only provided for sources learned through IGMP Version 3. (The default is 260 seconds.)
Fwd	Indicates whether or not traffic will be forwarded from the multicast source.

interface

show ip igmp This command shows multicast information for the specified interface.

Syntax

show ip igmp interface [interface]

interface

vlan vlan-id - VLAN ID. (Range: 1-4094)

Default Setting

None

Command Mode

Privileged Exec

Example

The following example shows the IGMP configuration for VLAN 1, as well as the device currently serving as the IGMP querier for active multicast services on this interface.

```
switch#show ip igmp interface vlan 1
Vlan 1 : up
 IGMP
                               : Disabled
 IGMP Version
                               : 2
 IGMP Proxy
                              : Enabled
 IGMP Unsolicited-report-interval : 400 sec
 Robustness variable
```

```
Query Interval
                                 : 125 sec
 Query Max Response Time
                                : 100 (resolution in 0.1 sec)
 Last Member Query Interval
                                : 10 (resolution in 0.1 sec)
 Querier
                                : 0.0.0.0
 Joined Groups :
 Static Groups :
switch#
```

IGMP Proxy Routing

This section describes commands used to configure IGMP Proxy Routing on the switch.

Table 152: IGMP Proxy Commands

Command	Function	Mode
ip igmp proxy	Enables IGMP proxy service for multicast routing	IC
ip igmp proxy unsolicited- report-interval	Specifies how often the upstream interface should transmit unsolicited IGMP reports	IC
show ip igmp interface	Displays multicast information for the specified interface	PE

To enable IGMP proxy service, follow these steps:

- 1. Use the ip multicast-routing command to enable IP multicasting globally on the router.
- 2. Use the ip igmp proxy command to enable IGMP proxy on the upstream interface that is attached to an upstream multicast router.
- 3. Use the ip igmp command to enable IGMP on the downstream interfaces from which to forward IGMP membership reports.
- 4. Optional Use the ip igmp proxy unsolicited-report-interval command to indicate how often the system will send unsolicited reports to the upstream router.

ip igmp proxy This command enables IGMP proxy service for multicast routing, forwarding IGMP membership information monitored on downstream interfaces onto the upstream interface in a summarized report. Use the **no** form to disable proxy service.

Syntax

[no] ip igmp proxy

Default Setting

Disabled

IGMP Proxy Routing

Command Mode

Interface Configuration (VLAN)

Command Usage

- When IGMP proxy is enabled on an interface, that interface is known as the upstream or host interface. This interface performs only the host portion of IGMP by sending IGMP membership reports, and automatically disables IGMP router functions.
- ◆ Interfaces with IGMP enabled, but not located in the direction of the multicast tree root are known as downstream or router interfaces. These interfaces perform the standard IGMP router functions by maintaining a database of all IGMP subscriptions on the downstream interface. IGMP must therefore be enabled on all downstream interfaces which require proxy multicast service.
- When changes occur in the downstream IGMP groups, a IGMP state change report is created and sent to the upstream router.
- ◆ If there is an IGMPv1 or IGMPv2 querier on the upstream network, then the proxy device will act as an IGMPv1 or IGMPv2 host on the upstream interface accordingly. Otherwise, it will act as an IGMPv3 host.
- Multicast routing protocols are not supported on interfaces where IGMP proxy service is enabled.
- Only one upstream interface is supported on the system.
- A maximum of 1024 multicast streams are supported.

Example

The following example enables multicast routing globally on the switch, configures VLAN 2 as a downstream interface, and then VLAN 1 as the upstream interface.

Console(config) #ip multicast-routing
Console(config) #interface vlan2
Console(config-if) #ip igmp
Console(config-if) #exit
Console(config) #interface vlan1
Console(config-if) #ip igmp proxy
Console(config-if) #

ip igmp proxy unsolicited-reportinterval

ip igmp proxy This command specifies how often the upstream interface should transmit unsolicited IGMP reports. Use the **no** form to restore the default value.

Syntax

ip igmp proxy unsolicited-report-interval seconds no ip igmp proxy unsolicited-report-interval

seconds - The interval at which to issue unsolicited reports. (Range: 1-65535 seconds)

Default Setting

400 seconds

Command Mode

Interface Configuration (VLAN)

Example

The following example sets the interval for sending unsolicited IGMP reports to 5 seconds.

```
switch(config)#interface vlan
switch(config-if)#ip igmp proxy unsolicited-report-interval 5
switch(config)#
```

MLD (Layer 3)

This section describes commands used to configure Layer 3 Multicast Listener Discovery (MLD) on the switch.

Table 153: MLD Commands (Layer 3)

Command	Function	Mode
ipv6 mld	Enables MLD for the specified interface	IC
ipv6 mld last-member- query-response-interval	Configures the frequency at which to send query messages in response to receiving a leave message	IC
ipv6 mld max-resp-interval	Configures the maximum host response time	IC
ipv6 mld query-interval	Configures frequency for sending host query messages	IC
ipv6 mld robustval	Configures the expected packet loss	IC
ipv6 mld static-group	Statically binds multicast groups to a VLAN interface	IC
ipv6 mld version	Configures MLD version used on an interface	IC
clear ipv6 mld group	Deletes entries from the MLD cache	PE
show ipv6 mld groups	Displays information for MLD groups	PE
show ip igmp interface	Displays multicast information for an interface	PE

ipv6 mld This command enables MLD on a VLAN interface. Use the no form of this command to disable MLD on the selected interface.

Syntax

[no] ipv6 mld

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

MLD (including query functions) can be enabled for specific VLAN interfaces at Layer 3 through the **ipv6 mld** command.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 mld
Console(config-if)#end
Console#show ipv6 mld interface
VLAN 1 : Up
 MLD
                                     : Enabled
  MLD Version
                                     : Disabled
  MLD Proxy
  MLD Unsolicited Report Interval: 400 sec
  Robustness Variable : 2
 Query Interval : 125 sec
Query Max Response Time : 10 sec
Last Member Query Interval : 1 sec
: ::
  Ouerier
                                    : ::
  Joined Groups :
  Static Groups :
Console#
```

ipv6 mld last- This command configures the frequency at which to send MLD group-specific or member-query- MLDv2 group-source-specific query messages in response to receiving a groupresponse-interval specific or group-source-specific leave message from the last known active host on the subnet. Use the **no** form to restore the default setting.

Syntax

ipv6 mld last-member-query-response-interval seconds

no ipv6 mld last-member-query-response-interval

seconds - The frequency at which the switch sends group-specific or groupsource-specific queries upon receipt of a leave message. (Range: 1-255 seconds)

Default Setting

10 (1 second)

Command Mode

Interface Configuration (VLAN)

Command Usage

When the switch receives an MLD or MLDv2 leave message from a host that wants to leave a multicast group, source or channel, it sends a number of group-specific or group-source-specific query messages at intervals defined by this command. If no response is received after this period, the switch stops forwarding for the group, source or channel.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 mld last-member-query-response-interval 20
Console(config-if)#
```

ipv6 mld This command configures the maximum response time advertised in MLD queries. max-resp-interval Use the **no** form of this command to restore the default setting.

Syntax

ipv6 mld max-resp-interval seconds

no ipv6 mld max-resp-interval

seconds - The report delay advertised in MLD gueries. (Range: 0-255 seconds)

Default Setting

100 (10 seconds)

Command Mode

Interface Configuration (VLAN)

Command Usage

- By varying the Maximum Response Interval, the burstiness of MLD messages passed on the subnet can be tuned; where larger values make the traffic less bursty, as host responses are spread out over a larger interval.
- The number of seconds represented by the maximum response interval must be less than the Query Interval (page 768).

MLD (Layer 3)

Example

The following shows how to configure the maximum response time to 20 seconds.

```
Console(config-if) #ipv6 mld max-resp-interval 200
Console(config-if)#
```

Related Commands

ipv6 mld query-interval (768)

ipv6 mld This command configures the frequency at which host query messages are sent. query-interval Use the no form to restore the default.

Syntax

ipv6 mld query-interval seconds

no ipv6 mld query-interval

seconds - The frequency at which the switch sends MLD host-query messages. (Range: 1-255 seconds)

Default Setting

125 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- Multicast routers send host query messages to determine the interfaces that are connected to downstream hosts requesting a specific multicast service. Only the designated multicast router for a subnet sends host guery messages, which are addressed to the link-scope all-nodes multicast address FF02::1, and uses a time-to-live (TTL) value of 1.
- ◆ The designated querier is the lowest IP-addressed multicast router on the subnet.

Example

The following shows how to configure the query interval to 100 seconds.

```
Console(config-if) #ipv6 mld query-interval 100
Console(config-if)#
```

Related Commands

ipv6 mld max-resp-interval (767)

ipv6 mld robustval This command specifies the robustness (expected packet loss) for this interface. Use the **no** form of this command to restore the default value.

Syntax

ipv6 mld robustval robust-value

no ipv6 mld robustval

robust-value - The robustness of this interface. (Range: 1-255)

Default Setting

Command Mode

Interface Configuration (VLAN)

Command Usage

- The robustness value is used to compensate for expected packet lose on a link. It indicates the number of refresh packets related to the current MLD state which might be lost without having to terminate that state.
- Routers adopt the robustness value from the most recently received query. If the query's robustness variable (QRV) is zero, indicating that the QRV field does not contain a declared robustness value, the switch will set the robustness variable to the value statically configured by this command. If the QRV exceeds 7, the maximum value of the QRV field, the robustness value is set to zero, meaning that this device will not advertise a QRV in any guery messages it subsequently sends.

Example

```
Console(config-if) #ipv6 mld robustval 3
Console(config-if)#
```

ipv6 mld static-group This command statically binds multicast groups to a VLAN interface. Use the no form to remove the static mapping.

Syntax

ipv6 mld static-group *group-address* [**source** *source-address*]

no ipv6 mld static-group [group-address [**source** source-address]]

group-address - IPv6 multicast group address. (Note that link-local scope addresses FF02:* are not allowed.)

source-address - IPv6 source address for a multicast server transmitting traffic to the corresponding multicast group address.

Default Setting

None

MLD (Layer 3)

Command Mode

Interface Configuration (VLAN)

Command Usage

- If a static group is configured for an any-source multicast (*,G), a source address cannot subsequently be defined for this group without first deleting the entry.
- If a static group is configured for one or more source-specific multicasts (S,G), an any-source multicast (*,G) cannot subsequently be defined for this group without first deleting all of the associated (S,G) entries.
- Use the **no** form of this command without specifying a group address to delete all any-source and source-specific multicast entries.
- Use the **no** form of this command to delete a static group without specifying the source address to delete all any-source and source-specific multicast entries for the specified group.
- ◆ The switch supports a maximum of 64 static group entries.

Example

The following example assigns VLAN 1 as a static member of the specified multicast group.

```
Console(config)#interface vlan 1
Console(config-if)#ipv6 mld static-group FFEE::0101
Console(config-if)#
```

ipv6 mld version This command configures the MLD version used on an interface. Use the no form of this command to restore the default setting.

Syntax

ipv6 mld version {1 | 2} no ipv6 mld version

- 1 MLD Version 1
- 2 MLD Version 2

Default Setting

MLD Version 2

Command Mode

Interface Configuration (VLAN)

- MLDv1 is derived from IGMPv2, and MLDv2 from IGMPv3. IGMP uses IP Protocol 2 message types, and MLD uses IP Protocol 58 message types, which is a subset of the ICMPv6 messages.
- MLDv2 adds the ability for a node to report interest in listening to packets with a particular multicast address only from specific source addresses as required to support Source-Specific Multicast (SSM), or from all sources except for specific source addresses.
- MLDv2 supports Source-Specific Multicast (SSM) which builds a reverse tree from a host requesting a service back up to the multicast server.
- Multicast hosts on the subnet may support either MLD versions 1 or 2.

Example

```
Console(config-if) #ipv6 mld version 1
Console(config-if)#
```

clear ipv6 mld group This command deletes entries from the MLD cache.

Syntax

```
clear ipv6 mld group [group-address | interface interface]
   group-address - IPv6 address of the multicast group.
   interface
       vlan vlan-id - VLAN ID. (Range: 1-4094)
```

Default Setting

Deletes all entries in the cache if no options are selected.

Command Mode

Privileged Exec

Command Usage

Enter the address for a multicast group to delete all entries for the specified group. Enter the interface option to delete all multicast groups for the specified interface. Enter no options to clear all multicast groups from the cache.

Example

The following example clears all multicast group entries for VLAN 1.

```
Console#clear ipv6 mld interface vlan 1
Console#
```

show ipv6 mld groups This command displays information on multicast groups active on the switch and learned through MLD.

Syntax

show ipv6 mld groups [{group-address | interface} [detail] | detail]

group-address - IPv6 multicast group address. (Note that link-local scope addresses FF02:* are not allowed.)

interface

vlan vlan-id - VLAN ID. (Range: 1-4094)

detail - Displays detailed information about the multicast process and source addresses when available.

Command Mode

Privileged Exec

Command Usage

To display information about multicast groups, MLD must first be enabled on the interface to which a group has been assigned using the ipv6 mld command, and multicast routing must be enabled globally on the system using the ip multicastrouting command.

Example

The following shows options for displaying MLD group information.

```
Console#show ipv6 mld groups
Group Address
                              Interface VLAN Uptime Expire
FFEE::101 1 0:1:59 Never
Console#show ipv6 mld groups detail
Interface : VLAN 1
Group : FFEE::101
Uptime : 0h:2m:7s
Group Mode : Include
Last Reporter : FE80::0101
Group Source List:
                           Uptime Expire Fwd
Source Address
                     FFEE::0101 0h:0m:12s 0h:0m:0s Yes
Console#
```

Table 154: show ipv6 mld groups - display description

Field	Description
Group Address	IP multicast group address with subscribers directly attached or downstream from the switch.
Interface VLAN	The interface on the switch that has received traffic directed to the multicast group address.
Uptime	The time elapsed since this entry was created.

Table 154: show ipv6 mld groups - display description (Continued)

Field	Description	
Expire	The time remaining before this entry will be aged out. (The default is 260 seconds.)	
	This field displays "stopped" if the Group Mode is INCLUDE.	
Group Mode	In Include mode, reception of packets sent to the specified multicast address is requested only from those IP source addresses listed in the source-list parameter. In Exclude mode, reception of packets sent to the given multicast address is requested from all IP source addresses except for those listed in the source-list parameter, and where the source timer status has expired. Note that Exclude mode does not apply to SSM addresses.	
Last Reporter	The IP address of the source of the last membership report received for this multicast group address on this interface.	
Group Source List	A list of zero or more IP unicast addresses from which multicast reception is desired or not desired, depending on the filter mode.	
Source Address	The address of one of the multicast servers transmitting traffic to the specified group.	
Fwd	Indicates whether or not traffic will be forwarded from the multicast source.	

interface

show ipv6 mld This command shows multicast information for the specified interface.

Syntax

show ipv6 mld interface [interface]

interface

vlan vlan-id - VLAN ID. (Range: 1-4094)

Default Setting

None

Command Mode

Privileged Exec

Example

The following example shows the MLD configuration for VLAN 1, as well as the device currently serving as the MLD querier for active multicast services on this interface.

```
Console#show ipv6 mld interface vlan 1
VLAN 1 : Up
 MLD
                                  : Enabled
 MLD Version
                                 : 2
                                  : Disabled
 MLD Proxy
 MLD Unsolicited Report Interval : 400 sec
  Robustness Variable : 2
  Query Interval
                                  : 125 sec
 Query Max Response Time : 10

Last Member Query Interval : 1
```

Chapter 24 | Multicast Filtering Commands

MLD Proxy Routing

```
Querier
 Joined Groups :
 Static Groups :
   FFEE::101
Console#
```

: FE80::200:E8FF:FE93:82A0

MLD Proxy Routing

This section describes commands used to configure MLD Proxy Routing on the switch.

Table 155: IGMP Proxy Commands

Command	Function	Mode
ipv6 mld proxy	Enables MLD proxy service for multicast routing	IC
ipv6 mld proxy unsolicited- report-interval	Specifies how often the upstream interface should transmit unsolicited IGMP reports	IC
show ipv6 mld interface	Displays multicast information for the specified interface	PE

To enable MLD proxy service, follow these steps:

- 1. Use the ipv6 multicast-routing command to enable IP multicasting globally on the router.
- 2. Use the ipv6 mld proxy command to enable MLD proxy on the upstream interface that is attached to an upstream multicast router.
- 3. Use the ipv6 mld command to enable MLD on the downstream interfaces from which to forward MLD membership reports.
- 4. Optional Use the ipv6 mld proxy unsolicited-report-interval command to indicate how often the system will send unsolicited reports to the upstream router.

ipv6 mld proxy This command enables MLD proxy service for multicast routing, forwarding MLD membership information monitored on downstream interfaces onto the upstream interface in a summarized report. Use the **no** form to disable proxy service.

Syntax

[no] ipv6 mld proxy

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- When MLD proxy is enabled on an interface, that interface is known as the upstream or host interface. This interface performs only the host portion of MLD by sending MLD membership reports, and automatically disables MLD router functions.
- ◆ Interfaces with MLD enabled, but not located in the direction of the multicast tree root are known as downstream or router interfaces. These interfaces perform the standard MLD router functions by maintaining a database of all MLD subscriptions on the downstream interface. MLD must therefore be enabled on all downstream interfaces which require proxy multicast service.
- When changes occur in the downstream MLD groups, an MLD state change report is created and sent to the upstream router.
- ◆ If there is an MLDv1 querier on the upstream network, then the proxy device will act as an MLDv1 host on the upstream interface accordingly. Otherwise, it will act as an MLDv2 host.
- Multicast routing protocols are not supported on interfaces where MLD proxy service is enabled.
- Only one upstream interface is supported on the system.
- ◆ MLD and MLD proxy cannot be enabled on the same interface.
- A maximum of 1024 multicast streams are supported.

Example

The following example enables multicast routing globally on the switch, configures VLAN 2 as a downstream interface, and then VLAN 1 as the upstream interface.

Console(config) #ip multicast-routing Console(config) #interface vlan2 Console(config-if) #ipv6 mld Console(config-if) #exit Console(config) #interface vlan1 Console(config-if) #ipv6 mld proxy Console(config-if) #

unsolicited-reportinterval

ipv6 mld proxy This command specifies how often the upstream interface should transmit unsolicited MLD reports. Use the **no** form to restore the default value.

Syntax

ipv6 mld proxy unsolicited-report-interval seconds no ipv6 mld proxy unsolicited-report-interval

seconds - The interval at which to issue unsolicited reports. (Range: 1-65535 seconds)

Default Setting

400 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- ◆ The unsolicited report interval only applies to the interface where MLD proxy has been enabled.
- MLD and MLD proxy cannot be enabled on the same interface.

Example

The following example sets the interval for sending unsolicited MLD reports to 5 seconds.

```
Console(config)#interface vlan
Console(config-if)#ip igmp proxy unsolicited-report-interval 5
Console(config)#
```

LLDP Commands

Link Layer Discovery Protocol (LLDP) is used to discover basic information about neighboring devices on the local broadcast domain. LLDP is a Layer 2 protocol that uses periodic broadcasts to advertise information about the sending device. Advertised information is represented in Type Length Value (TLV) format according to the IEEE 802.1AB standard, and can include details such as device identification, capabilities and configuration settings. LLDP also defines how to store and maintain information gathered about the neighboring network nodes it discovers.

Link Layer Discovery Protocol - Media Endpoint Discovery (LLDP-MED) is an extension of LLDP intended for managing endpoint devices such as Voice over IP phones and network switches. The LLDP-MED TLVs advertise information such as network policy, power, inventory, and device location details. LLDP and LLDP-MED information can be used by SNMP applications to simplify troubleshooting, enhance network management, and maintain an accurate network topology.

Table 156: LLDP Commands

Command	Function	Mode
lldp	Enables LLDP globally on the switch	GC
lldp holdtime-multiplier	Configures the time-to-live (TTL) value sent in LLDP advertisements $\ \ $	GC
lldp med-fast-start-count	Configures how many medFastStart packets are transmitted	GC
Ildp notification-interval	Configures the allowed interval for sending SNMP notifications about LLDP changes	GC
lldp refresh-interval	Configures the periodic transmit interval for LLDP advertisements	GC
lldp reinit-delay	Configures the delay before attempting to re- initialize after LLDP ports are disabled or the link goes down	GC
lldp tx-delay	Configures a delay between the successive transmission of advertisements initiated by a change in local LLDP MIB variables	GC
lldp admin-status	Enables LLDP transmit, receive, or transmit and receive mode on the specified port	IC
lldp basic-tlv management-ip-address	Configures an LLDP-enabled port to advertise the management address for this device	IC
lldp basic-tlv port-description	Configures an LLDP-enabled port to advertise its port description	IC
lldp basic-tlv system-capabilities	Configures an LLDP-enabled port to advertise its system capabilities	IC

Table 156: LLDP Commands (Continued)

Command	Function	Mode
lldp basic-tlv system-description	Configures an LLDP-enabled port to advertise the system description	IC
lldp basic-tlv system-name	Configures an LLDP-enabled port to advertise its system name	IC
Ildp dot1-tlv proto-ident*	Configures an LLDP-enabled port to advertise the supported protocols	IC
lldp dot1-tlv proto-vid*	Configures an LLDP-enabled port to advertise port- based protocol related VLAN information	IC
lldp dot1-tlv pvid*	Configures an LLDP-enabled port to advertise its default VLAN ID	IC
Ildp dot1-tlv vlan-name*	Configures an LLDP-enabled port to advertise its VLAN name	IC
lldp dot3-tlv link-agg	Configures an LLDP-enabled port to advertise its link aggregation capabilities	IC
lldp dot3-tlv mac-phy	Configures an LLDP-enabled port to advertise its MAC and physical layer specifications	IC
lldp dot3-tlv max-frame	Configures an LLDP-enabled port to advertise its maximum frame size	IC
lldp dot3-tlv poe	Configures an LLDP-enabled port to advertise its Power-over-Ethernet capabilities	IC
lldp med-location civic-addr	Configures an LLDP-MED-enabled port to advertise its location identification details	IC
lldp med-notification	Enables the transmission of SNMP trap notifications about LLDP-MED changes	IC
lldp med-tlv ext-poe	Configures an LLDP-MED-enabled port to advertise its extended Power over Ethernet configuration and usage information	IC
lldp med-tlv inventory	Configures an LLDP-MED-enabled port to advertise its inventory identification details	IC
lldp med-tlv location	Configures an LLDP-MED-enabled port to advertise its location identification details	IC
lldp med-tlv med-cap	Configures an LLDP-MED-enabled port to advertise its Media Endpoint Device capabilities	IC
lldp med-tlv network-policy	Configures an LLDP-MED-enabled port to advertise its network policy configuration	IC
lldp notification	Enables the transmission of SNMP trap notifications about LLDP changes	IC
show Ildp config	Shows LLDP configuration settings for all ports	PE
show IIdp info local-device	Shows LLDP global and interface-specific configuration settings for this device	PE
show IIdp info remote-device	Shows LLDP global and interface-specific configuration settings for remote devices	PE
show lldp info statistics	Shows statistical counters for all LLDP-enabled interfaces	PE

^{*} Vendor-specific options may or may not be advertised by neighboring devices.

Ildp This command enables LLDP globally on the switch. Use the **no** form to disable LLDP.

Syntax

[no] lldp

Default Setting

Enabled

Command Mode

Global Configuration

Example

```
Console(config) #11dp
Console(config)#
```

Ildp This command configures the time-to-live (TTL) value sent in LLDP advertisements. **holdtime-multiplier** Use the **no** form to restore the default setting.

Syntax

lldp holdtime-multiplier value

no lldp holdtime-multiplier

value - Calculates the TTL in seconds based on the following rule: minimum of ((Transmission Interval * Holdtime Multiplier), or 65536)

(Range: 2 - 10)

Default Setting

Holdtime multiplier: 4 TTL: 4*30 = 120 seconds

Command Mode

Global Configuration

Command Usage

The time-to-live tells the receiving LLDP agent how long to retain all information pertaining to the sending LLDP agent if it does not transmit updates in a timely manner.

Example

```
Console(config) #lldp holdtime-multiplier 10
Console(config)#
```

Ildp This command specifies the amount of MED Fast Start LLDPDUs to transmit during med-fast-start-count the activation process of the LLDP-MED Fast Start mechanism. Use the no form to restore the default setting.

Syntax

Ildp med-fast-start-count packets

no lldp med-fast-start-count

seconds - Amount of packets. (Range: 1-10 packets; Default: 4 packets)

Default Setting

4 packets

Command Mode

Global Configuration

Command Usage

This parameter is part of the timer which ensures that the LLDP-MED Fast Start mechanism is active for the port. LLDP-MED Fast Start is critical to the timely startup of LLDP, and therefore integral to the rapid availability of Emergency Call Service.

Example

```
Console(config) #11dp med-fast-start-count 6
Console(config)#
```

Ildp This command configures the allowed interval for sending SNMP notifications notification-interval about LLDP MIB changes. Use the no form to restore the default setting.

Syntax

Ildp notification-interval seconds

no lldp notification-interval

seconds - Specifies the periodic interval at which SNMP notifications are sent. (Range: 5 - 3600 seconds)

Default Setting

5 seconds

Command Mode

Global Configuration

Command Usage

♦ This parameter only applies to SNMP applications which use data stored in the LLDP MIB for network monitoring or management.

Information about changes in LLDP neighbors that occur between SNMP notifications is not transmitted. Only state changes that exist at the time of a notification are included in the transmission. An SNMP agent should therefore periodically check the value of IldpStatsRemTableLastChangeTime to detect any IldpRemTablesChange notification-events missed due to throttling or transmission loss.

Example

```
Console(config) #11dp notification-interval 30
Console(config)#
```

Ildp refresh-interval This command configures the periodic transmit interval for LLDP advertisements. Use the **no** form to restore the default setting.

Syntax

Ildp refresh-interval seconds

no lldp refresh-delay

seconds - Specifies the periodic interval at which LLDP advertisements are sent. (Range: 5 - 32768 seconds)

Default Setting

30 seconds

Command Mode

Global Configuration

Example

```
Console(config) #11dp refresh-interval 60
Console(config)#
```

Ildp reinit-delay This command configures the delay before attempting to re-initialize after LLDP ports are disabled or the link goes down. Use the **no** form to restore the default setting.

Syntax

Ildp reinit-delay seconds

no lldp reinit-delay

seconds - Specifies the delay before attempting to re-initialize LLDP. (Range: 1 - 10 seconds)

Default Setting

2 seconds

Command Mode

Global Configuration

Command Usage

When LLDP is re-initialized on a port, all information in the remote systems LLDP MIB associated with this port is deleted.

Example

```
Console(config) #11dp reinit-delay 10
Console(config)#
```

Ildp tx-delay This command configures a delay between the successive transmission of advertisements initiated by a change in local LLDP MIB variables. Use the **no** form to restore the default setting.

Syntax

```
Ildp tx-delay seconds
no lldp tx-delay
```

seconds - Specifies the transmit delay. (Range: 1 - 8192 seconds)

Default Setting

2 seconds

Command Mode

Global Configuration

Command Usage

- The transmit delay is used to prevent a series of successive LLDP transmissions during a short period of rapid changes in local LLDP MIB objects, and to increase the probability that multiple, rather than single changes, are reported in each transmission.
- This attribute must comply with the following rule: (4 * tx-delay) ≤ refresh-interval

Example

```
Console(config) #11dp tx-delay 10
Console(config)#
```

Ildp admin-status This command enables LLDP transmit, receive, or transmit and receive mode on the specified port. Use the **no** form to disable this feature.

Syntax

```
Ildp admin-status {rx-only | tx-only | tx-rx}
no lldp admin-status
```

rx-only - Only receive LLDP PDUs.

tx-only - Only transmit LLDP PDUs.

tx-rx - Both transmit and receive LLDP Protocol Data Units (PDUs).

Default Setting

tx-rx

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #lldp admin-status rx-only
Console(config-if)#
```

address

Ildp basic-tlv This command configures an LLDP-enabled port to advertise the management management-ip- address for this device. Use the **no** form to disable this feature.

Syntax

[no] IIdp basic-tlv management-ip-address

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- The management address protocol packet includes the IPv4 address of the switch. If no management address is available, the address should be the MAC address for the CPU or for the port sending this advertisement.
- The management address TLV may also include information about the specific interface associated with this address, and an object identifier indicating the type of hardware component or protocol entity associated with this address. The interface number and OID are included to assist SNMP applications to perform network discovery by indicating enterprise specific or other starting points for the search, such as the Interface or Entity MIB.

- Since there are typically a number of different addresses associated with a Layer 3 device, an individual LLDP PDU may contain more than one management address TLV.
- Every management address TLV that reports an address that is accessible on a port and protocol VLAN through the particular port should be accompanied by a port and protocol VLAN TLV that indicates the VLAN identifier (VID) associated with the management address reported by this TLV.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #11dp basic-tlv management-ip-address
Console(config-if)#
```

Ildp basic-tlv This command configures an LLDP-enabled port to advertise its port description. **port-description** Use the **no** form to disable this feature.

Syntax

[no] IIdp basic-tlv port-description

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

The port description is taken from the ifDescr object in RFC 2863, which includes information about the manufacturer, the product name, and the version of the interface hardware/software.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #lldp basic-tlv port-description
Console(config-if)#
```

Ildp basic-tlv This command configures an LLDP-enabled port to advertise its system **system-capabilities** capabilities. Use the **no** form to disable this feature.

Syntax

[no] IIdp basic-tlv system-capabilities

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

The system capabilities identifies the primary function(s) of the system and whether or not these primary functions are enabled. The information advertised by this TLV is described in IEEE 802.1AB.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #11dp basic-tlv system-capabilities
Console(config-if)#
```

Ildp basic-tlv This command configures an LLDP-enabled port to advertise the system system-description description. Use the **no** form to disable this feature.

Syntax

[no] IIdp basic-tly system-description

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

The system description is taken from the sysDescr object in RFC 3418, which includes the full name and version identification of the system's hardware type, software operating system, and networking software.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #11dp basic-tlv system-description
Console(config-if)#
```

Ildp basic-tlv This command configures an LLDP-enabled port to advertise the system name. Use **system-name** the **no** form to disable this feature.

Syntax

[no] IIdp basic-tlv system-name

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

The system name is taken from the sysName object in RFC 3418, which contains the system's administratively assigned name, and is in turn based on the hostname command.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #11dp basic-tlv system-name
Console(config-if)#
```

Ildp dot1-tlv This command configures an LLDP-enabled port to advertise the supported **proto-ident** protocols. Use the **no** form to disable this feature.

Syntax

[no] IIdp dot1-tly proto-ident

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This option advertises the protocols that are accessible through this interface.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #no lldp dot1-tlv proto-ident
Console(config-if)#
```

Ildp dot1-tlv proto-vid This command configures an LLDP-enabled port to advertise port-based protocol VLAN information. Use the **no** form to disable this feature.

Syntax

[no] lldp dot1-tlv proto-vid

Default Setting

Enabled

Command Mode

This option advertises the port-based protocol VLANs configured on this interface (see "Configuring Protocol-based VLANs" on page 604).

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #no lldp dot1-tlv proto-vid
Console(config-if)#
```

Ildp dot1-tlv pvid This command configures an LLDP-enabled port to advertise its default VLAN ID. Use the **no** form to disable this feature.

Syntax

[no] Ildp dot1-tlv pvid

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

The port's default VLAN identifier (PVID) indicates the VLAN with which untagged or priority-tagged frames are associated (see the switchport native vlan command).

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #no lldp dot1-tlv pvid
Console(config-if)#
```

Ildp dot1-tlv This command configures an LLDP-enabled port to advertise its VLAN name. Use vlan-name the **no** form to disable this feature.

Syntax

[no] IIdp dot1-tlv vlan-name

Default Setting

Enabled

Command Mode

This option advertises the name of all VLANs to which this interface has been assigned. See "switchport allowed vlan" on page 585 and "protocol-vlan protocolgroup (Configuring Interfaces)" on page 606.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #no lldp dot1-tlv vlan-name
Console(config-if)#
```

Ildp dot3-tlv link-agg This command configures an LLDP-enabled port to advertise link aggregation capabilities. Use the **no** form to disable this feature.

Syntax

[no] Ildp dot3-tlv link-agg

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This option advertises link aggregation capabilities, aggregation status of the link, and the 802.3 aggregated port identifier if this interface is currently a link aggregation member.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #no 11dp dot3-tlv link-agg
Console(config-if)#
```

Ildp dot3-tlv mac-phy This command configures an LLDP-enabled port to advertise its MAC and physical layer capabilities. Use the **no** form to disable this feature.

Syntax

[no] lldp dot3-tlv mac-phy

Default Setting

Enabled

Command Mode

This option advertises MAC/PHY configuration/status which includes information about auto-negotiation support/capabilities, and operational Multistation Access Unit (MAU) type.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #no lldp dot3-tlv mac-phy
Console(config-if)#
```

Ildp dot3-tlv This command configures an LLDP-enabled port to advertise its maximum frame max-frame size. Use the **no** form to disable this feature.

Syntax

[no] lldp dot3-tlv max-frame

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

Refer to "Frame Size" on page 136 for information on configuring the maximum frame size for this switch.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #11dp dot3-tlv max-frame
Console(config-if)#
```

Ildp dot3-tlv poe This command configures an LLDP-enabled port to advertise its Power-over-Ethernet (PoE) capabilities. Use the **no** form to disable this feature.

Syntax

[no] lldp dot3-tlv poe

Default Setting

Enabled

Command Mode

- This command only applies to the ECS4510-28P/52P.
- This option advertises Power-over-Ethernet capabilities, including whether or not PoE is supported, currently enabled, if the port pins through which power is delivered can be controlled, the port pins selected to deliver power, and the power class.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #11dp dot3-tlv poe
Console(config-if)#
```

Ildp med-location This command configures an LLDP-MED-enabled port to advertise its location **civic-addr** identification details. Use the **no** form to restore the default settings.

Syntax

```
Ildp med-location civic-addr [[country country-code] | [what device-type] |
   [ca-type ca-value]]
```

no lldp med-location civic-addr [[country] | [what] | [ca-type]]

country-code – The two-letter ISO 3166 country code in capital ASCII letters. (Example: DK, DE or US)

device-type – The type of device to which the location applies.

- 0 Location of DHCP server.
- 1 Location of network element closest to client.
- 2 Location of client.

ca-type – A one-octet descriptor of the data civic address value. (Range: 0-255)

ca-value – Description of a location. (Range: 1-32 characters)

Default Setting

Not advertised No description

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

 Use this command without any keywords to advertise location identification details.

Use the ca-type to advertise the physical location of the device, that is the city, street number, building and room information. The address location is specified as a type and value pair, with the civic address (CA) type being defined in RFC 4776. The following table describes some of the CA type numbers and provides examples.

Table 157: LLDP MED Location CA Types

CA Type	Description	CA Value Example
1	National subdivisions (state, canton, province)	California
2	County, parish	Orange
3	City, township	Irvine
4	City division, borough, city district	West Irvine
5	Neighborhood, block	Riverside
6	Group of streets below the neighborhood level	Exchange
18	Street suffix or type	Avenue
19	House number	320
20	House number suffix	Α
21	Landmark or vanity address	Tech Center
26	Unit (apartment, suite)	Apt 519
27	Floor	5
28	Room	509B

Any number of CA type and value pairs can be specified for the civic address location, as long as the total does not exceed 250 characters.

 For the location options defined for device-type, normally option 2 is used to specify the location of the client device. In situations where the client device location is not known, 0 and 1 can be used, providing the client device is physically close to the DHCP server or network element.

Example

The following example enables advertising location identification details.

```
Console(config)#interface ethernet 1/1
Console(config-if)#lldp med-location civic-addr
Console(config-if)#lldp med-location civic-addr 1 California
Console(config-if)#lldp med-location civic-addr 2 Orange
Console(config-if)#lldp med-location civic-addr 3 Irvine
Console(config-if)#lldp med-location civic-addr 4 West Irvine
Console(config-if)#lldp med-location civic-addr 6 Exchange
Console(config-if)#lldp med-location civic-addr 18 Avenue
Console(config-if)#lldp med-location civic-addr 19 320
Console(config-if)#lldp med-location civic-addr 27 5
Console(config-if)#lldp med-location civic-addr 28 509B
Console(config-if)#lldp med-location civic-addr country US
```

```
Console(config-if) #11dp med-location civic-addr what 2
Console(config-if)#
```

Ildp med-notification This command enables the transmission of SNMP trap notifications about LLDP-MED changes. Use the **no** form to disable LLDP-MED notifications.

Syntax

[no] IIdp med-notification

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This option sends out SNMP trap notifications to designated target stations at the interval specified by the Ildp notification-interval command. Trap notifications include information about state changes in the LLDP MIB (IEEE 802.1AB), the LLDP-MED MIB (ANSI/TIA 1057), or organization-specific LLDP-EXT-DOT1 and LLDP-EXT-DOT3 MIBs.
- SNMP trap destinations are defined using the snmp-server host command.
- Information about additional changes in LLDP neighbors that occur between SNMP notifications is not transmitted. Only state changes that exist at the time of a trap notification are included in the transmission. An SNMP agent should therefore periodically check the value of IIdpStatsRemTableLastChangeTime to detect any IldpRemTablesChange notification-events missed due to throttling or transmission loss.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #lldp med-notification
Console(config-if)#
```

Ildp med-tlv ext-poe This command configures an LLDP-MED-enabled port to advertise and accept Extended Power-over-Ethernet configuration and usage information. Use the **no** form to disable this feature.

Syntax

[no] lldp med-tlv ext-poe

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

◆ This command only applies to the ECS4510-28P/52P.

This option advertises extended Power-over-Ethernet capability details, such as power availability from the switch, and power state of the switch, including whether the switch is operating from primary or backup power (the Endpoint Device could use this information to decide to enter power conservation mode). Note that this device does not support PoE capabilities.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #no lldp med-tlv ext-poe
Console(config-if)#
```

Ildp med-tlv inventory This command configures an LLDP-MED-enabled port to advertise its inventory identification details. Use the **no** form to disable this feature.

Syntax

[no] Ildp med-tlv inventory

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This option advertises device details useful for inventory management, such as manufacturer, model, software version and other pertinent information.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #no lldp med-tlv inventory
Console(config-if)#
```

Ildp med-tlv location This command configures an LLDP-MED-enabled port to advertise its location identification details. Use the **no** form to disable this feature.

Syntax

[no] IIdp med-tlv location

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This option advertises location identification details.

Example

```
{\tt Console(config)\,\#interface\,\,ethernet\,\,1/1}
Console(config-if) #lldp med-tlv location
Console(config-if)#
```

Ildp med-tlv med-cap This command configures an LLDP-MED-enabled port to advertise its Media Endpoint Device capabilities. Use the **no** form to disable this feature.

Syntax

[no] IIdp med-tlv med-cap

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This option advertises LLDP-MED TLV capabilities, allowing Media Endpoint and Connectivity Devices to efficiently discover which LLDP-MED related TLVs are supported on the switch.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if)#lldp med-tlv med-cap
Console(config-if)#
```

Ildp med-tlv This command configures an LLDP-MED-enabled port to advertise its network **network-policy** policy configuration. Use the **no** form to disable this feature.

Syntax

[no] Ildp med-tlv network-policy

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This option advertises network policy configuration information, aiding in the discovery and diagnosis of VLAN configuration mismatches on a port. Improper network policy configurations frequently result in voice quality degradation or complete service disruption.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #11dp med-tlv network-policy
Console(config-if)#
```

Ildp notification This command enables the transmission of SNMP trap notifications about LLDP changes. Use the **no** form to disable LLDP notifications.

Syntax

[no] IIdp notification

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This option sends out SNMP trap notifications to designated target stations at the interval specified by the lldp notification-interval command. Trap notifications include information about state changes in the LLDP MIB (IEEE 802.1AB), or organization-specific LLDP-EXT-DOT1 and LLDP-EXT-DOT3 MIBs.
- SNMP trap destinations are defined using the snmp-server host command.
- Information about additional changes in LLDP neighbors that occur between SNMP notifications is not transmitted. Only state changes that exist at the time of a trap notification are included in the transmission. An SNMP agent should therefore periodically check the value of IldpStatsRemTableLastChangeTime to detect any IldpRemTablesChange notification-events missed due to throttling or transmission loss.

```
Console(config)#interface ethernet 1/1
Console(config-if) #lldp notification
Console(config-if)#
```

show lldp config This command shows LLDP configuration settings for all ports.

Syntax

```
show IIdp config [detail interface]
  detail - Shows configuration summary.
  interface
  ethernet unit/port
     unit - Unit identifier. (Range: 1-8)
     port - Port number. (Range: 1-28/52)
  port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

```
Console#show lldp config
LLDP Global Configuation
LLDP Hold Time Medical: Yes

LLDP Hold Time Medical: 30 seconds
LLDP Hold Time Multiplier : 4
LLDP Delay Interval : 2 seconds
 LLDP Re-initialization Delay : 2 seconds
 LLDP Notification Interval : 5 seconds
LLDP MED Fast Start Count
LLDP Port Configuration
 Port Admin Status Notification Enabled
 _____

      Eth 1/1
      Tx-Rx
      True

      Eth 1/2
      Tx-Rx
      True

      Eth 1/3
      Tx-Rx
      True

      Eth 1/4
      Tx-Rx
      True

      Eth 1/5
      Tx-Rx
      True

Eth 1/5 Tx-Rx
                          True
Console#show lldp config detail ethernet 1/1
LLDP Port Configuration Detail
 Port
                                       : Eth 1/1
 Admin Status
                                       : Tx-Rx
Notification Enabled
                                      : True
 Basic TLVs Advertised
                                      : port-description
                                          system-name
                                          system-description
                                          system-capabilities
                                          management-ip-address
 802.1 specific TLVs Advertised : port-vid
                                          proto-vlan
                                          proto-ident
 802.3 specific TLVs Advertised : mac-phy
                                         max-frame
 MED Notification Status : Enabled
```

```
MED Enabled TLVs Advertised
                                network-policy
                                location
                                ext-poe
                                inventory
MED Location Identification:
 Location Data Format : Civic Address LCI
 Civic Address Status : Enabled
 Country Name : US
 What
                     : 2
                     : 1
 CA-Type
                    : Alabama
 CA-Value
                    : 2
 CA-Type
 CA-Value
                    : Tuscaloosa
Console#
```

local-device this device.

show Ildp info This command shows LLDP global and interface-specific configuration settings for

Syntax

```
show lldp info local-device [detail interface]
   detail - Shows configuration summary.
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

```
Console#show lldp info local-device
 LLDP Local Global Information
  Chassis Type : MAC Address
  Chassis ID : 00-01-02-03-04-05
System Name :
  System Description : ECS4620-28T
  System Capabilities Support : Bridge, Router
  System Capabilities Enabled : Bridge, Router
  Management Address : 192.168.0.101 (IPv4)
LLDP Port Information
 Port PortID Type
                               PortID
                                                      Port Description
 ______
Eth 1/1 MAC Address 00-12-CF-DA-FC-E9 Ethernet Port on unit 0, port 1 Eth 1/2 MAC Address 00-12-CF-DA-FC-EA Ethernet Port on unit 0, port 2 Eth 1/3 MAC Address 00-12-CF-DA-FC-EB Ethernet Port on unit 0, port 3 Eth 1/4 MAC Address 00-12-CF-DA-FC-EC Ethernet Port on unit 0, port 4
```

```
Console#show 11dp info local-device detail ethernet 1/1
LLDP Local Port Information Detail
                 : Eth 1/1
Port ID Type : MAC Address
Port ID : 00-12-CF-DA-FC-E9
 Port Description : Ethernet Port on unit 1, port 1
MED Capability : LLDP-MED Capabilities
                    Network Policy
                    Location Identification
                     Inventory
Console#
```

show Ildp info This command shows LLDP global and interface-specific configuration settings for remote-device remote devices attached to an LLDP-enabled port.

Syntax

```
show lldp info remote-device [detail interface]
   detail - Shows configuration summary.
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

Example

Note that an IP phone or other end-node device which advertises LLDP-MED capabilities must be connected to the switch for information to be displayed in the "LLDP-MED Capability" and other related fields.

```
Console#show lldp info remote-device
LLDP Remote Devices Information
 Interface Chassis ID Port ID System Name
  Eth 1/1 00-E0-0C-00-00-FD 00-E0-0C-00-01-02
Console#show lldp info remote-device detail ethernet 1/1
LLDP Remote Devices Information Detail
______
Index
                     : 2
Chassis Type : MAC Address
Chassis ID : 70-72-CF-91-1C-B2
Port ID Type : MAC Address
Port ID : 70-72-CF-91-1C-B4
Time To Live : 120 seconds
Port Description : Ethernet Port on the
                     : Ethernet Port on unit 1, port 2
```

```
System Description : ECS4620-52P
 System Capabilities : Bridge, Router
Enabled Capabilities : Bridge, Router
Management Address: 192.168.0.4 (IPv4)
 Port VLAN ID : 1
 Port and Protocol VLAN ID : supported, disabled
VLAN Name : VLAN 1 - DefaultVlan
Protocol Identity (Hex): 88-CC
MAC/PHY Configuration/Status
 Port Auto-neg Supported
                                   : Yes
 Port Auto-neg Enabled
                                  : Yes
 Port Auto-neg Advertised Cap (Hex): 6C00
 Port MAU Type
 Power via MDI
 Power Class
                        : PSE
 Power MDI Supported : Yes
Power MDI Enabled : Yes
 Power Pair Controllable : No
 Power Pairs : Spare
 Power Classification : Class 1
Link Aggregation
 Link Aggregation Capable : Yes
 Link Aggregation Enable : No
 Link Aggregation Port ID: 0
Max Frame Size : 1522
Console#
```

The following example shows information which is displayed for end-node device which advertises LLDP-MED TLVs.

```
LLDP-MED Capability :
 Device Class
                               : Network Connectivity
  Supported Capabilities
                               : LLDP-MED Capabilities
                                 Network Policy
                                 Location Identification
                                  Extended Power via MDI - PSE
                                  Inventory
  Current Capabilities
                                : LLDP-MED Capabilities
                                  Location Identification
                                  Extended Power via MDI - PSE
                                  Inventory
Location Identification :
 Location Data Format
                               : Civic Address LCI
 Country Name
                                : TW
 What
                                : 2
Extended Power via MDI :
  Power Type
                                : PSE
  Power Source
                                : Unknown
  Power Priority
                                : Unknown
  Power Value
                                : 0 Watts
```

```
Inventory
   Firmware Revision
Software Revision
Serial Number
                                  : R0A
: 1.2.6.0
                                   : 1.2.6.0
                                   : S123456
    Manufacture Name
                                   : Prye
    Model Name
                                   : VP101
                                    : 340937
    Asset ID
Console#
```

show Ildp info This command shows statistics based on traffic received through all attached LLDPstatistics enabled interfaces.

Syntax

```
show IIdp info statistics [detail interface]
   detail - Shows configuration summary.
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
```

Command Mode

Privileged Exec

```
Console#show lldp info statistics
LLDP Global Statistics
Neighbor Entries List Last Updated: 485 seconds
New Neighbor Entries Count : 2
Neighbor Entries Deleted Count
Neighbor Entries Dropped Count : 0
Neighbor Entries Ageout Count
                              : 1
LLDP Port Statistics
Port NumFramesRecvd NumFramesSent NumFramesDiscarded
 _______
Eth 1/1 12 12
Eth 1/2 17 17
Eth 1/2 17
Eth 1/3 0
Eth 1/4 0
Eth 1/5 0
                              0
                                                0
                                                0
Console#show lldp info statistics detail ethernet 1/1
LLDP Port Statistics Detail
Port Name : Eth 1/1
Frames Discarded : 0
Frames Invalid
Frames Received : 12
Frames Sent
               : 12
TLVs Unrecognized: 0
```

TLVs Discarded : 0 Neighbor Ageouts : 1

Console#

CFM Commands

Connectivity Fault Management (CFM) is an OAM protocol that includes proactive connectivity monitoring using continuity check messages, fault verification through loop back messages, and fault isolation by examining end-to-end connections between provider edge devices or between customer edge devices.

CFM is implemented as a service level protocol based on service instances which encompass only that portion of the metropolitan area network supporting a specific customer. CFM can also provide controlled management access to a hierarchy of maintenance domains (such as the customer, service provider, and equipment operator).

The following list of commands support functions for defining the CFM structure, including domains, maintenance associations, and maintenance access points. It also provides commands for fault detection through continuity check messages for all known maintenance points, and cross-check messages for statically configured maintenance points located on other devices. Fault verification is supported through loop back messages, and fault isolation through link trace messages. Fault notification is also provided by SNMP alarms which are automatically generated by maintenance points when connectivity faults or configuration errors are detected in the local maintenance domain.

Table 158: CFM Commands

Command	Function	Mode
Defining CFM Structures		
ethernet cfm ais level	Configures the maintenance level at which Alarm Indication Signal information will be sent	GC
ethernet cfm ais ma	Enables the MEPs within the specified MA to send frames with AIS information	GC
ethernet cfm ais period	Configures the interval at which AIS information is sent	GC
ethernet cfm ais suppress alarm	Suppresses AIS messages following the detection of defect conditions	GC
ethernet cfm domain	Defines a CFM maintenance domain, sets the authorized maintenance level, and enters CFM configuration mode; also specifies the MIP creation method for MAs within this domain	GC
ethernet cfm enable	Enables CFM processing globally on the switch	GC
ma index name	Creates a maintenance association within the current maintenance domain, maps it to a customer service instance, and sets the manner in which MIPs are created for this service instance	CFM

Table 158: CFM Commands (Continued)

Command	Function	Mode
ma index name-format	Specifies the name format for the maintenance association as IEEE 802.1ag character based, or ITU-T SG13/SG15 Y.1731 defined ICC-based format	CFM
ethernet cfm mep	Sets an interface as a domain boundary, defines it as a maintenance end point (MEP), and sets direction of the MEP in regard to sending and receiving CFM messages	IC
ethernet cfm port-enable	Enables CFM processing on an interface	IC
clear ethernet cfm ais mpid	Clears AIS defect information for the specified MEP	PE
show ethernet cfm configuration	Displays CFM configuration settings, including global settings, SNMP traps, and interface settings	PE
show ethernet cfm md	Displays configured maintenance domains	PE
show ethernet cfm ma	Displays configured maintenance associations	PE
show ethernet cfm maintenance-points local	Displays maintenance points configured on this device	PE
show ethernet cfm maintenance-points local detail mep	Displays detailed CFM information about a specified local MEP in the continuity check database	PE
show ethernet cfm maintenance-points remote detail	Displays detailed CFM information about a specified remote MEP in the continuity check database	PE
Continuity Check Operations		
ethernet cfm cc ma interval	Sets the transmission delay between continuity check messages	GC
ethernet cfm cc enable	Enables transmission of continuity check messages within a specified maintenance association	GC
snmp-server enable traps ethernet cfm cc	Enables SNMP traps for CFM continuity check events	GC
mep archive-hold-time	Sets the time that data from a missing MEP is kept in the continuity check database before being purged	CFM
clear ethernet cfm maintenance-points remote	Clears the contents of the continuity check database	PE
clear ethernet cfm errors	Clears continuity check errors logged for the specified maintenance domain and maintenance level	PE
show ethernet cfm errors	Displays CFM continuity check errors logged on this device	PE
Cross Check Operations		
ethernet cfm mep crosscheck start-delay	Sets the maximum delay that a device waits for remote MEPs to come up before starting the cross-check operation	GC
snmp-server enable traps ethernet cfm crosscheck	Enables SNMP traps for CFM continuity check events, in relation to the cross-check operations between statically configured MEPs and those learned via continuity check messages	GC
mep crosscheck mpid	Statically defines a remote MEP in a maintenance association	CFM

Table 158: CFM Commands (Continued)

Command	Function	Mode
ethernet cfm mep crosscheck	Enables cross-checking between the list of configured remote MEPs within a maintenance association and MEPs learned through continuity check messages	PE
show ethernet cfm maintenance-points remote crosscheck	Displays information about remote maintenance points configured statically in a cross-check list	PE
Link Trace Operations		
ethernet cfm linktrace cache	Enables caching of CFM data learned through link trace messages	GC
ethernet cfm linktrace cache hold-time	Sets the hold time for CFM link trace cache entries	GC
ethernet cfm linktrace cache size	Sets the maximum size for the link trace cache	GC
ethernet cfm linktrace	Sends CFM link trace messages to the MAC address for a MEP	PE
clear ethernet cfm linktrace-cache	Clears link trace messages logged on this device	PE
show ethernet cfm linktrace-cache	Displays the contents of the link trace cache	PE
Loopback Operations		
ethernet cfm loopback	Sends CFM loopback messages to a MAC address for a MEP or MIP	PE
Fault Generator Operations		
mep fault-notify alarm-time	Sets the time a defect must exist before a fault alarm is issued	CFM
mep fault-notify lowest- priority	Sets the lowest priority defect that is allowed to generate a fault alarm	CFM
mep fault-notify reset-time	Configures the time after a fault alarm has been issued, and no defect exists, before another fault alarm can be issued	CFM
show ethernet cfm fault- notify-generator	Displays configuration settings for the fault notification generator	PE
Delay Measure Operations		
ethernet cfm delay- measure two-way	Sends periodic delay-measure requests to a specified MEP within a maintenance association	PE

Basic Configuration Steps for CFM

- 1. Configure the maintenance domains with the ethernet cfm domain command.
- **2.** Configure the maintenance associations with the ma index name command.
- **3.** Configure the local maintenance end points (MEPs) which will serve as the domain service access points for the specified maintenance association using the ethernet cfm mep command.

- **4.** Enter a static list of MEPs assigned to other devices within the same maintenance association using the mep crosscheck mpid command. This allows CFM to automatically verify the functionality of these remote end points by cross-checking the static list configured on this device against information learned through continuity check messages.
- **5.** Enable CFM globally on the switch with the ethernet cfm enable command.
- **6.** Enable CFM on the local MEPs with the ethernet cfm port-enable command.
- 7. Enable continuity check operations with the ethernet cfm cc enable command.
- **8.** Enable cross-check operations with the ethernet cfm mep crosscheck command.

Other configuration changes may be required for your particular environment, such as adjusting the interval at which continuity check messages are sent (page 823), or setting the start-up delay for the cross-check operation (page 829). You can also enable SNMP traps for events discovered by continuity check messages (page 825) or cross-check messages (page 829).

Defining CFM Structures

ethernet cfm ais level This command configures the maintenance level at which Alarm Indication Signal (AIS) information will be sent within the specified MA. Use the **no** form restore the default setting.

Syntax

ethernet cfm ais level level-id md domain-name ma ma-name

no ethernet cfm ais level md domain-name ma ma-name

level-id – Maintenance level at which AIS information will be sent. (Range: 0-7)

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

Default Setting

Level 0

Command Mode

Global Configuration

Command Usage

The configured AIS level must be higher than the maintenance level of the domain containing the specified MA.

Example

This example sets the maintenance level for sending AIS messages within the specified MA.

```
Console(config) #ethernet cfm ais level 4 md voip ma rd
Console(config)#
```

ethernet cfm ais ma This command enables the MEPs within the specified MA to send frames with AIS information following detection of defect conditions. Use the **no** form to disable this feature.

Syntax

[no] ethernet cfm ais md domain-name ma ma-name

domain-name – Domain name. (Range: 1-43 alphanumeric characters) ma-name – Maintenance association name¹⁵. (Range: 1-43 alphanumeric characters)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Each MA name must be unique within the CFM domain.
- Frames with AIS information can be issued at the client's maintenance level by a MEP upon detecting defect conditions. For example, defect conditions may include:
 - Signal failure conditions if continuity checks are enabled.
 - AIS condition or LCK condition if continuity checks are disabled.
- ◆ A MEP continues to transmit periodic frames with AIS information until the defect condition is removed.

Example

This example enables the MEPs within the specified MA to send frames with AIS information.

```
Console(config) #ethernet cfm ais md voip ma rd
Console(config)#
```

^{15.} The total length of the MD name and MA name cannot exceed 44 characters.

ethernet cfm ais This command configures the interval at which AIS information is sent. Use the no **period** form to restore the default setting.

Syntax

ethernet cfm ais period period md domain-name ma ma-name

no ethernet cfm ais period md domain-name ma ma-name

period – The interval at which AIS information is sent. (Options: 1 second, 60 seconds)

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

Default Setting

1 second

Command Mode

Global Configuration

Example

This example sets the interval for sending frames with AIS information at 60 seconds.

```
Console(config) #ethernet cfm ais period 60 md voip ma rd
Console(config)#
```

ethernet cfm ais This command suppresses sending frames containing AIS information following suppress alarm the detection of defect conditions. Use the **no** form to restore the default setting.

Syntax

[no] ethernet cfm ais suppress alarm md domain-name ma ma-name

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

Default Setting

Suppression is disabled

Command Mode

Global Configuration

Command Usage

• For multipoint connectivity, a MEP cannot determine the specific maintenance level entity that has encountered defect conditions upon receiving a frame

with AIS information. More importantly, it cannot determine the associated subset of its peer MEPs for which it should suppress alarms since the received AIS information does not contain that information. Therefore, upon reception of a frame with AIS information, the MEP will suppress alarms for all peer MEPs whether there is still connectivity or not.

- However, for a point-to-point connection, a MEP has only a single peer MEP for which to suppress alarms when it receives frames with AIS information.
- If suppression is enabled by this command, upon receiving a frame with AIS information, a MEP detects an AIS condition and suppresses loss of continuity alarms associated with all its peer MEPs. A MEP resumes loss of continuity alarm generation upon detecting loss of continuity defect conditions in the absence of AIS messages.

Example

This example suppresses sending frames with AIS information.

```
Console(config) #ethernet cfm ais suppress alarm md voip ma rd
Console(config)#
```

ethernet cfm domain This command defines a CFM maintenance domain, sets the authorized maintenance level, and enters CFM configuration mode. Use the **no** form to delete a CFM maintenance domain.

Syntax

ethernet cfm domain index index name domain-name level level-id [mip-creation type]

no ethernet cfm domain index index

index – Domain index. (Range: 1-65535)

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

level-id – Authorized maintenance level for this domain. (Range: 0-7)

type – Specifies the CFM protocol's creation method for maintenance intermediate points (MIPs) in this domain:

default – MIPs can be created for any maintenance association (MA) configured in this domain on any bridge port through which the MA's VID can pass.

explicit – MIPs can be created for any MA configured in this domain only on bridge ports through which the MA's VID can pass, and only if a maintenance end point (MEP) is created at some lower MA Level.

none – No MIP can be created for any MA configured in this domain.

Default Setting

No maintenance domains are configured. No MIPs are created for any MA in the specified domain.

Command Mode

Global Configuration

Command Usage

- A domain can only be configured with one name.
- Where domains are nested, an upper-level hierarchical domain must have a higher maintenance level than the ones it encompasses. The higher to lower level domain types commonly include entities such as customer, service provider, and operator.
- More than one domain can be configured at the same maintenance level, but a single domain can only be configured with one maintenance level.
- ◆ If MEPs or MAs are configured for a domain using the ethernet cfm mep command or ma index name command, they must first be removed before you can remove the domain.
- Maintenance domains are designed to provide a transparent method of verifying and resolving connectivity problems for end-to-end connections. By default, these connections run between the domain service access points (DSAPs) within each MA defined for a domain, and are manually configured using the ethernet cfm mep command.

In contrast, MIPs are interconnection points that make up all possible paths between the DSAPs within an MA. MIPs are automatically generated by the CFM protocol when the *mip-creation* option in this command is set to "default" or "explicit," and the MIP creation state machine is invoked (as defined in IEEE 802.1ag). The default option allows MIPs to be created for all interconnection points within an MA, regardless of the domain's level in the maintenance hierarchy (e.g., customer, provider, or operator). While the explicit option only generates MIPs within an MA if its associated domain is not at the bottom of the maintenance hierarchy. This option is used to hide the structure of network at the lowest domain level.

The diagnostic functions provided by CFM can be used to detect connectivity failures between any pair of MEPs in an MA. Using MIPs allows these failures to be isolated to smaller segments of the network.

Allowing the CFM to generate MIPs exposes more of the network structure to users at higher domain levels, but can speed up the process of fault detection and recovery. This trade-off should be carefully considered when designing a CFM maintenance structure.

Also note that while MEPs are active agents which can initiate consistency check messages (CCMs), transmit loop back or link trace messages, and maintain the local CCM database. MIPs, on the other hand are passive agents

which can only validate received CFM messages, and respond to loop back and link trace messages.

The MIP creation method defined by the ma index name command takes precedence over the method defined by this command.

Example

This example creates a maintenance domain set to maintenance level 3, and enters CFM configuration mode for this domain.

```
Console(config) #ethernet cfm domain index 1 name voip level 3 mip-creation
 explicit
Console(config-ether-cfm)#
```

Related Commands

ma index name (812)

ethernet cfm enable This command enables CFM processing globally on the switch. Use the no form to disable CFM processing globally.

Syntax

[no] ethernet cfm enable

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- ◆ To avoid generating an excessive number of traps, the complete CFM maintenance structure and process parameters should be configured prior to globally enabling CFM processing with this command. Specifically, the maintenance domains, maintenance associations, and MEPs should be configured on each participating bridge.
- When CFM is enabled, hardware resources are allocated for CFM processing.

Example

This example enables CFM globally on the switch.

```
Console(config) #ethernet cfm enable
Console(config)#
```

ma index name This command creates a maintenance association (MA) within the current maintenance domain, maps it to a customer service instance (S-VLAN), and sets the manner in which MIPs are created for this service instance. Use the **no** form with the **vlan** keyword to remove the S-VLAN from the specified MA. Or use the **no** form with only the **index** keyword to remove the MA from the current domain.

Syntax

ma index index name ma-name [vlan vlan-list [mip-creation type]]

no ma index index [vlan vlan-list]

index – MA identifier. (Range: 1-2147483647)

ma-name – MA name. (Range: 1-43 alphanumeric characters)

vlan-list - Separate nonconsecutive VLAN identifiers with a comma and no spaces; use a hyphen to designate a range of IDs. (Range: 1-4094).

type – Specifies the CFM protocol's creation method for maintenance intermediate points (MIPs) in this MA:

default – MIPs can be created for this MA on any bridge port through which the MA's VID can pass.

explicit – MIPs can be created this MA only on bridge ports through which the MA's VID can pass, and only if a maintenance end point (MEP) is created at some lower MA Level.

none - No MIP can be created for this MA.

Default Setting

10 seconds

Command Mode

CFM Domain Configuration

Command Usage

- The maintenance domain used to enter CFM domain configuration mode, the MA name and VLAN identifier specified by this command, and the DSAPs configured with the mep crosscheck mpid command create a unique service instance for each customer.
- If only the MA index and name are entered for this command, the MA will be recorded in the domain database, but will not function. No MEPs can be created until the MA is associated with a service VLAN.
- Note that multiple domains at the same maintenance level (see the ethernet cfm domain command) cannot have an MA on the same VLAN. Also, each MA name must be unique within the CFM-managed network.
- The first VLAN entered in the list by this command is the primary VLAN, and is the VLAN on which all CFM functions are executed.

- Before removing an MA, first remove all the MEPs configured for it (see the mep crosscheck mpid command).
- If the MIP creation method is not defined by this command, the creation method defined by the ethernet cfm domain command is applied to this MA. For a detailed description of the MIP types, refer to the Command Usage section under the ethernet cfm domain command.

Example

This example creates a maintenance association, binds it to VLAN 1, and allows MIPs to be created within this MA using the default method.

```
Console(config) #ethernet cfm domain index 1 name voip level 3
Console(config-ether-cfm) #ma index 1 name rd vlan 1 mip-creation default
Console(config-ether-cfm)#
```

ma index This command specifies the name format for the maintenance association as IEEE name-format 802.1ag character based, or ITU-T SG13/SG15 Y.1731 defined ICC-based format. Use the **no** form to restore the default setting.

Syntax

ma index index name-format {character-string | icc-based}

no ma index index name-format

index – MA identifier. (Range: 1-2147483647)

character-string – IEEE 802.1ag defined character string format. This is an IETF RFC 2579 DisplayString.

icc-based - ITU-T SG13/SG15 Y.1731 defined ICC based format.

Default Setting

character-string

Command Mode

CFM Domain Configuration

Example

This example specifies the name format as character string.

```
Console(config) #ethernet cfm domain index 1 name voip level 3
Console(config-ether-cfm) #ma index 1 name-format character-string
Console(config-ether-cfm)#
```

ethernet cfm mep This command sets an interface as a domain boundary, defines it as a maintenance end point (MEP), and sets direction of the MEP in regard to sending and receiving CFM messages. Use the **no** form to delete a MEP.

Syntax

ethernet cfm mep mpid mpid md domain-name ma ma-name [up] no ethernet cfm mep mpid mpid ma ma-name

mpid – Maintenance end point identifier. (Range: 1-8191)

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

up – Indicates that the MEP faces inward toward the switch cross-connect matrix, and transmits CFM messages towards, and receives them from, the direction of the internal bridge relay mechanism. If the **up** keyword is not included in this command, then the MEP is facing away from the switch, and transmits CFM messages towards, and receives them from, the direction of the physical medium.

Default Setting

No MEPs are configured. The MEP faces outward (down).

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- CFM elements must be configured in the following order: (1) maintenance domain at the same level as the MEP to be configured (using the ethernet cfm domain command), (2) maintenance association within the domain (using the ma index name command), and (3) finally the MEP using this command.
- An interface may belong to more than one domain. This command can be used to configure an interface as a MEP for different MAs in different domains.
- ◆ To change the MEP's MA or the direction it faces, first delete the MEP, and then create a new one.

Example

This example sets port 1 as a DSAP for the specified maintenance association.

```
Console(config)#interface ethernet 1/1
Console(config-if) #ethernet cfm mep mpid 1 md voip ma rd
Console(config-if)#
```

ethernet cfm This command enables CFM processing on an interface. Use the **no** form to disable port-enable CFM processing on an interface.

Syntax

[no] ethernet cfm port-enable

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- An interface must be enabled before a MEP can be created with the ethernet cfm mep command.
- If a MEP has been configured on an interface with the ethernet cfm mep command, it must first be deleted before CFM can be disabled on that interface.
- When CFM is disabled, hardware resources previously used for CFM processing on that interface are released, and all CFM frames entering that interface are forwarded as normal data traffic.

Example

This example enables CFM on port 1.

```
Console(config) #interface ethernet 1/1
Console(config-if) #ethernet cfm port-enable
Console(config-if)#
```

ais mpid

clear ethernet cfm This command clears AIS defect information for the specified MEP.

Syntax

clear ethernet cfm ais mpid mpid md domain-name ma ma-name

```
mpid – Maintenance end point identifier. (Range: 1-8191)
domain-name – Domain name. (Range: 1-43 alphanumeric characters)
ma-name – Maintenance association name. (Range: 1-43 alphanumeric
characters)
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

This command can be used to clear AIS defect entries if a MEP does not exit the AIS state when all errors are resolved.

Example

This example clears AIS defect entries on port 1.

```
Console#clear ethernet cfm ais mpid 1 md voip ma rd
Console(config)#
```

show ethernet cfm This command displays CFM configuration settings, including global settings, configuration SNMP traps, and interface settings.

Syntax

show ethernet cfm configuration {global | traps | interface interface}

global – Displays global settings including CFM global status, cross-check start delay, and link trace parameters.

traps – Displays the status of all continuity check and cross-check traps.

interface – Displays CFM status for the specified interface.

ethernet unit/port

```
unit - Unit identifier. (Range: 1-8)
    port - Port number. (Range: 1-28/52)
port-channel channel-id (Range: 1-16)
```

Default Setting

None

Command Mode

Privileged Exec

Example

This example shows the global settings for CFM.

```
Console#show ethernet cfm configuration global
CFM Global Status : Enabled
Crosscheck Start Delay : 10 seconds
Linktrace Cache Status : Enabled
Linktrace Cache Hold Time : 100 minutes
Linktrace Cache Size : 100 entries
Console#
```

This example shows the configuration status for continuity check and cross-check traps.

```
Console#show ethernet cfm configuration traps
CC MEP Up Trap :Disabled
CC MEP Down Trap :Disabled
CC Configure Trap :Disabled
CC Loop Trap :Disabled
Cross Check MEP Unknown Trap :Disabled
Cross Check MEP Missing Trap :Disabled
Cross Check MEP Missing Trap :Disabled
Cross Check MA Up :Disabled
Console#
```

Table 159: show ethernet cfm configuration traps - display description

Field	Description
CC MEP Up Trap	Sends a trap if a remote MEP is discovered and added to the local database, the port state of a previously discovered remote MEP changes, or a CCM is received from a remote MEP which as an expired entry in the archived database.
CC Mep Down Trap	Sends a trap if this device loses connectivity with a remote MEP, or connectivity has been restored to a remote MEP which has recovered from an error condition.
CC Configure Trap	Sends a trap if this device receives a CCM with the same MPID as its own but with a different source MAC address, indicating that a CFM configuration error exists.
CC Loop Trap	Sends a trap if this device receives a CCM with the same source MAC address and MPID as its own, indicating that a forwarding loop exists.
Cross Check MEP Unknown Trap	A CCM is received from a MEP that has not been configured as a DSAP (see the ethernet cfm mep command), manually configured as a remote MEP (see the mep crosscheck mpid command), nor learned through previous CCM messages.
Cross Check MEP Missing Trap	This device failed to receive three consecutive CCMs from another MEP in the same MA.
Cross Check MA Up	Generates a trap when all remote MEPs belonging to an MA come up.

This example shows the CFM status for port 1.

```
Console#show ethernet cfm configuration interface ethernet 1/1
Ethernet 1/1 CFM Status:Enabled
Console#
```

show ethernet cfm md This command displays the configured maintenance domains.

Syntax

show ethernet cfm md [level level]

level – Maintenance level. (Range: 0-7)

Default Setting

None

Command Mode

Privileged Exec

Example

This example shows all configured maintenance domains.

```
Console#show ethernet cfm md
MD Index MD Name Level MIP Creation Archive Hold Time (m.)
    1 rd
                             0 default
                                                           100
Console#
```

show ethernet cfm ma This command displays the configured maintenance associations.

Syntax

show ethernet cfm ma [level level]

level – Maintenance level. (Range: 0-7)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

For a description of the values displayed in the CC Interval field, refer to the ethernet cfm cc ma interval command.

Example

This example shows all configured maintenance associations.

ethernet cfm ma		
MA Index MA Name	Primary VID	CC Interval MIP Creation
1 voin	1	4 Default
1 4015	_	4 Delaule
		MA Index MA Name Primary VID

show ethernet cfm maintenance-points

show ethernet cfm This command displays the maintenance points configured on this device.

local Syntax

```
show ethernet cfm maintenance-points local
```

{mep [domain domain-name | interface interface | level level-id] | mip [domain domain-name | level level-id]}

mep – Displays only local maintenance end points.

mip – Displays only local maintenance intermediate points.

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

interface - Displays CFM status for the specified interface.

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

level-id – Maintenance level for this domain. (Range: 0-7)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- Use the mep keyword with this command to display the MEPs configured on this device as DSAPs through the ethernet cfm mep command.
- Using the mip keyword with this command to display the MIPs generated on this device by the CFM protocol when the mip-creation method is set to either "default" or "explicit" by the ethernet cfm domain command or the ma index name command.

Example

This example shows all MEPs configured on this device for maintenance domain rd.

```
Console#show ethernet cfm maintenance-points local mep
MPID MD Name Level Direct VLAN Port CC Status MAC Address

1 rd 0 UP 1 Eth 1/ 1 Enabled 00-12-CF-3A-A8-C0
Console#
```

local detail mep

show ethernet cfm This command displays detailed CFM information about a local MEP in the maintenance-points continuity check database.

Syntax

```
show ethernet cfm maintenance-points local detail mep
 [domain domain-name | interface interface | level level-id]
   domain-name – Domain name. (Range: 1-43 alphanumeric characters)
   interface - Displays CFM status for the specified interface.
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
   level-id – Maintenance level for this domain. (Range: 0-7)
```

Default Setting

None

Command Mode

Privileged Exec

Example

This example shows detailed information about the local MEP on port 1.

```
Console#show ethernet cfm maintenance-points local detail mep interface
  ethernet 1/1
MEP Settings:
MPID
                         : 1
MD Name : vopu
MA Name : r&d
MA Name Format : Character String
. n
                          : 0
Level
Direction
Interface
CC Status
MAC Address
                        : Up
                          : Eth 1/ 1
                          : Enabled
                         : 00-E0-0C-00-00-FD
Defect Condition : No Defect
Received RDI : False
ATS Status
AIS Status
AIS Period
                         : Enabled
                         : 1 seconds
AIS Transmit Level : Default
Suppress Alarm : Disabled Suppressing Alarms : Disabled
Console#
```

Table 160: show ethernet cfm maintenance-points local detail mep - display

Field	Description
MPID	MEP identifier
MD Name	The maintenance domain for this entry.
MA Name	Maintenance association to which this remote MEP belongs
MA Name Format	The format of the Maintenance Association name, including primary VID, character string, unsigned Integer 16, or RFC 2865 VPN ID
Level	Maintenance level of the local maintenance point
Direction	The direction in which the MEP faces on the Bridge port (up or down).
Interface	The port to which this MEP is attached.
CC Status	Shows if the MEP will generate CCM messages.
MAC Address	MAC address of the local maintenance point. (If a CCM for the specified remote MEP has never been received or the local MEP record times out, the address will be set to the initial value of all Fs.)
Defect Condition	Shows the defect detected on the MEP.
Received RDI	Receive status of remote defect indication (RDI) messages on the MEP.
AIS Status	Shows if MEPs within the specified MA are enabled to send frames with AIS information following detection of defect conditions.
AIS Period	The interval at which AIS information is sent.
AIS Transmit Level	The maintenance level at which AIS information will be sent for the specified MEP.
Suppress Alarm	Shows if the specified MEP is configured to suppress sending frames containing AIS information following the detection of defect conditions.
Suppressing Alarms	Shows if the specified MEP is currently suppressing sending frames containing AIS information following the detection of defect conditions.

remote detail

show ethernet cfm This command displays detailed CFM information about a remote MEP in the maintenance-points continuity check database.

Syntax

show ethernet cfm maintenance-points remote detail

{mac mac-address | mpid mpid}

[domain domain-name | level level-id | ma ma-name]

mac-address – MAC address of a remote maintenance point.

xx-xx or xxxxxxxxxxxxx

mpid – Maintenance end point identifier. (Range: 1-8191)

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

level-id – Authorized maintenance level for this domain. (Range: 0-7)

ma-name - Maintenance association name. (Range: 1-43 alphanumeric characters)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Use the **mpid** keyword with this command to display information about a specific maintenance point, or use the **mac** keyword to display information about all maintenance points that have the specified MAC address.

Example

This example shows detailed information about the remote MEP designated by MPID 2.

```
Console#show ethernet cfm maintenance-points remote detail mpid 2
MAC Address : 00-0D-54-FC-A2-73
Domain/Level
                    : voip / 3
MA Name
                    : rd
Primary VLAN
                   : 1
                    : 2
MPID
Incoming Port : Eth 1/2
CC Lifetime : 645 seconds
Age of Last CC Message : 2 seconds
Frame Loss : 137
CC Packet Statistics : 647/1
Port State
                    : Up
Interface State : Up
Crosscheck Status : Enabled
Console#
```

Table 161: show ethernet cfm maintenance-points remote detail - display

Field	Description
MAC Address	MAC address of the remote maintenance point. (If a CCM for the specified remote MEP has never been received or the remote MEP record times out, the address will be set to the initial value of all Fs.)
Domain/Level	Maintenance domain and level of the remote maintenance point
MA Name	Maintenance association to which this remote MEP belongs
Primary VLAN	VLAN to which this MEP belongs
MPID	MEP identifier
Incoming Port	Port to which this remote MEP is attached.
CC Lifetime	Length of time to hold messages about this MEP in the CCM database
Age of Last CC Message	Length of time the last CCM message about this MEP has been in the CCM database $$
Frame Loss	Percentage of transmitted frames lost
CC Packet Statistics (received/error)	The number of CCM packets received successfully and those with errors

Table 161: show ethernet cfm maintenance-points remote detail - display

Field	Description
Port State	Port states include: Up – The port is functioning normally. Blocked – The port has been blocked by the Spanning Tree Protocol. No port state – Either no CCM has been received, or nor port status TLV was received in the last CCM.
Interface State	Interface states include:
	No Status – Either no CCM has been received, or no interface status TLV was received in the last CCM.
	Up – The interface is ready to pass packets.
	Down – The interface cannot pass packets.
	Testing – The interface is in some test mode.
	Unknown – The interface status cannot be determined for some reason.
	Dormant – The interface is not in a state to pass packets but is in a pending state, waiting for some external event.
	Not Present – Some component of the interface is missing.
	isLowerLayerDown – The interface is down due to state of the lower layer interfaces.
Crosscheck Status	Shows if crosscheck function has been enabled.

Continuity Check Operations

ethernet cfm cc ma This command sets the transmission delay between continuity check messages **interval** (CCMs). Use the **no** form to restore the default settings.

Syntax

ethernet cfm cc md domain-name ma ma-name interval interval-level no ethernet cfm cc ma ma-name interval

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

interval-level – The transmission delay between connectivity check messages. The setting for this parameter is expressed as levels 4 through 7, which in turn map to specific intervals of time. (CCM interval field options: 4 - 1 second, 5 - 10 seconds, 6 - 1 minute, 7 - 10 minutes)

Default Setting

4 (1 second)

Command Mode

Global Configuration

Command Usage

 CCMs provide a means to discover other MEPs and to detect connectivity failures in an MA. If any MEP fails to receive three consecutive CCMs from any other MEPs in its MA, a connectivity failure is registered. The interval at which CCMs are issued should therefore be configured to detect connectivity problems in a timely manner, as dictated by the nature and size of the MA.

The maintenance of a MIP CCM database by a MIP presents some difficulty for bridges carrying a large number of Service Instances, and for whose MEPs are issuing CCMs at a high frequency. For this reason, slower CCM transmission rates may have to be used.

Example

This example sets the transmission delay for continuity check messages to level 7 (60 seconds).

```
Console(config) #ethernet cfm cc md voip ma rd interval 7
Console(config)#
```

Related Commands

ethernet cfm cc enable (824)

ethernet cfm cc This command enables the transmission of continuity check messages (CCMs) enable within a specified maintenance association. Use the **no** form to disable the transmission of these messages.

Syntax

[no] ethernet cfm cc enable md domain-name ma ma-name

domain-name – Domain name. (Range: 1-43 alphanumeric characters) ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- CCMs are multicast periodically by a MEP in order to discover other MEPs in the same MA, and to assure connectivity to all other MEPs/MIPs in the MA.
- Each CCM received is checked to verify that the MEP identifier field sent in the message does not match its own MEPID, which would indicate a duplicate MEP or network loop. If these error types are not found, the CCM is stored in the MEP's local database until aged out.
- If a maintenance point fails to receive three consecutive CCMs from any other MEP in the same MA, a connectivity failure is registered.

◆ If a maintenance point receives a CCM with an invalid MEPID or MA level or an MA level lower than its own, a failure is registered which indicates a configuration error or cross-connect error (i.e., overlapping MAs).

Example

This example enables continuity check messages for the specified maintenance association.

```
Console(config) #ethernet cfm cc enable md voip ma rd
Console(config)#
```

snmp-server enable This command enables SNMP traps for CFM continuity check events. Use the **no traps ethernet cfm cc** form to disable these traps.

Syntax

[no] snmp-server enable traps ethernet cfm cc [config | loop | mep-down | mep-up]

config – Sends a trap if this device receives a CCM with the same MPID as its own but with a different source MAC address, indicating that a CFM configuration error exists.

loop – Sends a trap if this device receives a CCM with the same source MAC address and MPID as its own, indicating that a forwarding loop exists.

mep-down – Sends a trap if this device loses connectivity with a remote MEP, or connectivity has been restored to a remote MEP which has recovered from an error condition.

mep-up – Sends a trap if a remote MEP is discovered and added to the local database, the port state of a previously discovered remote MEP changes, or a CCM is received from a remote MEP which as an expired entry in the archived database.

Default Setting

All continuity checks are enabled.

Command Mode

Global Configuration

Command Usage

All mep-up traps are suppressed when cross-checking of MEPs is enabled because cross-check traps include more detailed status information.

Example

This example enables SNMP traps for mep-up events.

```
Console(config) #snmp-server enable traps ethernet cfm cc mep-up
Console(config)#
```

Related Commands

ethernet cfm mep crosscheck (831)

mep archive-hold- This command sets the time that data from a missing MEP is retained in the time continuity check message (CCM) database before being purged. Use the **no** form to restore the default setting.

Syntax

mep archive-hold-time hold-time

hold-time – The time to retain data for a missing MEP. (Range: 1-65535 minutes)

Default Setting

100 minutes

Command Mode

CFM Domain Configuration

Command Usage

A change to the hold time only applies to entries stored in the database after this command is entered.

Example

This example sets the aging time for missing MEPs in the CCM database to 30 minutes.

```
Console(config) #ethernet cfm domain index 1 name voip level 3
Console(config-ether-cfm) #mep archive-hold-time 30
Console(config-ether-cfm)#
```

maintenance-points

clear ethernet cfm This command clears the contents of the continuity check database.

remote Syntax

clear ethernet cfm maintenance-points remote [domain domain-name | **level** level-id

domain-name – Domain name. (Range: 1-43 alphanumeric characters) level-id – Maintenance level. (Range: 0-7)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Use this command without any keywords to clear all entries in the CCM database. Use the **domain** keyword to clear the CCM database for a specific domain, or the **level** keyword to clear it for a specific maintenance level.

Example

Console#clear ethernet cfm maintenance-points remote domain voip

clear ethernet cfm This command clears continuity check errors logged for the specified maintenance errors domain or maintenance level.

Syntax

clear ethernet cfm errors [domain domain-name | level level-id]

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

level-id – Maintenance level. (Range: 0-7)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Use this command without any keywords to clear all entries in the error database. Use the **domain** keyword to clear the error database for a specific domain, or the **level** keyword to clear it for a specific maintenance level.

Example

Console#clear ethernet cfm errors domain voip

errors

show ethernet cfm This command displays the CFM continuity check errors logged on this device.

Syntax

show ethernet cfm errors [domain *domain-name* | **level** *level-id*]

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

level-id – Authorized maintenance level for this domain. (Range: 0-7)

Default Setting

None

Command Mode

Privileged Exec

Example

Console#show ethernet cfm errors						
Level	VLAN	MPID	Interface	Remote MAC	Reason	MA Name
5	2	40	Eth 1/1	ab.2f.9c.00.05.01	LEAK	provider_1_2
Consol	Le#					

Table 162: show ethernet cfm errors - display description

Field	Description
Level	Maintenance level associated with this entry.
VLAN	VLAN in which this error occurred.
MPID	Identifier of remote MEP.
Interface	Port at which the error was recorded
Remote MAC	MAC address of remote MEP.
Reason	Error types include: LEAK – MA x is associated with a specific VID list*, one or more of the VIDs in this MA can pass through the bridge port, no MEP is configured facing outward (down) on any bridge port for this MA, and some other MA y, at a higher maintenance level, and associated with at least one of the VID(s) also in MA x, does have a MEP configured on the bridge port.
	VIDS – MA x is associated with a specific VID list* on this MA on the bridge port, and some other MA y, associated with at least one of the VID(s) also in MA x, also has an Up MEP configured facing inward (up) on some bridge port. EXCESS_LEV – The number of different MD levels at which MIPs are to be created on this port exceeds the bridge's capabilities. OVERLAP_LEV – A MEP is created for one VID at one maintenance level, but a MEP is configured on another VID at an equivalent or higher level,
MA	exceeding the bridge's capabilities. The maintenance association for this entry.

^{*} This definition is based on the IEEE 802.1ag standard. Current software for this switch only supports a single VLAN per MA. However, since it may interact with other devices which support multiple VLAN assignments per MA, this error message may be reported.

Cross Check Operations

ethernet cfm mep This command sets the maximum delay that a device waits for remote MEPs to crosscheck start-delay come up before starting the cross-check operation. Use the **no** form to restore the default setting.

Syntax

ethernet cfm mep crosscheck start-delay delay

delay – The time a device waits for remote MEPs to come up before the cross-check is started. (Range: 1-65535 seconds)

Default Setting

30 seconds

Command Mode

Global Configuration

Command Usage

- This command sets the delay that a device waits for a remote MEP to come up, and it starts cross-checking the list of statically configure remote MEPs in the local maintenance domain against the MEPs learned through CCMs.
- ◆ The cross-check start delay should be configured to a value greater than or equal to the continuity check message interval to avoid generating unnecessary traps.

Example

This example sets the maximum delay before starting the cross-check process.

```
Console(config) #ethernet cfm mep crosscheck start-delay 60
Console(config)#
```

snmp-server enable This command enables SNMP traps for CFM continuity check events, in relation to traps ethernet cfm the cross-check operations between statically configured MEPs and those learned crosscheck via continuity check messages (CCMs). Use the **no** form to restore disable these traps.

Syntax

[no] snmp-server enable traps ethernet cfm crosscheck [ma-up | mep-missing | mep-unknown]

ma-up – Sends a trap when all remote MEPs in an MA come up.

mep-missing – Sends a trap if the cross-check timer expires and no CCMs have been received from a remote MEP configured in the static list.

mep-unknown – Sends a trap if an unconfigured MEP comes up.

Cross Check Operations

Default Setting

All continuity checks are enabled.

Command Mode

Global Configuration

Command Usage

- For this trap type to function, cross-checking must be enabled on the required maintenance associations using the ethernet cfm mep crosscheck command.
- A mep-missing trap is sent if cross-checking is enabled (with the ethernet cfm mep crosscheck command), and no CCM is received for a remote MEP configured in the static list (with the mep crosscheck mpid command).
- A mep-unknown trap is sent if cross-checking is enabled, and a CCM is received from a remote MEP that is not configured in the static list.
- A ma-up trap is sent if cross-checking is enabled, and a CCM is received from all remote MEPs configured in the static list for this maintenance association.

Example

This example enables SNMP traps for mep-unknown events detected in crosscheck operations.

```
Console(config) #snmp-server enable traps ethernet cfm crosscheck mep-unknown
Console(config)#
```

mep crosscheck mpid This command statically defines a remote MEP in a maintenance association. Use the **no** form to remove a remote MEP.

Syntax

[no] mep crosscheck mpid mpid ma ma-name

mpid – Identifier for a maintenance end point which exists on another CFMenabled device within the same MA. (Range: 1-8191)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

Default Setting

No remote MEPs are configured.

Command Mode

CFM Domain Configuration

Command Usage

- Use this command to statically configure remote MEPs that exist inside the maintenance association. These remote MEPs are used in the cross-check operation to verify that all endpoints in the specified MA are operational.
- Remote MEPs can only be configured with this command if domain service access points (DSAPs) have already been created with the ethernet cfm mep command at the same maintenance level and in the same MA. DSAPs are MEPs that exist on the edge of the domain, and act as primary service access points for end-to-end cross-check, loop-back, and link-trace functions.

Example

This example defines a static MEP for the specified maintenance association.

```
Console(config) #ethernet cfm domain index 1 name voip level 3
Console(config-ether-cfm) #ma index 1 name rd vlan 1
Console(config-ether-cfm) #mep crosscheck mpid 2 ma rd
Console(config-ether-cfm)#
```

ethernet cfm mep This command enables cross-checking between the static list of MEPs assigned to crosscheck other devices within the same maintenance association and the MEPs learned through continuity check messages (CCMs). Use the **disable** keyword to stop the cross-check process.

Syntax

```
ethernet cfm mep crosscheck {enable | disable} md domain-name
 ma ma-name
   enable – Starts the cross-check process.
   disable – Stops the cross-check process.
   domain-name – Domain name. (Range: 1-43 alphanumeric characters)
   ma-name – MA name. (Range: 1-43 alphanumeric characters)
```

Default Setting

Disabled

Command Mode

Privileged Exec

Command Usage

Before using this command to start the cross-check process, first configure the remote MEPs that exist on other devices inside the maintenance association using the mep crosscheck mpid command. These remote MEPs are used in the cross-check operation to verify that all endpoints in the specified MA are operational.

Link Trace Operations

◆ The cross-check process is disabled by default, and must be manually started using this command with the **enable** keyword.

Example

This example enables cross-checking within the specified maintenance association.

```
Console#ethernet cfm mep crosscheck enable md voip ma rd
Console#
```

maintenance-points cross-check list. remote crosscheck

show ethernet cfm This command displays information about remote MEPs statically configured in a

Syntax

show ethernet cfm maintenance-points remote crosscheck [domain domain-name | mpid mpid]

```
domain-name – Domain name. (Range: 1-43 alphanumeric characters)
mpid – Maintenance end point identifier. (Range: 1-8191)
```

Default Setting

None

Command Mode

Privileged Exec

Example

This example shows all remote MEPs statically configured on this device.

```
Console#show ethernet cfm maintenance-points remote crosscheck
MPID MA Name Level VLAN MEP Up Remote MAC
 2 downtown
                      4 2 Yes 00-0D-54-FC-A2-73
Console#
```

Link Trace Operations

ethernet cfm linktrace This command enables caching of CFM data learned through link trace messages. cache Use the **no** form to disable caching.

Syntax

[no] ethernet cfm linktrace cache

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- A link trace message is a multicast CFM frame initiated by a MEP, and forwarded from MIP to MIP, with each MIP generating a link trace reply, up to the point at which the link trace message reaches its destination or can no longer be forwarded.
- Use this command to enable the link trace cache to store the results of link trace operations initiated on this device. Use the ethernet cfm linktrace command to transmit a link trace message.
- Link trace responses are returned from each MIP along the path and from the target MEP. Information stored in the cache includes the maintenance domain name, MA name, MEPID, sequence number, and TTL value.

Example

This example enables link trace caching.

```
Console(config) #ethernet cfm linktrace cache
Console(config)#
```

ethernet cfm linktrace This command sets the hold time for CFM link trace cache entries. Use the no form cache hold-time to restore the default setting.

Syntax

ethernet cfm linktrace cache hold-time minutes

minutes - The aging time for entries stored in the link trace cache. (Range: 1-65535 minutes)

Default Setting

100 minutes

Command Mode

Global Configuration

Command Usage

Before setting the aging time for cache entries, the cache must first be enabled with the ethernet cfm linktrace cache command.

Link Trace Operations

Example

This example sets the aging time for entries in the link trace cache to 60 minutes.

```
Console(config) #ethernet cfm linktrace cache hold-time 60
Console(config)#
```

ethernet cfm linktrace This command sets the maximum size for the link trace cache. Use the no form to cache size restore the default setting.

Syntax

ethernet cfm linktrace cache size entries

entries – The number of link trace responses stored in the link trace cache. (Range: 1-4095 entries)

Default Setting

100 entries

Command Mode

Global Configuration

Command Usage

- Before setting the cache size, the cache must first be enabled with the ethernet cfm linktrace cache command.
- If the cache reaches the maximum number of specified entries, or the size is set to a value less than the current number of stored entries, no new entries are added. To add additional entries, the cache size must first be increased with this command, or purged with the clear ethernet cfm linktrace-cache command.

Example

This example limits the maximum size of the link trace cache to 500 entries.

```
Console(config) #ethernet cfm linktrace cache size 500
Console(config)#
```

ethernet cfm linktrace This command sends CFM link trace messages to the MAC address of a remote MEP.

Syntax

ethernet cfm linktrace {dest-mep destination-mpid | src-mep source-mpid {dest-mep destination-mpid | mac-address} | mac-address} md domain-name **ma** ma-name [**ttl** number]

destination-mpid – The identifier of a remote MEP that is the target of the link trace message. (Range: 1-8191)

source-mpid – The identifier of a source MEP that will send the link trace message. (Range: 1-8191)

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

number – The time to live of the linktrace message. (Range: 0-255 hops)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- Link trace messages can be targeted to MEPs, not MIPs. Before sending a link trace message, be sure you have configured the target MEP for the specified MA.
- If the MAC address of target MEP has not been learned by any local MEP, then the linktrace may fail. Use the show ethernet cfm maintenance-points remote crosscheck command to verify that a MAC address has been learned for the target MEP.
- ◆ Link trace messages (LTMs) are sent as multicast CFM frames, and forwarded from MIP to MIP, with each MIP generating a link trace reply, up to the point at which the LTM reaches its destination or can no longer be forwarded.
- ◆ Link trace messages are used to isolate faults. However, this task can be difficult in an Ethernet environment, since each node is connected through multipoint links. Fault isolation is even more challenging since the MAC address of the target node can age out in several minutes. This can cause the traced path to vary over time, or connectivity lost if faults cause the target MEP to be isolated from other MEPs in an MA.
- When using the command line or web interface, the source MEP used by to send a link trace message is chosen by the CFM protocol. However, when using SNMP, the source MEP can be specified by the user.

Example

This example sends a link trace message to the specified MEP with a maximum hop count of 25.

Console#linktrace ethernet dest-mep 2 md voip ma rd ttl 25 Console#

linktrace-cache

clear ethernet cfm This command clears link trace messages logged on this device.

Command Mode

Privileged Exec

Example

Console#clear ethernet cfm linktrace-cache Console#

linktrace-cache

show ethernet cfm This command displays the contents of the link trace cache.

Command Mode

Privileged Exec

Example

Console#show ethernet cfm linktrace-cache IP / Alias Forwarded Hops MA Ingress MAC Ing. Action Egress MAC Egr. Action Ingress MAC Ing. Action Relay 2 rd 192.168.0.6 00-12-CF-12-12-2D ingOk Hit Not Forwarded Console#

Table 163: show ethernet cfm linktrace-cache - display description

Field	Description	
Hops	The number hops taken to reach the target MEP.	
MA	Name of the MA to which this device belongs.	
IP/Alias	IP address or alias of the target device's CPU.	
Forwarded	Shows whether or not this link trace message was forwarded. A message is not forwarded if received by the target MEP.	
Ingress MAC	MAC address of the ingress port on the target device.	
Egress MAC	MAC address of the egress port on the target device.	
Ing. Action	Action taken on the ingress port: IngOk – The target data frame passed through to the MAC Relay Entity. IngDown – The bridge port's MAC_Operational parameter is false. This value could be returned, for example, by an operationally Down MEP that has another Down MEP at a higher MD level on the same bridge port that is causing the bridge port's MAC_Operational parameter to be false. IngBlocked – The ingress port can be identified, but the target data frame was not forwarded when received on this port due to active topology management, i.e., the bridge port is not in the forwarding state. IngVid – The ingress port is not in the member set of the LTM's VIDs, and ingress filtering is enabled, so the target data frame was filtered by ingress filtering.	

Table 163: show ethernet cfm linktrace-cache - display description (Continued)

Field	Description
Egr. Action	Action taken on the egress port:
	EgrOk – The targeted data frame was forwarded.
	EgrDown – The Egress Port can be identified, but that bridge port's MAC_Operational parameter is false.
	EgrBlocked – The egress port can be identified, but the data frame was not passed through the egress port due to active topology management, i.e., the bridge port is not in the forwarding state.
	EgrVid – The Egress Port can be identified, but the bridge port is not in the LTM's VID member set, and was therefore filtered by egress filtering.
Relay	Relay action:
	FDB – Target address found in forwarding database.
	MPDB – Target address found in the maintenance point database. HIT – Target located on this device.

Loopback Operations

ethernet cfm loopback

ethernet cfm This command sends CFM loopback messages to a MAC address for a MEP or MIP.

Syntax

ethernet cfm loopback {dest-mep destination-mpid | src-mep source-mpid {dest-mep destination-mpid | mac-address} | mac-address} md domain-name ma ma-name [count transmit-count] [size packet-size]

destination-mpid – The identifier of a MEP that is the target of the loopback message. (Range: 1-8191)

source-mpid – The identifier of a source MEP that will send the loopback message. (Range: 1-8191)

mac-address – MAC address of the remote maintenance point that is the target of the loopback message. This address can be entered in either of the following formats: xx-xx-xx-xx-xx or xxxxxxxxxxx

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

transmit-count – The number of times the loopback message is sent. (Range: 1-1024)

packet-size – The size of the loopback message. (Range: 64-1518 bytes)

Default Setting

Loop back count: One loopback message is sent.

Loop back size: 64 bytes

Command Mode

Privileged Exec

Command Usage

- Use this command to test the connectivity between maintenance points. If the continuity check database does not have an entry for the specified maintenance point, an error message will be displayed.
- The point from which the loopback message is transmitted (i.e., the DSAP) and the target maintenance point specified in this command must be within the same MA.
- Loop back messages can be used for fault verification and isolation after automatic detection of a fault or receipt of some other error report. Loopback messages can also used to confirm the successful restoration or initiation of connectivity. The receiving maintenance point should respond to the loop back message with a loopback reply.
- When using the command line or web interface, the source MEP used by to send a loopback message is chosen by the CFM protocol. However, when using SNMP, the source MEP can be specified by the user.

Example

This example sends a loopback message to the specified remote MEP.

Console#ethernet cfm loopback dest-mep 1 md voip ma rd

Fault Generator Operations

mep fault-notify This command sets the time a defect must exist before a fault alarm is issued. Use **alarm-time** the **no** form to restore the default setting.

Syntax

mep fault-notify alarm-time alarm-time

no fault-notify alarm-time

alarm-time – The time that one or more defects must be present before a fault alarm is generated. (Range: 3-10 seconds)

Default Setting

3 seconds

Command Mode

CFM Domain Configuration

Command Usage

A fault alarm is issued when the MEP fault notification generator state machine detects that a time period configured by this command has passed with one or more defects indicated, and fault alarms are enabled at or above the priority level set by the mep fault-notify lowest-priority command.

Example

This example set the delay time before generating a fault alarm.

```
Console(config) #ethernet cfm domain index 1 name voip level 3
Console(config-ether-cfm) #mep fault-notify alarm-time 10
Console(config-ether-cfm)#
```

mep fault-notify This command sets the lowest priority defect that is allowed to generate a fault **lowest-priority** alarm. Use the **no** form to restore the default setting.

Syntax

```
mep fault-notify lowest-priority priority
no fault-notify lowest-priority
```

priority – Lowest priority default allowed to generate a fault alarm. (Range: 1-6)

Default Setting

Priority level 2

Command Mode

CFM Domain Configuration

Command Usage

- A fault alarm can generate an SNMP notification. It is issued when the MEP fault notification generator state machine detects that a configured time period (see the mep fault-notify alarm-time command) has passed with one or more defects indicated, and fault alarms are enabled at or above the priority level set by this command. The state machine transmits no further fault alarms until it is reset by the passage of a configured time period (see the mep fault-notify reset-time command) without a defect indication. The normal procedure upon receiving a fault alarm is to inspect the reporting MEP's managed objects using an appropriate SNMP software tool, diagnose the fault, correct it, re-examine the MEP's managed objects to see whether the MEP fault notification generator state machine has been reset, and repeat those steps until the fault is resolved.
- Only the highest priority defect currently detected is reported in the fault alarm.

Priority defects include the following items:

Table 164: Remote MEP Priority Levels

Priority Level	Level Name	Description
1	allDef	All defects.
2	macRemErrXcon	DefMACstatus, DefRemoteCCM, DefErrorCCM, or DefXconCCM.
3	remErrXcon	DefErrorCCM, DefXconCCM or DefRemoteCCM.
4	errXcon	DefErrorCCM or DefXconCCM.
5	xcon	DefXconCCM
6	noXcon	No defects DefXconCCM or lower are to be reported.

Table 165: MEP Defect Descriptions

Field	Description
DefMACstatus	Either some remote MEP is reporting its Interface Status TLV as not isUp, or all remote MEPs are reporting a Port Status TLV that contains some value other than psUp.
DefRemoteCCM	The MEP is not receiving valid CCMs from at least one of the remote MEPs.
DefErrorCCM	The MEP has received at least one invalid CCM whose CCM Interval has not yet timed out.
DefXconCCM	The MEP has received at least one CCM from either another MAID or a lower MD Level whose CCM Interval has not yet timed out.

Example

This example sets the lowest priority defect that will generate a fault alarm.

```
Console(config) #ethernet cfm domain index 1 name voip level 3
{\tt Console} \, ({\tt config-ether-cfm}) \, \# {\tt mep} \  \, {\tt fault-notify} \, \, {\tt lowest-priority} \, \, {\tt 1} \,
Console(config-ether-cfm)#
```

mep fault-notify This command configures the time after a fault alarm has been issued, and no reset-time defect exists, before another fault alarm can be issued. Use the **no** form to restore the default setting.

Syntax

mep fault-notify reset-time reset-time no fault-notify reset-time

reset-time – The time that must pass without any further defects indicated before another fault alarm can be generated. (Range: 3-10 seconds)

Default Setting

10 seconds

Command Mode

CFM Domain Configuration

Example

This example sets the reset time after which another fault alarm can be generated.

```
Console(config) #ethernet cfm domain index 1 name voip level 3
Console(config-ether-cfm) #mep fault-notify reset-time 7
Console(config-ether-cfm) #
```

show ethernet cfm fault-notify-generator

show ethernet cfm This command displays configuration settings for the fault notification generator.

Syntax

show ethernet cfm fault-notify-generator mep mpid

mpid – Maintenance end point identifier. (Range: 1-8191)

Default Setting

None

Command Mode

Privileged Exec

Example

This example shows the fault notification settings configured for one MEP.

```
Console#show ethernet cfm fault-notify-generator mep 1
MD Name MA Name Highest Defect Lowest Alarm Alarm Time Reset Time

voip rd none macRemErrXcon 3sec. 10sec.
Console#
```

Table 166: show fault-notify-generator - display description

Field	Description	
MD Name	The maintenance domain for this entry.	
MA Name	The maintenance association for this entry.	
Hihest Defect	The highest defect that will generate a fault alarm. (This is disabled by default.)	
Lowest Alarm	The lowest defect that will generate a fault alarm (see the mep fault-notify lowest-priority command).	

Table 166: show fault-notify-generator - display description (Continued)

Field	Description	
Alarm Time	The time a defect must exist before a fault alarm is issued (see the mep fault-notify alarm-time, command).	
Reset Time	The time after a fault alarm has been issued, and no defect exists, before another fault alarm can be issued (see the mep fault-notify reset-time command).	

Delay Measure Operations

ethernet cfm delay- This command sends periodic delay-measure requests to a specified MEP within a measure two-way maintenance association.

Syntax

ethernet cfm delay-measure two-way [src-mep source-mpid] {dest-mep destination-mpid | mac-address} **md** domain-name **ma** ma-name [count transmit-count] [interval interval] [size packet-size] [timeout timeout]

source-mpid - The identifier of a source MEP that will send the delaymeasure message. (Range: 1-8191)

destination-mpid - The identifier of a remote MEP that is the target of the delay-measure message. (Range: 1-8191)

mac-address - MAC address of a remote MEP that is the target of the delaymeasure message. This address can be entered in either of the following formats: xx-xx-xx-xx-xx or xxxxxxxxxxx

domain-name – Domain name. (Range: 1-43 alphanumeric characters)

ma-name – Maintenance association name. (Range: 1-43 alphanumeric characters)

count – The number of times to retry sending the message if no response is received before the specified timeout. (Range: 1-5)

interval – The transmission delay between delay-measure messages. (Range: 1-5 seconds)

packet-size - The size of the delay-measure message. (Range: 64-1518 bytes)

timeout - The timeout to wait for a response. (Range: 1-5 seconds)

Default Setting

Count: 5

Interval: 1 second Size: 64 bytes Timeout: 5 seconds

Command Mode

Privileged Exec

Command Usage

- Delay measurement can be used to measure frame delay and frame delay variation between MEPs.
- ◆ A local MEP must be configured for the same MA before you can use this command.
- ◆ If a MEP is enabled to generate frames with delay measurement (DM) information, it periodically sends DM frames to its peer MEP in the same MA., and expects to receive DM frames back from it.
- ◆ Frame delay measurement can be made only for two-way measurements, where the MEP transmits a frame with DM request information with the TxTimeStampf (Timestamp at the time of sending a frame with DM request information), and the receiving MEP responds with a frame with DM reply information with TxTimeStampf copied from the DM request information, RxTimeStampf (Timestamp at the time of receiving a frame with DM request information), and TxTimeStampb (Timestamp at the time of transmitting a frame with DM reply information):

Frame Delay=(RxTimeStampb-TxTimeStampf)-(TxTimeStampb-RxTimeStampf)

 The MEP can also make two-way frame delay variation measurements based on its ability to calculate the difference between two subsequent two-way frame delay measurements.

Example

This example sends periodic delay-measure requests to a remote MEP.

```
Console#ethernet cfm delay-measure two-way dest-mep 1 md voip ma rd
Type ESC to abort.
Sending 5 Ethernet CFM delay measurement message, timeout is 5 sec.
Sequence Delay Time (ms.) Delay Variation (ms.)
                   < 10
                   < 10
      3
                   < 10
                                            0
      4
                    40
                                           40
      5
                    < 10
Success rate is 100% (5/5), delay time min/avg/max=0/8/40 ms.
Average frame delay variation is 16 ms.
Console#
```

Chapter 26 | CFM Commands Delay Measure Operations

OAM Commands

The switch provides OAM (Operation, Administration, and Maintenance) remote management tools required to monitor and maintain the links to subscriber CPEs (Customer Premise Equipment). This section describes functions including enabling OAM for selected ports, loop back testing, and displaying device information.

Table 167: OAM Commands

Command	Function	Mode
efm oam	Enables OAM services	IC
efm oam critical-link-event	Enables reporting of critical event or dying gasp	IC
efm oam link-monitor frame	Enables reporting of errored frame link events	IC
efm oam link-monitor frame threshold	Sets the threshold for errored frame link events	IC
efm oam link-monitor frame window	Sets the monitor period for errored frame link events	IC
efm oam mode	Sets the OAM operational mode to active or passive	IC
clear efm oam counters	Clears statistical counters for various OAMPDU message types	
clear efm oam event-log	Clears all entries from the OAM event log for the specified port	PE
efm oam remote-loopback	Initiates or terminates remote loopback test	PE
efm oam remote-loopback test	Performs remote loopback test, sending a specified number of packets	PE
show efm oam counters interface	Displays counters for various OAM PDU message types	NE,PE
show efm oam event-log interface	Displays OAM event log	NE,PE
show efm oam remote- loopback interface	Displays results of OAM remote loopback test	NE,PE
show efm oam status interface	Displays OAM configuration settings and event counters	NE,PE
show efm oam status remote interface	Displays information about attached OAM-enabled devices	NE,PE

efm oam This command enables OAM functions on the specified port. Use the no form to disable this function.

Syntax

[no] efm oam

Default Setting

Disabled

Command Mode

Interface Configuration

Command Usage

- If the remote device also supports OAM, both exchange Information OAMPDUs to establish an OAM link.
- Not all CPEs support OAM functions, and OAM is therefore disabled by default. If the CPE attached to a port supports OAM, then this functionality must first be enabled by the efm oam command to gain access to other remote configuration functions.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #efm oam
Console(config-if)#
```

efm oam This command enables reporting of critical event or dying gasp. Use the **no** form to critical-link-event disable this function.

Syntax

[no] efm oam critical-link-event {critical-event | dying-gasp}

critical-event - If a critical event occurs, the local OAM entity (this switch) indicates this to its peer by setting the appropriate flag in the next OAMPDU to be sent and stores this information in its OAM event log.

dying-gasp - If an unrecoverable condition occurs, the local OAM entity indicates this by immediately sending a trap message.

Default Setting

Enabled

Command Mode

Interface Configuration

Command Usage

- Critical events are vendor-specific and may include various failures, such as abnormal voltage fluctuations, out-of-range temperature detected, fan failure, CRC error in flash memory, insufficient memory, or other hardware faults.
- Dying gasp events are caused by an unrecoverable failure, such as a power failure or device reset.

Note: When system power fails, the switch will always send a dying gasp trap message prior to power down.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #efm oam critical-link-event dying-gasp
Console(config-if)#
```

link-monitor frame disable this function.

efm oam This command enables reporting of errored frame link events. Use the **no** form to

Syntax

[no] efm oam link-monitor frame

Default Setting

Enabled

Command Mode

Interface Configuration

Command Usage

- ◆ An errored frame is a frame in which one or more bits are errored.
- If this feature is enabled and an errored frame link event occurs, the local OAM entity (this switch) sends an Event Notification OAMPDU.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #efm oam link-monitor frame
Console(config-if)#
```

efm oam link-monitor This command sets the threshold for errored frame link events. Use the no form to frame threshold restore the default setting.

Syntax

efm oam link-monitor frame threshold count

no efm oam link-monitor frame threshold

count - The threshold for errored frame link events. (Range: 1-65535)

Default Setting

Command Mode

Interface Configuration

Command Usage

If this feature is enabled, an event notification message is sent if the threshold is reached or exceeded within the period specified by the efm oam link-monitor frame window command. The Errored Frame Event TLV includes the number of errored frames detected during the specified period.

Example

```
Console(config) #interface ethernet 1/1
Console(config-if) #efm oam link-monitor frame threshold 5
Console(config-if)#
```

efm oam link-monitor This command sets the monitor period for errored frame link events. Use the no **frame window** form to restore the default setting.

Syntax

efm oam link-monitor frame window size

no efm oam link-monitor frame window

size - The period of time in which to check the reporting threshold for errored frame link events. (Range: 10-65535 units of 10 milliseconds)

Default Setting

10 (units of 100 milliseconds) = 1 second

Command Mode

Interface Configuration

Command Usage

If this feature is enabled, an event notification message is sent if the threshold specified by the efm oam link-monitor frame threshold command is reached or exceeded within the period specified by this command. The Errored Frame Event TLV includes the number of errored frames detected during the specified period.

Example

This example set the window size to 5 seconds.

```
Console(config) #interface ethernet 1/1
Console(config-if) #efm oam link-monitor frame window 50
Console(config-if)#
```

efm oam mode This command sets the OAM mode on the specified port. Use the no form to restore the default setting.

Syntax

efm oam mode {active | passive}

no efm oam mode

active - All OAM functions are enabled.

passive - All OAM functions are enabled, except for OAM discovery, and sending loopback control OAMPDUs.

Default Setting

Active

Command Mode

Interface Configuration

Command Usage

When set to active mode, the selected interface will initiate the OAM discovery process. When in passive mode, it can only respond to discovery messages.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #efm oam mode active
Console(config-if)#
```

counters

clear efm oam This command clears statistical counters for various OAMPDU message types.

Syntax

clear efm oam counters [interface-list]

interface-list - unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number or list of ports. To enter a list, separate nonconsecutive port identifiers with a comma and no spaces; use a hyphen to designate a range of ports. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

Console#clear efm oam counters Console#

Related Commands

show efm oam counters interface (853)

event-log

clear efm oam This command clears all entries from the OAM event log for the specified port.

Syntax

clear efm oam event-log [interface-list]

unit - Unit identifier. (Range: 1-8)

port - Port number or list of ports. To enter a list, separate nonconsecutive port identifiers with a comma and no spaces; use a hyphen to designate a range of ports. (Range: 1-28/52)

Command Mode

Privileged Exec

Example

Console#clear efm oam event-log Console#

efm oam remote-loopback

efm oam This command starts or stops OAM loopback test mode to the attached CPE.

Syntax

```
efm oam remote-loopback {start | stop} interface
```

```
start - Starts remote loopback test mode.
stop - Stops remote loopback test mode.
interface - unit/port
unit - Unit identifier. (Range: 1-8)
port - Port number. (Range: 1-28/52)
```

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- OAM remote loop back can be used for fault localization and link performance testing. Statistics from both the local and remote DTE can be queried and compared at any time during loop back testing.
- Use the efm oam remote-loopback start command to start OAM remote loop back test mode on the specified port. Afterwards, use the efm oam remoteloopback test command to start sending test packets. Then use the efm oam remote loopback stop command to terminate testing (if test packets are still being sent) and to terminate loop back test mode.
- ◆ The port that you specify to run this test must be connected to a peer OAM device capable of entering into OAM remote loopback mode.
- During a remote loopback test, the remote OAM entity loops back every frame except for OAMPDUs and pause frames.
- During loopback testing, both the switch and remote device are permitted to send OAMPDUs to the peer device and to process any OAMPDUs received from the peer.

Example

```
Console#efm oam remote-loopback start 1/1
Loopback operation is processing, please wait.
Enter loopback mode succeeded.
Console#
```

loopback test packets.

efm oam remote- This command performs a remote loopback test, sending a specified number of

Syntax

```
efm oam remote-loopback test interface [number-of-packets [packet-size]]
   interface - unit/port
       unit - Unit identifier. (Range: 1-8)
       port - Port number. (Range: 1-28/52)
   number-of-packets - Number of packets to send. (Range: 1-99999999)
```

packet-size - Size of packets to send. (Range: 64-1518 bytes)

Default Setting

Number of packets: 10,000 Packet size: 64 bytes

Command Mode

Privileged Exec

Command Usage

- ◆ You can use this command to perform an OAM remote loopback test on the specified port. The port that you specify to run this test must be connected to a peer OAM device capable of entering into OAM remote loopback mode.
- During a remote loopback test, the remote OAM entity loops back every frame except for OAMPDUs and pause frames.
- OAM remote loopback can be used for fault localization and link performance testing. Statistics from both the local and remote DTE can be queried and compared at any time during loopback testing.
- A summary of the test is displayed after it is finished.

Example

```
Console#efm oam remote-loopback test 1/1
Loopback test is processing, press ESC to suspend.
Port OAM loopback Tx OAM loopback Rx Loss Rate
1/2
           1990
                       1016 48.94 %
Console#
```

counters interface

show efm oam This command displays counters for various OAM PDU message types.

Syntax

show efm oam counters interface [interface-list]

```
interface-list - unit/port
```

unit - Unit identifier. (Range: 1-8)

port - Port number or list of ports. To enter a list, separate nonconsecutive port identifiers with a comma and no spaces; use a hyphen to designate a range of ports. (Range: 1-28/52)

Command Mode

Normal Exec, Privileged Exec

Example

Consc	ole#show efm oam counte	ers interfa	ce 1/1
Port	OAMPDU Type	TX	RX
1/1	Information	1121	1444
1/1	Event Notification	0	0
1/1	Loopback Control	1	0
1/1	Organization Specific	76	0
Consc	ole#		

event-log interface that have logs.

show efm oam This command displays the OAM event log for the specified port(s) or for all ports

show efm oam event-log interface [interface-list]

interface-list - unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number or list of ports. To enter a list, separate nonconsecutive port identifiers with a comma and no spaces; use a hyphen to designate a range of ports. (Range: 1-28/52)

Command Mode

Normal Exec, Privileged Exec

Command Usage

- When a link event occurs, no matter whether the location is local or remote, this information is entered in the OAM event log.
- When the log system becomes full, older events are automatically deleted to make room for new entries.

Example

```
Console#show efm oam event-log interface 1/1
OAM event log of Eth 1/1:
00:24:07 2001/01/01
"Unit 1, Port 1: Dying Gasp at Remote"
Console#
```

This command can show OAM link status changes for link partner as shown in this example.

```
Console#show efm oam event-log interface 1/1

OAM event log of Eth 1/1:

10:22:55 2013/09/13

"Unit 1, Port 1: Connection to remote device is up at Local"

10:22:44 2013/09/13

"Unit 1, Port 1: Connection to remote device is down at Local"

<--- When the link is down, this event will be written to OAM event-log

10:20:02 2013/09/13

"Unit 1, Port 1: Connection to remote device is up at Local"

<--- When the link is up, this event will be written to OAM event-log,

Console#clear efm oam event-log

<--- Use he "clear efm oam event-log" command to clear the event-log.

Console#show efm oam event-log interface 1/1

Console#
```

This command can show OAM dying gasp changes for link partner as shown in this example.

```
Console#show efm oam event-log interface 1/1
   <--- When dying gasp happens and the switch get these packets, it will log
        this event in OAM event-log.
OAM event log of Eth 1/1:
 10:27:21 2013/09/13
 "Unit 1, Port 1: Connection to remote device is down at Local"
 10:27:20 2013/09/13
 "Unit 1, Port 1: Dying Gasp occurred at Remote"
Console#show efm oam event-log interface 1/1
OAM event log of Eth 1/1:
10:28:31 2013/09/13
 "Unit 1, Port 1: Connection to remote device is up at Local"
 10:28:28 2013/09/13
 "Unit 1, Port 1: Dying Gasp clear occurred at Remote"
   <--- When the remote device comes up, the switch will get OAM packets
        without the dying gasp bit and display "dying gasp event clear".
Console#
```

show efm oam This cor remote-loopback interface Syntax

show efm oam This command displays the results of an OAM remote loopback test.

show efm oam remote-loopback interface [interface-list]

```
interface-list - unit/port
```

unit - Unit identifier. (Range: 1-8)

port - Port number or list of ports. To enter a list, separate nonconsecutive port identifiers with a comma and no spaces; use a hyphen to designate a range of ports. (Range: 1-28/52)

Command Mode

Normal Exec, Privileged Exec

Example

show efm oam status interface

show efm oam This command displays OAM configuration settings and event counters.

Syntax

show efm oam status interface [interface-list] [brief]

```
interface - unit/port
```

unit - Unit identifier. (Range: 1-8)

port - Port number or list of ports. To enter a list, separate nonconsecutive port identifiers with a comma and no spaces; use a hyphen to designate a range of ports. (Range: 1-28/52)

brief - Displays a brief list of OAM configuration states.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show efm oam status interface 1/1

OAM information of Eth 1/1:

Basic Information:

Admin State : Enabled

Operation State : Operational

Mode : Active

Remote Loopback : Disabled

Remote Loopback Status : No loopback

Dying Gasp : Enabled

Critical Event : Enabled
```

```
Link Monitor (Errored Frame) : Enabled
Link Monitor:
 Errored Frame Window (100msec) : 10
 Errored Frame Threshold : 1
Console#show efm oam status interface 1/1 brief
$ = local OAM in loopback
* = remote OAM in loopback
Port Admin Mode Remote Dying Critical Errored State Loopback Gasp Event Frame
1/1 Enabled Active Disabled Enabled Enabled Enabled
Console#
```

remote interface

show efm oam status This command displays information about attached OAM-enabled devices.

Syntax

show efm oam status remote interface [interface-list]

```
interface-list - unit/port
    unit - Unit identifier. (Range: 1-8)
```

port - Port number or list of ports. To enter a list, separate nonconsecutive port identifiers with a comma and no spaces; use a hyphen to designate a range of ports. (Range: 1-28/52)

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show efm oam status remote interface 1/1
Port MAC Address OUI Remote Unidirectional Link MIB Variable
                  Loopback Monitor Retrieval
1/1 00-12-CF-6A-07-F6 000084 Enabled Disabled
                                  Enabled Disabled
Console#
```

Domain Name Service Commands

These commands are used to configure Domain Naming System (DNS) services. Entries can be manually configured in the DNS domain name to IP address mapping table, default domain names configured, or one or more name servers specified to use for domain name to address translation.

Note that domain name services will not be enabled until at least one name server is specified with the ip name-server command and domain lookup is enabled with the ip domain-lookup command.

Table 168: Address Table Commands

Command	Function	Mode
ip domain-list	Defines a list of default domain names for incomplete host names	GC
ip domain-lookup	Enables DNS-based host name-to-address translation	GC
ip domain-name	Defines a default domain name for incomplete host names	GC
ip host	Creates a static IPv4 host name-to-address mapping	GC
p name-server Specifies the address of one or more name servers to use for host name-to-address translation		GC
ipv6 host	Creates a static IPv6 host name-to-address mapping	GC
clear dns cache	Clears all entries from the DNS cache	PE
clear host	Deletes entries from the host name-to-address table	PE
show dns	Displays the configuration for DNS services	PE
show dns cache	Displays entries in the DNS cache	PE
show hosts	Displays the static host name-to-address mapping table	PE

ip domain-list This command defines a list of domain names that can be appended to incomplete host names (i.e., host names passed from a client that are not formatted with dotted notation). Use the **no** form to remove a name from this list.

Syntax

[no] ip domain-list name

name - Name of the host. Do not include the initial dot that separates the host name from the domain name. (Range: 1-127 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Domain names are added to the end of the list one at a time.
- When an incomplete host name is received by the DNS service on this switch, it will work through the domain list, appending each domain name in the list to the host name, and checking with the specified name servers for a match.
- ◆ If there is no domain list, the domain name specified with the ip domain-name command is used. If there is a domain list, the default domain name is not used.

Example

This example adds two domain names to the current list and then displays the list.

```
Console(config) #ip domain-list sample.com.jp
Console(config) #ip domain-list sample.com.uk
Console(config)#end
Console#show dns
Domain Lookup Status:
    DNS Disabled
Default Domain Name:
    sample.com
Domain Name List:
   sample.com.jp
    sample.com.uk
Name Server List:
Console#
```

Related Commands

ip domain-name (859)

ip domain-lookup This command enables DNS host name-to-address translation. Use the **no** form to disable DNS.

Syntax

[no] ip domain-lookup

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- At least one name server must be specified before DNS can be enabled.
- If all name servers are deleted, DNS will automatically be disabled.

Example

This example enables DNS and then displays the configuration.

```
Console(config)#ip domain-lookup
Console(config)#end
Console#show dns
Domain Lookup Status:
   DNS Enabled
Default Domain Name:
   sample.com
Domain Name List:
   sample.com.jp
   sample.com.uk
Name Server List:
   192.168.1.55
   10.1.0.55
Console#
```

Related Commands

ip domain-name (859) ip name-server (860)

ip domain-name This command defines the default domain name appended to incomplete host names (i.e., host names passed from a client that are not formatted with dotted notation). Use the **no** form to remove the current domain name.

Syntax

ip domain-name name

no ip domain-name

name - Name of the host. Do not include the initial dot that separates the host name from the domain name. (Range: 1-127 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Console(config) #ip domain-name sample.com
Console(config) #end
Console#show dns
Domain Lookup Status:
    DNS Disabled
Default Domain Name:
    sample.com
Domain Name List:
Name Server List:
Console#
```

Related Commands

ip domain-list (857) ip name-server (860) ip domain-lookup (858)

ip host This command creates a static entry in the DNS table that maps a host name to an IPv4 address. Use the **no** form to remove an entry.

Syntax

[no] ip host name address

name - Name of an IPv4 host. (Range: 1-100 characters) address - Corresponding IPv4 address.

Default Setting

No static entries

Command Mode

Global Configuration

Command Usage

Use the **no ip host** command to clear static entries, or the clear host command to clear dynamic entries.

Example

This example maps an IPv4 address to a host name.

```
Console(config) #ip host rd5 192.168.1.55
Console(config)#end
Console#show hosts
No. Flag Type IP Address
                        TTL Domain
0 2 Address 192.168.1.55
                            rd5
Console#
```

ip name-server This command specifies the address of one or more domain name servers to use for name-to-address resolution. Use the **no** form to remove a name server from this list.

Syntax

```
[no] ip name-server server-address1 [server-address2 ...
   server-address6]
   server-address 1 - IPv4 or IPv6 address of domain-name server.
   server-address2 ... server-address6 - IPv4 or IPv6 address of additional
   domain-name servers.
```

Default Setting

None

Command Mode

Global Configuration

Command Usage

The listed name servers are queried in the specified sequence until a response is received, or the end of the list is reached with no response.

Example

This example adds two domain-name servers to the list and then displays the list.

```
Console(config) #ip name-server 192.168.1.55 10.1.0.55
Console(config)#end
Console#show dns
Domain Lookup Status:
   DNS disabled
Default Domain Name:
   sample.com
Domain Name List:
   sample.com.jp
   sample.com.uk
Name Server List:
   192.168.1.55
   10.1.0.55
Console#
```

Related Commands

ip domain-name (859) ip domain-lookup (858)

ipv6 host This command creates a static entry in the DNS table that maps a host name to an IPv6 address. Use the **no** form to remove an entry.

Syntax

[no] ipv6 host name ipv6-address

name - Name of an IPv6 host. (Range: 1-100 characters)

ipv6-address - Corresponding IPv6 address. This address must be entered according to RFC 2373 "IPv6 Addressing Architecture," using 8 colonseparated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

Default Setting

No static entries

Command Mode

Global Configuration

Example

This example maps an IPv6 address to a host name.

```
Console(config)#ipv6 host rd6 2001:0db8:1::12
Console(config)#end
Console#show hosts
No. Flag Type IP Address TTL Domain

0 2 Address 192.168.1.55 rd5
1 2 Address 2001:DB8:1::12 rd6
Console#
```

clear dns cache This command clears all entries in the DNS cache.

Command Mode

Privileged Exec

Example

clear host This command deletes dynamic entries from the DNS table.

Syntax

```
clear host {name | *}
```

name - Name of the host. (Range: 1-100 characters)

* - Removes all entries.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Use the **clear host** command to clear dynamic entries, or the no ip host command to clear static entries.

Example

This example clears all dynamic entries from the DNS table.

```
Console(config) #clear host *
Console(config) #
```

show dns This command displays the configuration of the DNS service.

Command Mode

Privileged Exec

Example

```
Console#show dns
Domain Lookup Status:
   DNS enabled
Default Domain Name:
   sample.com

Domain Name List:
   sample.com.jp
   sample.com.uk
Name Server List:
   192.168.1.55
   10.1.0.55
Console#
```

show dns cache This command displays entries in the DNS cache.

Command Mode

Privileged Exec

Example

```
Console#show dns cache
No. Flag Type IP Address TTL Host

3 4 Host 209.131.36.158 115 www-real.wal.b.yahoo.com
4 4 CNAME POINTER TO:3 115 www.yahoo.com
5 4 CNAME POINTER TO:3 115 www.wal.b.yahoo.com
Console#
```

Table 169: show dns cache - display description

Field	Description	
No.	The entry number for each resource record.	
Flag	The flag is always "4" indicating a cache entry and therefore unreliable.	
Туре	This field includes "Host" which specifies the primary name for the owner, and "CNAME" which specifies multiple domain names (or aliases) which are mapped to the same IP address as an existing entry.	

Table 169: show dns cache - display description (Continued)

Field	Description
IP Address	The IP address associated with this record.
TTL	The time to live reported by the name server.
Host	The host name associated with this record.

show hosts This command displays the static host name-to-address mapping table.

Command Mode

Privileged Exec

Example

Note that a host name will be displayed as an alias if it is mapped to the same address(es) as a previously configured entry.

lo.	Flag	Type	IP Address	TTL	Domain
0	2	Address	192.168.1.55		rd5
1	2	Address	2001:DB8:1::12		rd6
3	4	Address	209.131.36.158	65	www-real.wa1.b.yahoo.com
4	4	CNAME	POINTER TO:3	65	www.yahoo.com
5	4	CNAME	POINTER TO:3	65	www.wa1.b.yahoo.com

Table 170: show hosts - display description

Field	Description
No.	The entry number for each resource record.
Flag	The field displays "2" for a static entry, or "4" for a dynamic entry stored in the cache.
Туре	This field includes "Address" which specifies the primary name for the owner, and "CNAME" which specifies multiple domain names (or aliases) which are mapped to the same IP address as an existing entry.
IP Address	The IP address associated with this record.
TTL	The time to live reported by the name server. This field is always blank for static entries.
Domain	The domain name associated with this record.

DHCP Commands

These commands are used to configure Dynamic Host Configuration Protocol (DHCP) client, relay, and server functions. Any VLAN interface on this switch can be configured to automatically obtain an IP address through DHCP. This switch can also be configured to relay DHCP client configuration requests to a DHCP server on another network, or it can be configured to provide DHCP service directly to any client.

Table 171: DHCP Commands

Command Group	Function	
DHCP Client	Allows interfaces to dynamically acquire IP address information	
DHCP Relay	Relays DHCP requests from local hosts to a remote DHCP server	
DHCP Server	Configures DHCP service using address pools or static bindings	

DHCP Client

Use the commands in this section to allow the switch's VLAN interfaces to dynamically acquire IP address information.

Table 172: DHCP Client Commands

Command	Function	Mode
DHCP for IPv4		
ip dhcp client class-id	Specifies the DHCP client identifier for an interface	IC
ip dhcp restart client	Submits a BOOTP or DHCP client request	PE
DHCP for IPv6		
ipv6 dhcp client rapid-commit vlan	Specifies the Rapid Commit option for DHCPv6 message exchange	GC
show ipv6 dhcp duid	Shows the DHCP Unique Identifier for this switch	PE
show ipv6 dhcp vlan	Shows DHCPv6 information for specified interface	PE

DHCP for IPv4

ip dhcp client class-id This command specifies the DCHP client vendor class identifier for the current interface. Use the **no** form to remove the class identifier from the DHCP packet.

Syntax

ip dhcp client class-id [text text | hex hex] no ip dhcp client class-id

text - A text string. (Range: 1-32 characters)

hex - A hexadecimal value. (Range: 1-64 characters)

Default Setting

Class identifier option enabled, using the model number as the string

Command Mode

Interface Configuration (VLAN)

Command Usage

- Use this command without any keyword to restore the default setting.
- This command is used to identify the vendor class and configuration of the switch to the DHCP server, which then uses this information to decide on how to service the client or the type of information to return.
- The general framework for this DHCP option is set out in RFC 2132 (Option 60). This information is used to convey configuration settings or other identification information about a client, but the specific string to use should be supplied by your service provider or network administrator. Options 60, 66 and 67 statements can be added to the server daemon's configuration file.

Table 173: Options 60, 66 and 67 Statements

Option	Statement		
	Keyword	Parameter	
60	vendor-class-identifier	a string indicating the vendor class identifier	
66	tftp-server-name	a string indicating the tftp server name	
67	bootfile-name	a string indicating the bootfile name	

By default, DHCP option 66/67 parameters are not carried in a DHCP server reply. To ask for a DHCP reply with option 66/67 information, the DHCP client request sent by this switch includes a "parameter request list" asking for this information. Besides, the client request also includes a "vendor class identifier" set by the ip dhcp client class-id command that allows the DHCP server to identify the device, and select the appropriate configuration file for download. This information is included in Option 55 and 124.

Table 174: Options 55 and 124 Statements

Ontion	Statement		
Option	Option Keyword Parameter		
55	dhcp-parameter-request-list	a list of parameters, separated by ",	
124	vendor-class-identifier	a string indicating the vendor class identifier	

- The server should reply with Option 66 attributes, including the TFTP server name and boot file name.
- Note that the vendor class identifier can be formatted in either text or hexadecimal using the ip dhcp client class-id command, but the format used by both the client and server must be the same.

```
Console(config)#interface vlan 2
Console(config-if) #ip dhcp client class-id hex 0000e8666572
Console(config-if)#
```

Related Commands

ip dhcp restart client (867)

ip dhcp restart client This command submits a BOOTP or DHCP client request.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- ◆ This command issues a BOOTP or DHCP client request for any IP interface that has been set to BOOTP or DHCP mode through the ip address command.
- ◆ DHCP requires the server to reassign the client's last address if available.
- If the BOOTP or DHCP server has been moved to a different domain, the network portion of the address provided to the client will be based on this new domain.

In the following example, the device is reassigned the same address.

```
Console(config)#interface vlan 1
Console(config-if) #ip address dhcp
Console(config-if)#exit
Console#ip dhcp restart client
Console#show ip interface
VLAN 1 is Administrative Up - Link Up
 Address is 00-E0-00-00-00-01
  Index: 1001, MTU: 1500
  Address Mode is DHCP
  IP Address: 192.168.0.2 Mask: 255.255.255.0
  Proxy ARP is disabled
 DHCP relay server: 0.0.0.0
Console#
```

Related Commands

ip address (890)

DHCP for IPv6

ipv6 dhcp client This command specifies the Rapid Commit option for DHCPv6 message exchange rapid-commit vlan for all DHCPv6 client requests submitted from the specified interface. Use the no form to disable this option.

Syntax

[no] ipv6 dhcp client rapid-commit vlan vlan-id

vlan-id - VLAN ID, specified as a single number, a range of consecutive numbers separated by a hyphen, or multiple numbers separated by commas. (Range: 1-4094; Maximum command length: 300 characters)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- DHCPv6 clients can obtain configuration parameters from a server through a normal four-message exchange (solicit, advertise, request, reply), or through a rapid two-message exchange (solicit, reply). The rapid-commit option must be enabled on both client and server for the two-message exchange to be used.
- This command allows two-message exchange method for prefix delegation. When enabled, DCHPv6 client requests submitted from the specified interface will include the rapid commit option in all solicit messages.

If the rapid commit option has been enabled on the switch with this command, and on the DHCPv6 server, message exchange can be reduced from the normal four step process to a two-step exchange of only solicit and reply messages.

Example

```
Console(config) #ipv6 dhcp client rapid-commit vlan 2
Console(config)#
```

show ipv6 dhcp duid This command shows the DHCP Unique Identifier for this switch.

Command Mode

Privileged Exec

Command Usage

DHCPv6 clients and servers are identified by a DHCP Unique Identifier (DUID) included in the client identifier and server identifier options. Static or dynamic address prefixes may be assigned by a DHCPv6 server based on the client's DUID.

Example

```
Console#show ipv6 dhcp duid
DHCPv6 Unique Identifier (DUID): 0001-0001-4A8158B4-00E00C0000FD
Console#
```

show ipv6 dhcp vlan This command shows DHCPv6 information for the specified interface(s).

Syntax

show ipv6 dhcp vlan vlan-list

vlan-list - VLAN ID, specified as a single number, a range of consecutive numbers separated by a hyphen, or multiple numbers separated by commas. (Range: 1-4094; Maximum command length: 300 characters)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 dhcp vlan 1
VLAN 1 is in DHCP client mode, Rapid-Commit
List of known servers:
 Server address: FE80::250:FCFF:FEF9:A494
               : 0001-0001-48CFB0D5-F48F2A006801
 Server address : FE80::250:FCFF:FEF9:A405
 DUID : 0001-0001-38CF5AB0-F48F2A003917
Console#
```

RELATED COMMANDS ipv6 address (907)

DHCP RELAY

This section describes commands used to configure the switch to relay DHCP requests from local hosts to a remote DHCP server.

Table 175: DHCP Relay Option 82 Commands

Command	Function	Mode
DHCP Relay for IPv4		
ip dhcp relay server	Specifies DHCP server or relay server addresses	IC
ip dhcp restart relay	Enables DHCP relay agent	PE
DHCP Relay for IPv6		
ipv6 dhcp relay destination	Specifies destination address or VLAN to which client messages are forwarded for relay service	IC
show ipv6 dhcp relay destination	Shows destination addresses or VLAN to which client messages are forwarded for relay service	PE

DHCP Relay for IPv4

ip dhcp relay server This command specifies the DHCP server or relay server addresses to use. Use the **no** form to clear all addresses.

Syntax

ip dhcp relay server address1 [address2 [address3 ...]] no ip dhcp relay server

address - IP address of DHCP server. (Range: 1-5 addresses)

Default Setting

None

Command Mode

Interface Configuration (VLAN)

Usage Guidelines

- ◆ DHCP relay service applies to DHCP client requests received on the specified VLAN.
- ◆ This command is used to configure DHCP relay for host devices attached to the switch. If DHCP relay service is enabled, and this switch sees a DHCP client request, it inserts its own IP address into the request so that the DHCP server will know the subnet where the client is located. Then, the switch forwards the packet to a DHCP server on another network. When the server receives the

DHCP request, it allocates a free IP address for the DHCP client from its defined scope for the DHCP client's subnet, and sends a DHCP response back to the DHCP relay agent (i.e., this switch). This switch then passes the DHCP response received from the server to the client.

You must specify the IP address for at least one active DHCP server. Otherwise, the switch's DHCP relay agent will not be able to forward client requests to a DHCP server. Up to five DHCP servers can be specified in order of preference.

If any of the specified DHCP server addresses are not located in the same network segment with this switch, use the ip default-gateway or ipv6 defaultgateway command to specify the default router through which this switch can reach other IP subnetworks.

◆ To start DHCP relay service, enter the ip dhcp restart relay command.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip dhcp relay server 192.168.10.19
Console(config-if)#
```

Related Commands

ip dhcp restart relay (871)

ip dhcp restart relay This command enables DHCP relay for the specified VLAN. Use the **no** form to disable it.

Default Setting

Disabled

Command Mode

Privileged Exec

Command Usage

This command is used to configure DHCP relay functions for host devices attached to the switch. If DHCP relay service is enabled, and this switch sees a DHCP request broadcast, it inserts its own IP address into the request so the DHCP server will know the subnet where the client is located. Then, the switch forwards the packet to the DHCP server on another network. When the server receives the DHCP request, it allocates a free IP address for the DHCP client from its defined scope for the DHCP client's subnet, and sends a DHCP response back to the DHCP relay agent (i.e., this switch). This switch then broadcasts the DHCP response received from the server to the client.

In the following example, the device is reassigned the same address.

```
Console#ip dhcp restart relay
Console#show ip interface
VLAN 1 is Administrative Up - Link Up
  Address is 00-00-E8-93-82-A0
 Index: 1001, MTU: 1500
 Address Mode is DHCP
 IP Address: 10.1.0.254 Mask: 255.255.255.0
  Proxy ARP is disabled
 DHCP relay server: 0.0.0.0
Console#
```

Related Commands

ip dhcp relay server (870)

DHCP Relay for IPv6

ipv6 dhcp relay This command specifies the destination address or VLAN to which client messages **destination** are forwarded for DHCP service. Use the **no** form to remove an entry.

Syntax

[no] ipv6 dhcp relay destination {ipv6-address | multicast {all | vlan vlan-id}}

ipv6-address - A full IPv6 address including the network prefix and host address bits. This address may designate another relay server or a DHCPv6 server.

multicast - All DHCP server multicast address (FF:05::1:3).

all - All configured VLANs.

vlan-id - ID of configured VLAN. (Range: 1-4094)

Default Setting

None

Command Mode

Interface Configuration (VLAN)

Usage Guidelines

 This command is used to configure DHCPv6 relay functions for host devices attached to the switch. If DHCPv6 relay service is enabled, and this switch sees a DHCPv6 request broadcast, it inserts its own IP address into the request so the DHCPv6 server will know the subnet where the client is located. Then, the switch forwards the packet to the next relay agent or DHCPv6 server on another network. When the server receives the DHCPv6 request, it allocates a free IP address for the DHCPv6 client from its defined scope for the DHCPv6 client's subnet, and sends a DHCPv6 response back to the DHCPv6 relay agent

(i.e., this switch). This switch then broadcasts the DHCPv6 response received from the server to the client.

- When the multicast option is used, the switch multicasts the modified client request to all configured VLANs or to a specified VLAN, and enables DHCPv6 relay service for those VLANs.
- Up to five relay destinations may be configured by repeating this command.
- ♦ When issuing the **no ipv6 dhcp relay destination** command without any arguments, the switch will delete all configured destination addresses and disable DHCP for IPv6 relay for all VLANs.

EXAMPLE

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 dhcp relay destination 2001:0DB8:3000:3000::42
Console(config-if)#
```

show ipv6 dhcp relay This command shows the destination addresses or VLAN to which client messages **destination** are forwarded for DHCP relay service.

Syntax

show ipv6 dhcp relay destination interface [vlan *vlan-id*]

vlan-id - ID of configured VLAN. (Range: 1-4094, no leading zeroes)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 dhcp relay destination interface vlan 1
DHCP relay destination :
VLAN 1 :
           : 2001:DB8:3000:3000::42
  Unicast
Console#
```

DHCP Server

This section describes commands used to configure client address pools for the DHCP service.

Table 176: DHCP Server Commands

Command	Function	Mode
ip dhcp excluded-address	Specifies IP addresses that a DHCP server should not assign to DHCP clients	GC
ip dhcp pool	Configures a DHCP address pool on a DHCP Server	GC
service dhcp	Enables the DHCP server feature on this switch	GC
bootfile	Specifies a default boot image for a DHCP client	DC
client-identifier*	Specifies a client identifier for a DHCP client	DC
default-router	Specifies the default router list for a DHCP client	DC
dns-server	Specifies the Domain Name Server (DNS) servers available to a DHCP client	DC
domain-name	Specifies the domain name for a DHCP client	DC
hardware-address*	Specifies the hardware address of a DHCP client	DC
host*	Specifies the IP address and network mask to manually bind to a DHCP client	DC
lease	Sets the duration an IP address is assigned to a DHCP client	DC
netbios-name-server	Configures NetBIOS Windows Internet Naming Service (WINS) name servers available to Microsoft DHCP clients	DC
netbios-node-type	Configures NetBIOS node type for Microsoft DHCP clients	DC
network	Configures the subnet number and mask for a DHCP address pool	DC
next-server	Configures the next server in the boot process of a DHCP client	DC
clear ip dhcp binding	Deletes an automatic address binding from the DHCP server database	PE
show ip dhcp	Displays brief list of DHCP address pools	PE
show ip dhcp binding	Displays address bindings on the DHCP server	PE
show ip dhcp pool	Displays configuration settings for DHCP address pools	PE

^{*} These commands are used for manually binding an address to a client.

ip dhcp This command specifies IP addresses that the DHCP server should not assign to excluded-address DHCP clients. Use the **no** form to remove the excluded IP addresses.

Syntax

[no] ip dhcp excluded-address low-address [high-address]

low-address - An excluded IP address, or the first IP address in an excluded address range.

high-address - The last IP address in an excluded address range.

Default Setting

All IP pool addresses may be assigned.

Command Mode

Global Configuration

Example

```
Console(config) #ip dhcp excluded-address 10.1.0.19
Console(config)#
```

ip dhcp pool This command configures a DHCP address pool and enter DHCP Pool Configuration mode. Use the **no** form to remove the address pool.

Syntax

[no] ip dhcp pool name

name - A string or integer. (Range: 1-32 characters)

Default Setting

DHCP address pools are not configured.

Command Mode

Global Configuration

Usage Guidelines

- After executing this command, the switch changes to DHCP Pool Configuration mode, identified by the (config-dhcp)# prompt.
- From this mode, first configure address pools for the network interfaces (using the network command). You can also manually bind an address to a specific client (with the host command) if required. You can configure up to 8 network address pools, and up to 32 manually bound host address pools (i.e., listing one host address per pool). However, note that any address specified in a host command must fall within the range of a configured network address pool.

```
Console(config) #ip dhcp pool R&D
Console(config-dhcp)#
```

Related Commands

network (883) host (880)

service dhcp This command enables the DHCP server on this switch. Use the **no** form to disable the DHCP server.

Syntax

[no] service dhcp

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

If the DHCP server is running, you must restart it to implement any configuration changes.

Example

```
Console(config) #service dhcp
Console(config)#
```

bootfile This command specifies the name of the default boot image for a DHCP client. This file should placed on the Trivial File Transfer Protocol (TFTP) server specified with the next-server command. Use the **no** form to delete the boot image name.

Syntax

bootfile filename

no bootfile

filename - Name of the file that is used as a default boot image.

Default Setting

None

Command Mode

DHCP Pool Configuration

```
Console(config-dhcp) #bootfile wme.bat
Console(config-dhcp)#
```

Related Commands

next-server (884)

client-identifier This command specifies the client identifier of a DHCP client. Use the no form to remove the client identifier.

Syntax

```
client-identifier {text text | hex hex}
no client-identifier
   text - A text string. (Range: 1-15 characters)
   hex - The hexadecimal value.
```

Default Setting

None

Command Mode

DHCP Pool Configuration

Command Usage

- This command identifies a DHCP client to bind to an address specified in the host command. If both a client identifier and hardware address are configured for a host address, the client identifier takes precedence over the hardware address in the search procedure.
- BOOTP clients cannot transmit a client identifier. To bind an address to a BOOTP client, you must associate a hardware address with the host entry.

Example

```
Console(config-dhcp)#client-identifier text steve
Console(config-dhcp)#
```

Related Commands

host (880)

default-router This command specifies default routers for a DHCP pool. Use the **no** form to remove the default routers.

Syntax

default-router address1 [address2]

no default-router

address 1 - Specifies the IP address of the primary router.

address2 - Specifies the IP address of an alternate router.

Default Setting

None

Command Mode

DHCP Pool Configuration

Usage Guidelines

The IP address of the router should be on the same subnet as the client. You can specify up to two routers. Routers are listed in order of preference (starting with address1 as the most preferred router).

Example

```
Console(config-dhcp) #default-router 10.1.0.54 10.1.0.64
Console(config-dhcp)#
```

dns-server This command specifies the Domain Name System (DNS) IP servers available to a DHCP client. Use the **no** form to remove the DNS server list.

Syntax

dns-server address1 [address2]

no dns-server

address 1 - Specifies the IP address of the primary DNS server.

address 2 - Specifies the IP address of the alternate DNS server.

Default Setting

None

Command Mode

DHCP Pool Configuration

Usage Guidelines

• If DNS IP servers are not configured for a DHCP client, the client cannot correlate host names to IP addresses.

 Servers are listed in order of preference (starting with address1 as the most preferred server).

Example

```
Console(config-dhcp) #dns-server 10.1.1.253 192.168.3.19
Console(config-dhcp)#
```

domain-name This command specifies the domain name for a DHCP client. Use the **no** form to remove the domain name.

Syntax

domain-name domain

no domain-name

domain - Specifies the domain name of the client. (Range: 1-32 characters)

Default Setting

None

Command Mode

DHCP Pool Configuration

Example

```
Console(config-dhcp) #domain-name sample.com
Console(config-dhcp)#
```

hardware-address This command specifies the hardware address of a DHCP client. This command is valid for manual bindings only. Use the **no** form to remove the hardware address.

Syntax

hardware-address hardware-address type

no hardware-address

hardware-address - Specifies the MAC address of the client device.

type - Indicates the following protocol used on the client device:

- ethernet
- ieee802
- fddi

Default Setting

If no type is specified, the default protocol is Ethernet.

Command Mode

DHCP Pool Configuration

Command Usage

This command identifies a DHCP or BOOTP client to bind to an address specified in the host command. BOOTP clients cannot transmit a client identifier. To bind an address to a BOOTP client, you must associate a hardware address with the host entry.

Example

```
Console(config-dhcp)#hardware-address 00-e0-29-94-34-28 ethernet Console(config-dhcp)#
```

Related Commands

host (880)

host Use this command to specify the IP address and network mask to manually bind to a DHCP client. Use the **no** form to remove the IP address for the client.

Syntax

host address [mask]

no host

address - Specifies the IP address of a client.

mask - Specifies the network mask of the client.

Default Setting

None

Command Mode

DHCP Pool Configuration

Usage Guidelines

- Host addresses must fall within the range specified for an existing network pool.
- When a client request is received, the switch first checks for a network address pool matching the gateway where the request originated (i.e., if the request was forwarded by a relay server). If there is no gateway in the client request (i.e., the request was not forwarded by a relay server), the switch searches for a network pool matching the interface through which the client request was received. It then searches for a manually configured host address that falls within the matching network pool.

- When searching for a manual binding, the switch compares the client identifier for DHCP clients, and then compares the hardware address for DHCP or BOOTP clients.
- ◆ If no manual binding has been specified for a host entry with the clientidentifier or hardware-address commands, then the switch will assign an address from the matching network pool.
- If the mask is unspecified, DHCP examines its address pools. If no mask is found in the pool database, the Class A, B, or C natural mask is used (see page 883).
 This command is valid for manual bindings only.
- ◆ The **no host** command only clears the address from the DHCP server database. It does not cancel the IP address currently in use by the host.

```
Console(config-dhcp) #host 10.1.0.21 255.255.255.0
Console(config-dhcp)#
```

Related Commands

client-identifier (877) hardware-address (879)

lease This command configures the duration that an IP address is assigned to a DHCP client. Use the **no** form to restore the default value.

Syntax

lease {days [hours] [minutes] | **infinite**}

no lease

days - Specifies the duration of the lease in numbers of days. (Range: 0-364)

hours - Specifies the number of hours in the lease. A days value must be supplied before you can configure hours. (Range: 0-23)

minutes - Specifies the number of minutes in the lease. A days and hours value must be supplied before you can configure minutes. (Range: 0-59)

infinite - Specifies that the lease time is unlimited. This option is normally used for addresses manually bound to a BOOTP client via the **host** command.

Default Setting

One day

Command Modes

DHCP Pool Configuration

The following example leases an address to clients using this pool for 7 days.

```
Console(config-dhcp) #lease 7
Console(config-dhcp)#
```

netbios-name-server This command configures NetBIOS Windows Internet Naming Service (WINS) name servers that are available to Microsoft DHCP clients. Use the **no** form to remove the NetBIOS name server list.

Syntax

netbios-name-server *address1* [*address2*]

no netbios-name-server

address 1 - Specifies IP address of primary NetBIOS WINS name server. address2 - Specifies IP address of alternate NetBIOS WINS name server.

Default Setting

None

Command Mode

DHCP Pool Configuration

Usage Guidelines

Servers are listed in order of preference (starting with address1 as the most preferred server).

Example

```
Console(config-dhcp) #netbios-name-server 10.1.0.33 10.1.0.34
Console(config-dhcp)#
```

Related Commands

netbios-node-type (883)

netbios-node-type This command configures the NetBIOS node type for Microsoft DHCP clients. Use the **no** form to remove the NetBIOS node type.

Syntax

```
netbios-node-type type
no netbios-node-type
   type - Specifies the NetBIOS node type:
       broadcast
       hybrid (recommended)
       mixed
```

peer-to-peer

Default Setting

None

Command Mode

DHCP Pool Configuration

Example

```
Console(config-dhcp) #netbios-node-type hybrid
Console(config-dhcp)#
```

Related Commands

netbios-name-server (882)

network This command configures the subnet number and mask for a DHCP address pool. Use the **no** form to remove the subnet number and mask.

Syntax

network *network-number* [mask]

no network

network-number - The IP address of the DHCP address pool.

mask - The bit combination that identifies the network (or subnet) and the host portion of the DHCP address pool.

Command Mode

DHCP Pool Configuration

Usage Guidelines

 When a client request is received, the switch first checks for a network address pool matching the gateway where the request originated (i.e., if the request was forwarded by a relay server). If there is no gateway in the client request (i.e., the request was not forwarded by a relay server), the switch searches for a network pool matching the interface through which the client request was received. It then searches for a manually configured host address that falls within the matching network pool. If no manually configured host address is found, it assigns an address from the matching network address pool. However, if no matching address pool is found the request is ignored.

This command is valid for DHCP network address pools only. If the mask is not specified, the class A, B, or C natural mask is used. Subnet addresses are interpreted as class A, B or C, based on the first field in the specified address. In other words, if a subnet address nnn.xxx.xxx is entered, the first field (nnn) determines the class:

0 - 127 is class A, only uses the first field in the network address.

128 - 191 is class B, uses the first two fields in the network address.

192 - 223 is class C, uses the first three fields in the network address.

The DHCP server assumes that all host addresses are available. You can exclude subsets of the address space by using the ip dhcp excluded-address command.

Example

```
Console(config-dhcp) #network 10.1.0.0 255.255.255.0
Console(config-dhcp)#
```

next-server This command configures the next server in the boot process of a DHCP client. Use the **no** form to remove the boot server list.

Syntax

[no] next-server address

address - Specifies the IP address of the next server in the boot process, which is typically a Trivial File Transfer Protocol (TFTP) server.

Default Setting

None

Command Mode

DHCP Pool Configuration

Example

```
Console(config-dhcp) #next-server 10.1.0.21
Console(config-dhcp)#
```

Related Commands

bootfile (876)

clear ip dhcp binding This command deletes an automatic address binding from the DHCP server database.

Syntax

clear ip dhcp binding {address | * }

address - The address of the binding to clear.

* - Clears all automatic bindings.

Default Setting

None

Command Mode

Privileged Exec

Usage Guidelines

- ◆ An address specifies the client's IP address. If an asterisk (*) is used as the address parameter, the DHCP server clears all automatic bindings.
- Use the no host command to delete a manual binding.
- This command is normally used after modifying the address pool, or after moving DHCP service to another device.

Example.

```
Console#clear ip dhcp binding *
Console#
```

Related Commands

show ip dhcp binding (886)

show ip dhcp This command displays a brief list of DHCP address pools configured on the switch.

Command Mode

Privileged Exec

Example

```
Console#show ip dhcp
 Name Type IP Address
                            Mask
                                               Active Pool
       Net 192.168.1.0 255.255.255.0 192.168.1.1
                                                    - 192.168.1.254
Total entry: 1
Console#
```

show ip dhcp binding This command displays address bindings on the DHCP server.

Syntax

show ip dhcp binding [address]

address - Specifies the IP address of the DHCP client for which bindings will be displayed.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show ip dhcp binding
                     MAC
    ΙP
                                 Lease Time
                                                  Start
                                (dd/hh/mm/ss)
   192.1.3.21 00-00-e8-98-73-21
                                          86400 Dec 25 08:01:57 2002
Console#
```

show ip dhcp pool This command displays configuration settings for DHCP address pools.

Syntax

show ip dhcp pool [host | network]

host - Shows detailed settings for host device pools.

network - Shows detailed settings for network pools.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#show ip dhcp pool
Pool name : R&D
Pool type : Network
   Network address : 192.168.0.1
   Subnet mask : 255.255.255.0
   Boot file
   Client identifier mode : Hex
   Client identifier
```

Chapter 29 | DHCP Commands **DHCP Server**

: 0.0.0.0 Default router 0.0.0.0 DNS server : 0.0.0.0 0.0.0.0

Domain name

Hardware type : None
Hardware address : 00-00-00-00-00
Loss time : infinite

Lease time : infinite
Netbios name server : 0.0.0.0
0.0.0.0 : Hybrid Netbios node type

Next server : 0.0.0.0

Console#

Chapter 29 | DHCP Commands DHCP Server

IP Interface Commands

An IP Version 4 and Version 6 address may be used for management access to the switch over the network. Both IPv4 or IPv6 addresses can be used simultaneously to access the switch. You can manually configure a specific IPv4 or IPv6 address or direct the switch to obtain an IPv4 address from a BOOTP or DHCP server when it is powered on. An IPv6 address can either be manually configured or dynamically generated.

An IPv4 address for this switch is obtained via DHCP by default for VLAN 1. You may also need to a establish an IPv4 or IPv6 default gateway between this device and management stations that exist on another network segment.

Table 177: IP Interface Commands

Command Group	Function
IPv4 Interface	Configures an IPv4 address for the switch
IPv6 Interface	Configures an IPv6 address for the switch
ND Snooping	Maintains IPv6 prefix table and user address binding table which can be used for stateless address auto-configuration or for address filtering by IPv6 Source Guard

IPv4 Interface

There are no IP addresses assigned to this switch by default. You must manually configure a new address to manage the switch over your network or to connect the switch to existing IP subnets. You may also need to a establish a default gateway between this device and management stations or other devices that exist on another network segment (if routing is not enabled).

This section includes commands for configuring IP interfaces, the Address Resolution Protocol (ARP) and Proxy ARP.

Table 178: IPv4 Interface Commands

Command Group	Function
Basic IPv4 Configuration	Configures the IP address for interfaces and the gateway router
ARP Configuration	Configures static, dynamic and proxy ARP service
UDP Helper Configuration	Forwards UDP broadcast packets to a specified server

Basic IPv4 Configuration This section describes commands used to configure IP addresses for VLAN interfaces on the switch.

Table 179: Basic IP Configuration Commands

Command	Function	Mode
ip address	Sets the IP address for the current interface	IC
ip default-gateway	Defines the default gateway through which this switch can reach other subnetworks	GC
show ip interface	Displays the IP settings for this device	PE
show ip route	Displays specified entries in the routing table	PE
show ip traffic	Displays statistics for IP, ICMP, UDP, TCP and ARP protocols	PE
traceroute	Shows the route packets take to the specified host	PE
ping	Sends ICMP echo request packets to another node on the network	NE, PE

ip address This command sets the IPv4 address for the currently selected VLAN interface. Use the **no** form to remove an IP address.

Syntax

ip address {ip-address netmask [secondary] [default-gateway ip-address] | bootp | dhcp}

no ip address [ip-address netmask [secondary] | dhcp]

ip-address - IP address

netmask - Network mask for the associated IP subnet. This mask identifies the host address bits used for routing to specific subnets. The network mask can be either in the traditional format xxx.xxx.xxx or use classless format with the range /5 to /32. For example the subnet 255.255.224.0 would be /19.

secondary - Specifies a secondary IP address.

default-gateway - The default gateway. (Refer to the ip default-gateway command which provides the same function.)

bootp - Obtains IP address from BOOTP.

dhcp - Obtains IP address from DHCP.

Default Setting

DHCP

Command Mode

Interface Configuration (VLAN)

Command Usage

- If this router is directly connected to end node devices (or connected to end nodes via shared media) that will be assigned to a specific subnet, then you must create a router interface for each VLAN that will support routing. The router interface consists of an IP address and subnet mask. This interface address defines both the network number to which the router interface is attached and the router's host number on that network. In other words, a router interface address defines the network and subnetwork numbers of the segment that is connected to that interface, and allows you to send IP packets to or from the router.
- ◆ Before any network interfaces are configured on the router, first create a VLAN for each unique user group, or for each network application and its associated users. Then assign the ports associated with each of these VLANs.
- An IP address must be assigned to this device to gain management access over the network or to connect the router to existing IP subnets. A specific IP address can be manually configured, or the router can be directed to obtain an address from a BOOTP or DHCP server. Valid IP addresses consist of four numbers, 0 to 255, separated by periods. Anything other than this format is not be accepted by the configuration program.
- An interface can have only one primary IP address, but can have many secondary IP addresses. In other words, secondary addresses need to be specified if more than one IP subnet can be accessed through this interface. Note that a secondary address cannot be configured prior to setting the primary IP address, and the primary address cannot be removed if a secondary address is still present. Also, if any router/switch in a network segment uses a secondary address, all other routers/switches in that segment must also use a secondary address from the same network or subnet address space.
- If bootp or dhcp options are selected, the system will immediately start broadcasting service requests for all VLANs configured to obtain address assignments through BOOTP or DHCP. IP is enabled but will not function until a BOOTP or DHCP reply has been received. Requests are broadcast periodically by the router in an effort to learn its IP address. (BOOTP and DHCP values can include the IP address, default gateway, and subnet mask). If the DHCP/BOOTP server is slow to respond, you may need to use the ip dhcp restart client command to re-start broadcasting service requests, or reboot the router.

Note: Each VLAN group can be assigned its own IP interface address. You can manage the router via any of these IP addresses.

In the following example, the device is assigned an address in VLAN 1.

```
Console(config) #interface vlan 1
Console(config-if) #ip address 192.168.1.5 255.255.255.0
Console(config-if) #
```

This example assigns an IP address to VLAN 2 using a classless network mask.

```
Console(config)#interface vlan 2
Console(config-if)#ip address 10.2.2.1/24
Console(config-if)#
```

Related Commands

ip dhcp restart client (867) ip default-gateway (892) ipv6 address (907)

ip default-gateway

This command specifies the default gateway for destinations not found in the local routing tables. Use the **no** form to remove a default gateway.

Syntax

```
ip default-gateway
no ip default-gateway
gateway - IP address of the default gateway
```

Default Setting

No default gateway is established.

Command Mode

Global Configuration

Command Usage

- ◆ The default gateway can also be defined using the following Global configuration command: **ip route 0.0.0.0 0.0.0.0** *gateway-address*.
- Static routes can also be defined using the ip route command to ensure that traffic to the designated address or subnet passes through a preferred gateway.
- ◆ A default gateway can only be successfully set when a network interface that directly connects to the gateway has been configured on the router.
- ◆ The same link-local address may be used by different interfaces/nodes in different zones (RFC 4007). Therefore, when specifying a link-local address for a default gateway, include zone-id information indicating the VLAN identifier

after the % delimiter. For example, FE80::7272%1 identifies VLAN 1 as the interface.

Example

The following example defines a default gateway for this device:

```
Console(config) #ip default-gateway 192.168.0.1
Console(config)#end
Console#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default
        0.0.0.0/0 [1/0] via 192.168.0.1, VLAN1
        192.168.0.0/24 is directly connected, VLAN1
Console(config)#
```

Related Commands

ip address (890) ip route (958) ipv6 default-gateway (906)

show ip interface This command displays the settings of an IPv4 interface.

Command Mode

Privileged Exec

Example

```
Console#show ip interface
VLAN 1 is Administrative Up - Link Up
 Address is 00-E0-00-00-01
 Index: 1001, MTU: 1500
  Address Mode is DHCP
  IP Address: 192.168.0.2 Mask: 255.255.255.0
  Proxy ARP is disabled
 DHCP relay server: 0.0.0.0
Console#
```

Related Commands

ip address (890) show ipv6 interface (914) **show ip traffic** This command displays statistics for IP, ICMP, UDP, TCP and ARP protocols.

Command Mode

Privileged Exec

Example

```
Console#show ip traffic
IP Statistics:
IP received
                7845 total received
                     header errors
                     unknown protocols
                     address errors
                     discards
                7845 delivers
                     reassembly request datagrams
                     reassembly succeeded
                     reassembly failed
IP sent
                     forwards datagrams
                9903 requests
                     discards
                     no routes
                     generated fragments
                     fragment succeeded
                     fragment failed
ICMP Statistics:
ICMP received
                     input
                     destination unreachable messages
                     time exceeded messages
                     parameter problem message
                     echo request messages
                     echo reply messages
                     redirect messages
                     timestamp request messages
                     timestamp reply messages
                     source quench messages
                     address mask request messages
                     address mask reply messages
ICMP sent
                     output
                     errors
                     destination unreachable messages
                     time exceeded messages
                     parameter problem message
                     echo request messages
                     echo reply messages
                     redirect messages
                     timestamp request messages
                     timestamp reply messages
                     source quench messages
                     address mask request messages
                     address mask reply messages
UDP Statistics:
                     input
                     no port errors
                     other errors
                     output
TCP Statistics:
                7841 input
```

input errors 9897 output

Console#

traceroute This command shows the route packets take to the specified destination.

Syntax

traceroute host

host - IP address or alias of the host.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- Use the **traceroute** command to determine the path taken to reach a specified destination.
- ◆ A trace terminates when the destination responds, when the maximum timeout (TTL) is exceeded, or the maximum number of hops is exceeded.
- ◆ The traceroute command first sends probe datagrams with the TTL value set at one. This causes the first router to discard the datagram and return an error message. The trace function then sends several probe messages at each subsequent TTL level and displays the round-trip time for each message. Not all devices respond correctly to probes by returning an "ICMP port unreachable" message. If the timer goes off before a response is returned, the trace function prints a series of asterisks and the "Request Timed Out" message. A long sequence of these messages, terminating only when the maximum timeout has been reached, may indicate this problem with the target device.
- If the target device does not respond or other errors are detected, the switch will indicate this by one of the following messages:
 - * No Response
 - H Host Unreachable
 - N Network Unreachable
 - P Protocol Unreachable
 - O -Other

```
Console#traceroute 192.168.0.1
Press "ESC" to abort.
Traceroute to 192.168.0.99, 30 hops max, timeout is 3 seconds
Hop Packet 1 Packet 2 Packet 3 IP Address

1 20 ms <10 ms 192.168.0.99

Trace completed.
Console#
```

ping This command sends (IPv4) ICMP echo request packets to another node on the network.

Syntax

```
ping host [count count] [size size]
```

host - IP address or alias of the host.

count - Number of packets to send. (Range: 1-16)

size - Number of bytes in a packet. (Range: 32-512)

The actual packet size will be eight bytes larger than the size specified because the router adds header information.

Default Setting

count: 5 size: 32 bytes

Command Mode

Normal Exec, Privileged Exec

Command Usage

- Use the ping command to see if another site on the network can be reached.
- The following are some results of the ping command:
 - Normal response The normal response occurs in one to ten seconds, depending on network traffic.
 - Destination does not respond If the host does not respond, a "timeout" appears in ten seconds.
 - Destination unreachable The gateway for this destination indicates that the destination is unreachable.
 - Network or host unreachable The gateway found no corresponding entry in the route table.

 When pinging a host name, be sure the DNS server has been defined (page 860) and host name-to-address translation enabled (page 858). If necessary, local devices can also be specified in the DNS static host table (page 860).

Example

```
Console#ping 10.1.0.9
Type ESC to abort.
PING to 10.1.0.9, by 5 32-byte payload ICMP packets, timeout is 5 seconds
response time: 10 ms
response time: 10 ms
response time: 10 ms
response time: 10 ms
response time: 0 ms
Ping statistics for 10.1.0.9:
5 packets transmitted, 5 packets received (100%), 0 packets lost (0%)
Approximate round trip times:
Minimum = 0 ms, Maximum = 10 ms, Average = 8 ms
Console#
```

Related Commands

interface (414)

ARP Configuration This section describes commands used to configure the Address Resolution Protocol (ARP) on the switch.

Table 180: Address Resolution Protocol Commands

Command	Function	Mode
arp	Adds a static entry in the ARP cache	GC
arp timeout	Sets the time a dynamic entry remains in the ARP cache	GC
ip proxy-arp	Enables proxy ARP service	IC
clear arp-cache	Deletes all dynamic entries from the ARP cache	PE
show arp	Displays entries in the ARP cache	NE, PE

arp This command adds a static entry in the Address Resolution Protocol (ARP) cache. Use the **no** form to remove an entry from the cache.

Syntax

arp ip-address hardware-address

no arp ip-address

ip-address - IP address to map to a specified hardware address.

hardware-address - Hardware address to map to a specified IP address. (The format for this address is xx-xx-xx-xx-xx.)

IPv4 Interface

Default Setting

No default entries

Command Mode

Global Configuration

Command Usage

- ◆ The ARP cache is used to map 32-bit IP addresses into 48-bit hardware (i.e., Media Access Control) addresses. This cache includes entries for hosts and other routers on local network interfaces defined on this router.
- The maximum number of static entries allowed in the ARP cache is 128.
- ◆ A static entry may need to be used if there is no response to an ARP broadcast message. For example, some applications may not respond to ARP requests or the response arrives too late, causing network operations to time out.
- Static entries will not be aged out nor deleted when power is reset. A static entry can only be removed through the configuration interface.

Example

```
Console(config) #arp 10.1.0.19 01-02-03-04-05-06
Console(config)#
```

Related Commands

clear arp-cache (900) show arp (900)

arp timeout This command sets the aging time for dynamic entries in the Address Resolution Protocol (ARP) cache. Use the **no** form to restore the default timeout.

Syntax

arp timeout seconds

no arp timeout

seconds - The time a dynamic entry remains in the ARP cache. (Range: 300-86400; 86400 seconds is one day)

Default Setting

1200 seconds (20 minutes)

Command Mode

Global Configuration

Command Usage

- ◆ When a ARP entry expires, it is deleted from the cache and an ARP request packet is sent to re-establish the MAC address.
- The aging time determines how long dynamic entries remain in the cache. If the timeout is too short, the router may tie up resources by repeating ARP requests for addresses recently flushed from the table.

Example

This example sets the ARP cache timeout for 15 minutes (i.e., 900 seconds).

```
Console(config) #arp timeout 900
Console(config)#
```

ip proxy-arp This command enables proxy Address Resolution Protocol (ARP). Use the **no** form to disable proxy ARP.

Syntax

[no] ip proxy-arp

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- Proxy ARP allows a non-routing device to determine the MAC address of a host on another subnet or network.
- End stations that require Proxy ARP must view the entire network as a single network. These nodes must therefore use a smaller subnet mask than that used by the router or other relevant network devices.
- Extensive use of Proxy ARP can degrade router performance because it may lead to increased ARP traffic and increased search time for larger ARP address tables.

Example

```
Console(config) #interface vlan 3
Console(config-if) #ip proxy-arp
Console(config-if)#
```

clear arp-cache This command deletes all dynamic entries from the Address Resolution Protocol (ARP) cache.

Command Mode

Privileged Exec

Example

This example clears all dynamic entries in the ARP cache.

```
Console#clear arp-cache
This operation will delete all the dynamic entries in ARP Cache.
Are you sure to continue this operation (y/n)?y
Console#
```

show arp This command displays entries in the Address Resolution Protocol (ARP) cache.

Command Mode

Normal Exec, Privileged Exec

Command Usage

- This command displays information about the ARP cache. The first line shows the cache timeout. It also shows each cache entry, including the IP address, MAC address, type (static, dynamic, other), and VLAN interface. Note that entry type "other" indicates local addresses for this router.
- Static entries are only displayed for VLANs that are up. In other words, static entries are only displayed when configured for the IP subnet of a existing VLAN, and that VLAN is linked up.

Example

This example displays all entries in the ARP cache.

```
Console#show arp
ARP Cache Timeout: 1200 (seconds)
IP Address MAC Address Type
                                       Interface
10.1.0.0 FF-FF-FF-FF-FF other
10.1.0.254 00-00-AB-CD-00-00 other
10.1.0.255 FF-FF-FF-FF-FF other
                                         VI,AN1
                                         VLAN1
                                         VLAN1
145.30.20.23 09-50-40-30-20-10 dynamic VLAN3
Total entry : 4
Console#
```

UDP Helper User Datagram Protocol (UDP) Helper allows host applications to forward UDP **Configuration** broadcast packets from this switch to another part of the network. This section describes the commands used to configure UDP Helper.

Table 181: UDP Helper Commands

Command	Function	Mode
ip forward-protocol udp	Specifies the UDP destination ports for which broadcast traffic will be forwarded	GC
ip helper	Enables UDP helper globally on the switch	GC
ip helper-address	Specifies the servers to which designated UDP protocol packets are forwarded	IC
show ip helper	Displays configuration settings for UDP helper	PE

ip forward-protocol This command specifies the UDP destination ports for which broadcast traffic will be forwarded when the UDP helper is enabled. Use the **no** form to remove a UDP port from the forwarding list.

Syntax

[no] ip forward-protocol udp destination-port

destination-port - UDP application port for which UDP service requests are forwarded. (Range: 1-65535)

Default Setting

The following UDP ports are included in the forwarding list when UDP helper is enabled with the ip helper command and a remote server address is configured with the ip helper-address command:

BOOTP client port 67 **BOOTP** server port 68 Domain Name Service port 53 IEN-116 Name Service port 42 NetBIOS Datagram Server port 138 **NetBIOS Name Server port 137** NTP port 37 TACACS service port 49 TFTP port 69

Command Mode

Global Configuration

Command Usage

Up to 100 UDP ports can be specified with this command for forwarding to one or more remote servers.

Example

This example enables forwarding for DHCPv6 UDP packets.

```
Console(config)#ip forward-protocol udp 547
Console(config)#
```

ip helper This command enables UDP helper globally on the switch. Use the **no** form to disable this feature.

Syntax

[no] ip helper

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Network hosts occasionally use UDP broadcasts to determine information such as address configuration, and domain name mapping. These broadcasts are confined to the local subnet, either as an all hosts broadcast (all ones broadcast - 255.255.255.255), or a directed subnet broadcast (such as 10.10.10.255). To reduce the number of application servers deployed in a multisegment network, UDP helper can be used to forward broadcast packets for specified UDP application ports to remote servers located in another network segment.
- To configure UDP helper, it must be enabled globally with the **ip helper** command. The UDP destination ports for which broadcast traffic will be forwarded must be specified with the ip forward-protocol udp command. And the remote servers which are configured to service UDP clients on another network segment specified with the ip helper-address command.

Example

This example enables UDP helper globally on the switch.

```
Console(config) #ip helper
Console(config)#
```

ip helper-address This command specifies the application server or subnet (indicated by a directed broadcast address) to which designated UDP broadcast packets are forwarded. Use the **no** form to remove a UDP helper address.

Syntax

[no] ip helper-address ip-address

ip-address - Host address or directed broadcast address to which UDP broadcast packets are forwarded. (Range: 1-65535)

Default Setting

None

Command Mode

Interface Configuration (VLAN)

Command Usage

- Up to 20 helper addresses can be specified with this command.
- To forward UDP packets with the UDP helper, the clients must be connected to the selected interface, and the interface configured with an IP address.
- The UDP packets to be forwarded must be specified by the ip forward-protocol udp command, and the packets meet the following criteria:
 - The MAC address of the received frame must be all-ones broadcast address (ffff.ffff.ffff).
 - The IP destination address must be one of the following:
 - all-ones broadcast (255.255.255.255)
 - subnet broadcast for the receiving interface
 - The IP time-to-live (TTL) value must be at least 2.
 - The IP protocol must be UDP (17).
 - The UDP destination port must be TFTP, Domain Name System (DNS), Time, NetBIOS, BOOTP or DHCP packet, or a UDP port specified by the ip forwardprotocol udp command.
- If a helper address is specified with this command, but no UDP ports have been specified with the ip forward-protocol udp command, broadcast traffic for several UDP protocol types will be forwarded by default as described under the ip forward-protocol udp command.

Example

This example indicates that designated UDP broadcast packets are to be forwarded to the directed broadcast address of 192.168.2.255.

```
Console(config)#interface vlan 1
Console(config-if) #ip helper-address 192.168.2.255
Console(config-if)#
```

show ip helper This command displays configuration settings for UDP helper.

Command Mode

Privileged Exec

Command Usage

This command displays all configuration settings for UDP helper, including its functional status, the UDP ports for which broadcast traffic will be forwarded, and the remote servers or subnets to which the traffic will be forwarded.

Example

```
Console#show ip helper
Helper mechanism is enabled
Forward port list(maximum count: 100)
Total port number now is: 1
Helper address list(maximum count: 1024)
Interface VLAN 1:
 192.168.2.255
Total helper number now is: 1
Console#
```

IPv6 Interface

This switch supports the following IPv6 interface commands.

Table 182: IPv6 Configuration Commands

Command	Function	Mode
Interface Address Configuration and Utilities		
ipv6 default-gateway	Sets an IPv6 default gateway for traffic with no known next hop	GC
ipv6 address	Configures an IPv6 global unicast address, and enables IPv6 on an interface	IC
ipv6 address eui-64	Configures an IPv6 global unicast address for an interface using an EUI-64 interface ID in the low order 64 bits, and enables IPv6 on the interface	IC
ipv6 address link-local	Configures an IPv6 link-local address for an interface and enables IPv6 on the interface	IC

Table 182: IPv6 Configuration Commands (Continued)

Command	Function	Mode
ipv6 enable	Enables IPv6 on an interface that has not been configured with an explicit IPv6 address	IC
ipv6 mtu	Sets the size of the maximum transmission unit (MTU) for IPv6 packets sent on an interface	IC
show ipv6 interface	Displays the usability and configured settings for IPv6 interfaces	PE
show ipv6 mtu	Displays maximum transmission unit (MTU) information for IPv6 interfaces	PE
show ipv6 traffic	Displays statistics about IPv6 traffic	PE
clear ipv6 traffic	Resets IPv6 traffic counters	PE
ping6	Sends IPv6 ICMP echo request packets to another node on the network	PE
traceroute6	Shows the route packets take to the specified host	PE
Neighbor Discovery		
ipv6 hop-limit	Configures the maximum number of hops used in router advertisements that are originated by this router	GC
ipv6 neighbor	Configures a static entry in the IPv6 neighbor discovery cache	GC
ipv6 nd dad attempts	Configures the number of consecutive neighbor solicitation messages sent on an interface during duplicate address detection	IC
ipv6 nd managed-config-flag	Configures router advertisements to indicate that attached hosts can use stateful autoconfiguration to obtain addresses	IC
ipv6 nd other-config-flag	Configures router advertisements to indicate that attached hosts can obtain autoconfiguration information other than addresses	IC
ipv6 nd ns-interval	Configures the interval between IPv6 neighbor solicitation retransmissions on an interface	IC
ipv6 nd raguard	Blocks incoming Router Advertisement and Router Redirect packets	IC
ipv6 nd reachable-time	Configures the amount of time that a remote IPv6 node is considered reachable after some reachability confirmation event has occurred	IC
ipv6 nd prefix	Configures the IPv6 prefixes to include in router advertisements	IC
ipv6 nd ra interval	Configures the interval between the transmission of router advertisements on an interface	IC
ipv6 nd ra lifetime	Configures the router lifetime value used in router advertisements sent from an interface	IC
ipv6 nd ra router-preference	Configures the default router preference for the router on an interface	IC
ipv6 nd ra suppress	Suppresses router advertisement transmissions on an interface	IC
clear ipv6 neighbors	Deletes all dynamic entries in the IPv6 neighbor discovery cache	PE

Table 182: IPv6 Configuration Commands (Continued)

Command	Function	Mode
show ipv6 nd raguard	Displays the configuration setting for RA Guard	PE
show ipv6 neighbors	Displays information in the IPv6 neighbor discovery cache	PE

Interface Address Configuration and Utilities

ipv6 default-gateway This command sets an IPv6 default gateway to use for destinations with no known next hop. Use the **no** form to remove a previously configured default gateway.

Syntax

ipv6 default-gateway ipv6-address

no ipv6 address

ipv6-address - The IPv6 address of the default next hop router to use for destinations with no known next hop.

Default Setting

No default gateway is defined

Command Mode

Global Configuration

Command Usage

- All IPv6 addresses must be according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.
- The same link-local address may be used by different interfaces/nodes in different zones (RFC 4007). Therefore, when specifying a link-local address, include zone-id information indicating the VLAN identifier after the % delimiter. For example, FE80::7272%1 identifies VLAN 1 as the interface.
- An IPv6 default gateway should be defined if the destination has been assigned an IPv6 address that is located in a different IP segment.
- An IPv6 default gateway can only be successfully set when a network interface that directly connects to the gateway has been configured on the router.

The following example defines a default gateway for this device:

Console(config)#ipv6 default-gateway FE80::269:3EF9:FE19:6780%1 Console(config)#

Related Commands

show ipv6 route (965) ip default-gateway (892)

ipv6 address This command configures an IPv6 global unicast address and enables IPv6 on an interface. Use the **no** form without any arguments to remove all IPv6 addresses from the interface, or use the **no** form with a specific IPv6 address to remove that address from the interface.

Syntax

[no] ipv6 address ipv6-address[/prefix-length]

ipv6-address - A full IPv6 address including the network prefix and host address bits.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix (i.e., the network portion of the address).

Default Setting

No IPv6 addresses are defined

Command Mode

Interface Configuration (VLAN)

Command Usage

- All IPv6 addresses must be according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.
- To connect to a larger network with multiple subnets, you must configure a global unicast address. This address can be manually configured with this command.
- If a link-local address has not yet been assigned to this interface, this command will assign the specified static global unicast address and also dynamically generate a link-local unicast address for the interface. (The link-local address is made with an address prefix of FE80 and a host portion based the switch's MAC address in modified EUI-64 format.)
- If a duplicate address is detected, a warning message is sent to the console.

Example

This example specifies a full IPv6 address and prefix length.

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 address 2001:DB8:2222:7272::72/96
Console(config-if)#end
```

IPv6 Interface

```
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled
Link-local address:
 fe80::7272:cfff:fe83:3466%1/64
Global unicast address(es):
 2001:db8:2222:7272::72/96, subnet is 2001:db8:2222:7272::/96
Joined group address(es):
ff02::1:ff00:72
ff02::1:ff83:3466
ff02::1
IPv6 link MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Related Commands

ipv6 address eui-64 (908) show ipv6 interface (914) ip address (890)

ipv6 address eui-64 This command configures an IPv6 address for an interface using an EUI-64 interface ID in the low order 64 bits and enables IPv6 on the interface. Use the **no** form without any arguments to remove all manually configured IPv6 addresses from the interface. Use the **no** form with a specific address to remove it from the interface.

Syntax

ipv6 address ipv6-prefix/prefix-length eui-64

no ipv6 address [ipv6-prefix/prefix-length eui-64]

ipv6-prefix - The IPv6 network portion of the address assigned to the interface.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix (i.e., the network portion of the address).

Default Setting

No IPv6 addresses are defined

Command Mode

Interface Configuration (VLAN)

Command Usage

The prefix must be formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

- If a link local address has not yet been assigned to this interface, this command will dynamically generate a global unicast address and a link-local address for this interface. (The link-local address is made with an address prefix of FE80 and a host portion based the switch's MAC address in modified EUI-64 format.)
- ◆ Note that the value specified in the ipv6-prefix may include some of the highorder host bits if the specified prefix length is less than 64 bits. If the specified prefix length exceeds 64 bits, then the network portion of the address will take precedence over the interface identifier.
- If a duplicate address is detected, a warning message is sent to the console.
- ◆ IPv6 addresses are 16 bytes long, of which the bottom 8 bytes typically form a unique host identifier based on the device's MAC address. The EUI-64 specification is designed for devices that use an extended 8-byte MAC address. For devices that still use a 6-byte MAC address (also known as EUI-48 format), it must be converted into EUI-64 format by inverting the universal/local bit in the address and inserting the hexadecimal number FFFE between the upper and lower three bytes of the MAC address.
- ◆ For example, if a device had an EUI-48 address of 28-9F-18-1C-82-35, the global/local bit must first be inverted to meet EUI-64 requirements (i.e., 1 for globally defined addresses and 0 for locally defined addresses), changing 28 to 2A. Then the two bytes FFFE are inserted between the OUI (i.e., company id) and the rest of the address, resulting in a modified EUI-64 interface identifier of 2A-9F-18-FF-FE-1C-82-35.
- This host addressing method allows the same interface identifier to be used on multiple IP interfaces of a single device, as long as those interfaces are attached to different subnets.

Example

This example uses the network prefix of 2001:0DB8:0:1::/64, and specifies that the EUI-64 interface identifier be used in the lower 64 bits of the address.

```
Console(config) #interface vlan 1
Console(config-if) #ipv6 address 2001:0DB8:0:1::/64 eui-64
Console(config-if) #end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled
Link-local address:
  fe80::7272:cfff:fe83:3466%1/64
Global unicast address(es):
  2001:db8:0:1:7272:cfff:fe83:3466/64, subnet is 2001:db8:0:1::/64[EUI]
  2001:db8:2222:7272::72/96, subnet is 2001:db8:2222:7272::/96
Joined group address(es):
  ff02::1:ff80:72
  ff02::1:ff83:3466
  ff02::1
```

IPv6 Interface

```
IPv6 link MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Related Commands

show ipv6 interface (914)

ipv6 address link-local This command configures an IPv6 link-local address for an interface and enables IPv6 on the interface. Use the **no** form without any arguments to remove all manually configured IPv6 addresses from the interface. Use the **no** form with a specific address to remove it from the interface.

Syntax

```
ipv6 address ipv6-address link-local
no ipv6 address [ipv6-address link-local]
   ipv6-address - The IPv6 address assigned to the interface.
```

Default Setting

No IPv6 addresses are defined

Command Mode

Interface Configuration (VLAN)

Command Usage

- The specified address must be formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields. And the address prefix must be in the range of FE80~FEBF.
- The address specified with this command replaces a link-local address that was automatically generated for the interface.
- You can configure multiple IPv6 global unicast addresses per interface, but only one link-local address per interface.
- If a duplicate address is detected, a warning message is sent to the console.

Example

This example assigns a link-local address of FE80::269:3EF9:FE19:6779 to VLAN 1. Note that a prefix in the range of FE80~FEBF is required for link-local addresses, and the first 16-bit group in the host address is padded with a zero in the form 0269.

```
Console(config) #interface vlan 1
Console(config-if) #ipv6 address FE80::269:3EF9:FE19:6779 link-local
Console(config-if)#end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled
Link-local address:
  fe80::269:3ef9:fe19:6779%1/64
Global unicast address(es):
  2001:db8:0:1:7272:cfff:fe83:3466/64, subnet is 2001:db8:0:1::/64[EUI]
  2001:db8:2222:7272::72/96, subnet is 2001:db8:2222:7272::/96
Joined group address(es):
ff02::1:ff19:6779
ff02::1:ff00:72
ff02::1:ff83:3466
ff02::1
IPv6 link MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Related Commands

ipv6 enable (911) show ipv6 interface (914)

ipv6 enable This command enables IPv6 on an interface that has not been configured with an explicit IPv6 address. Use the **no** form to disable IPv6 on an interface that has not been configured with an explicit IPv6 address.

Syntax

[no] ipv6 enable

Default Setting

IPv6 is disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

This command enables IPv6 on the current VLAN interface and automatically generates a link-local unicast address. The address prefix uses FE80, and the host portion of the address is generated by converting the switch's MAC

address to modified EUI-64 format (see page 908). This address type makes the switch accessible over IPv6 for all devices attached to the same local subnet.

- If a duplicate address is detected on the local segment, this interface will be disabled and a warning message displayed on the console.
- ◆ The **no ipv6 enable** command does not disable IPv6 for an interface that has been explicitly configured with an IPv6 address.

Example

In this example, IPv6 is enabled on VLAN 1, and the link-local address FE80::2E0:CFF:FE00:FD/64 is automatically generated by the switch.

```
Console(config)#interface vlan 1
Console(config-if)#ipv6 enable
Console(config-if)#end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled
Link-local address:
  fe80::269:3ef9:fe19:6779%1/64
Global unicast address(es):
  2001:db8:0:1:7272:cfff:fe83:3466/64, subnet is 2001:db8:0:1::/64[EUI]
  2001:db8:2222:7272::72/96, subnet is 2001:db8:2222:7272::/96
Joined group address(es):
ff02::1:ff19:6779
ff02::1:ff00:72
ff02::1:ff83:3466
ff02::1
IPv6 link MTU is 1280 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Related Commands

ipv6 address link-local (910) show ipv6 interface (914)

ipv6 mtu This command sets the size of the maximum transmission unit (MTU) for IPv6 packets sent on an interface. Use the **no** form to restore the default setting.

Syntax

```
ipv6 mtu size
no ipv6 mtu
size - Specifies the MTU size. (Range: 1280-65535 bytes)
```

Default Setting

1500 bytes

Command Mode

Interface Configuration (VLAN)

Command Usage

- If a non-default value is configured, an MTU option is included in the router advertisements sent from this device.
- ◆ The maximum value set by this command cannot exceed the MTU of the physical interface, which is currently fixed at 1500 bytes.
- ◆ IPv6 routers do not fragment IPv6 packets forwarded from other routers. However, traffic originating from an end-station connected to an IPv6 router may be fragmented.
- ◆ All devices on the same physical medium must use the same MTU in order to operate correctly.
- ◆ IPv6 must be enabled on an interface before the MTU can be set.

Example

The following example sets the MTU for VLAN 1 to 1280 bytes:

```
Console(config)#interface vlan 1
Console(config-if)#ipv6 mtu 1280
Console(config-if)#
```

Related Commands

show ipv6 mtu (916) jumbo frame (136) **show ipv6 interface** This command displays the usability and configured settings for IPv6 interfaces.

Syntax

show ipv6 interface [brief [vlan vlan-id [ipv6-prefix/prefix-length]]]

brief - Displays a brief summary of IPv6 operational status and the addresses configured for each interface.

```
vlan-id - VLAN ID (Range: 1-4094)
```

ipv6-prefix - The IPv6 network portion of the address assigned to the interface. The prefix must be formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

prefix-length - A decimal value indicating how many of the contiguous bits (from the left) of the address comprise the prefix (i.e., the network portion of the address).

Command Mode

Normal Exec, Privileged Exec

Example

This example displays all the IPv6 addresses configured for the switch.

```
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled
Link-local address:
  fe80::269:3ef9:fe19:6779%1/64
Global unicast address(es):
  2001:db8:0:1:7272:cfff:fe83:3466/64, subnet is 2001:db8:0:1::/64[EUI]
  2001:db8:2222:7272::72/96, subnet is 2001:db8:2222:7272::/96
Joined group address(es):
ff02::1:ff19:6779
ff02::1:ff00:72
ff02::1:ff83:3466
ff02::1
IPv6 link MTU is 1280 bytes
ND DAD is enabled, number of DAD attempts: 3.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Table 183: show ipv6 interface - display description

Field	Description
VLAN	A VLAN is marked "up" if the switch can send and receive packets on this interface, "down" if a line signal is not present, or "administratively down" if the interface has been disabled by the administrator.
IPv6	IPv6 is marked "enable" if the switch can send and receive IP traffic on this interface, "disable" if the switch cannot send and receive IP traffic on this interface, or "stalled" if a duplicate link-local address is detected on the interface.
Link-local address	Shows the link-local address assigned to this interface
Global unicast address(es)	Shows the global unicast address(es) assigned to this interface
Joined group address(es)	In addition to the unicast addresses assigned to an interface, a node is required to join the all-nodes multicast addresses FF01::1 and FF02::1 for all IPv6 nodes within scope 1 (interface-local) and scope 2 (link-local), respectively. FF01::1/16 is the transient interface-local multicast address for all attached IPv6 nodes, and FF02::1/16 is the link-local multicast address for all attached IPv6 nodes. The interface-local multicast address is only used for loopback transmission of multicast traffic. Link-local multicast addresses cover the same types as used by link-local unicast addresses, including all nodes (FF02::1), all routers (FF02::2), and solicited nodes (FF02::1:FFXX:XXXX) as described below.
	A node is also required to compute and join the associated solicited-node multicast addresses for every unicast and anycast address it is assigned. IPv6 addresses that differ only in the high-order bits, e.g. due to multiple high-order prefixes associated with different aggregations, will map to the same solicited-node address, thereby reducing the number of multicast addresses a node must join. In this example, FF02::1:FF90:0/104 is the solicited-node multicast address which is formed by taking the low-order 24 bits of the address and appending those bits to the prefix.
ND DAD	Indicates whether (neighbor discovery) duplicate address detection is enabled.
number of DAD attempts	The number of consecutive neighbor solicitation messages sent on the interface during duplicate address detection.
ND retransmit interval	The interval between IPv6 neighbor solicitation retransmissions sent on an interface during duplicate address detection.
ND advertised retransmit interval	The retransmit interval is included in all router advertisements sent out of an interface so that nodes on the same link use the same time value.
ND reachable time	The amount of time a remote IPv6 node is considered reachable after a reachability confirmation event has occurred
ND advertised reachable time	The reachable time is included in all router advertisements sent out of an interface so that nodes on the same link use the same time value.
ND advertised router lifetime	The length of time during which the prefix is valid for on-link determination.

This example displays a brief summary of IPv6 addresses configured on the switch.

Interface	VLAN	IPv6	IPv6 Address	
 VLAN 1	Up	 Up	2001:DB8:2222:7273::72/96	
VLAN 1	Up	Up	FE80::2E0:CFF:FE00:FD%1/64	

Related Commands

show ip interface (893)

show ipv6 mtu This command displays the maximum transmission unit (MTU) cache for destinations that have returned an ICMP packet-too-big message along with an acceptable MTU to this switch.

Command Mode

Normal Exec, Privileged Exec

Example

The following example shows the MTU cache for this device:

```
Console#show ipv6 mtu
MTU Since Destination Address
1400
      00:04:21 5000:1::3
1280
      00:04:50 FE80::203:A0FF:FED6:141D
Console#
```

Table 184: show ipv6 mtu - display description*

Field	Description
MTU	Adjusted MTU contained in the ICMP packet-too-big message returned from this destination, and now used for all traffic sent along this path.
Since	Time since an ICMP packet-too-big message was received from this destination.
Destination Address	Address which sent an ICMP packet-too-big message.

No information is displayed if an IPv6 address has not been assigned to the switch.

show ipv6 traffic This command displays statistics about IPv6 traffic passing through this switch.

Command Mode

Normal Exec, Privileged Exec

Example

The following example shows statistics for all IPv6 unicast and multicast traffic, as well as ICMP, UDP and TCP statistics:

```
Console#show ipv6 traffic
IPv6 Statistics:
IPv6 received
                     total received
                     header errors
                     too big errors
                     no routes
                     address errors
                     unknown protocols
```

truncated packets

discards

delivers

reassembly request datagrams

reassembly succeeded
reassembly failed

IPv6 sent

forwards datagrams

requests discards no routes

generated fragments fragment succeeded fragment failed

ICMPv6 Statistics: ICMPv6 received

input errors

destination unreachable messages

packet too big messages
time exceeded messages
parameter problem message
echo request messages
echo reply messages
router solicit messages
router advertisement messages
neighbor solicit messages
neighbor advertisement messages
redirect messages

group membership query messages group membership response messages group membership reduction messages

multicast listener discovery version 2 reports

ICMPv6 sent

output

destination unreachable messages

packet too big messages
time exceeded messages
parameter problem message
echo request messages
echo reply messages
router solicit messages
router advertisement messages
neighbor solicit messages
neighbor advertisement messages

redirect messages

group membership query messages group membership response messages group membership reduction messages

multicast listener discovery version 2 reports

UDP Statistics:

input

no port errors other errors output

Console#

Table 185: show ipv6 traffic - display description

Field	Description
IPv6 Statistics	
IPv6 received	
total received	The total number of input datagrams received by the interface, including those received in error.
header errors	The number of input datagrams discarded due to errors in their IPv6 headers, including version number mismatch, other format errors, hop count exceeded, IPv6 options, etc.
too big errors	The number of input datagrams that could not be forwarded because their size exceeded the link MTU of outgoing interface.
no routes	The number of input datagrams discarded because no route could be found to transmit them to their destination.
address errors	The number of input datagrams discarded because the IPv6 address in their IPv6 header's destination field was not a valid address to be received at this entity. This count includes invalid addresses (e.g., ::0) and unsupported addresses (e.g., addresses with unallocated prefixes). For entities which are not IPv6 routers and therefore do not forward datagrams, this counter includes datagrams discarded because the destination address was not a local address.
unknown protocols	The number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol. This counter is incremented at the interface to which these datagrams were addressed which might not be necessarily the input interface for some of the datagrams.
truncated packets	The number of input datagrams discarded because datagram frame didn't carry enough data.
discards	The number of input IPv6 datagrams for which no problems were encountered to prevent their continued processing, but which were discarded (e.g., for lack of buffer space). Note that this counter does not include any datagrams discarded while awaiting re-assembly.
delivers	The total number of datagrams successfully delivered to IPv6 user-protocols (including ICMP). This counter is incremented at the interface to which these datagrams were addressed which might not be necessarily the input interface for some of the datagrams.
reassembly request datagrams	The number of IPv6 fragments received which needed to be reassembled at this interface. Note that this counter is incremented at the interface to which these fragments were addressed which might not be necessarily the input interface for some of the fragments.
reassembly succeeded	The number of IPv6 datagrams successfully reassembled. Note that this counter is incremented at the interface to which these datagrams were addressed which might not be necessarily the input interface for some of the fragments.
reassembly failed	The number of failures detected by the IPv6 re-assembly algorithm (for whatever reason: timed out, errors, etc.). Note that this is not necessarily a count of discarded IPv6 fragments since some algorithms (notably the algorithm in RFC 815) can lose track of the number of fragments by combining them as they are received. This counter is incremented at the interface to which these fragments were addressed which might not be necessarily the input interface for some of the fragments.

Table 185: show ipv6 traffic - display description (Continued)

Field	Description
IPv6 sent	
forwards datagrams	The number of output datagrams which this entity received and forwarded to their final destinations. In entities which do not act as IPv6 routers, this counter will include only those packets which were Source-Routed via this entity, and the Source-Route processing was successful. Note that for a successfully forwarded datagram the counter of the outgoing interface is incremented.
requests	The total number of IPv6 datagrams which local IPv6 user-protocols (including ICMP) supplied to IPv6 in requests for transmission. Note that this counter does not include any datagrams counted in ipv6IfStatsOutForwDatagrams.
discards	The number of output IPv6 datagrams for which no problem was encountered to prevent their transmission to their destination, but which were discarded (e.g., for lack of buffer space). Note that this counter would include datagrams counted in ipv6IfStatsOutForwDatagrams if any such packets met this (discretionary) discard criterion.
no routes	The number of input datagrams discarded because no route could be found to transmit them to their destination.
generated fragments	The number of output datagram fragments that have been generated as a result of fragmentation at this output interface.
fragment succeeded	The number of IPv6 datagrams that have been successfully fragmented at this output interface.
fragment failed	The number of IPv6 datagrams that have been discarded because they needed to be fragmented at this output interface but could not be.
ICMPv6 Statistics	
ICMPv6 received	
input	The total number of ICMP messages received by the interface which includes all those counted by ipv6lflcmpInErrors. Note that this interface is the interface to which the ICMP messages were addressed which may not be necessarily the input interface for the messages.
errors	The number of ICMP messages which the interface received but determined as having ICMP-specific errors (bad ICMP checksums, bad length, etc.).
destination unreachable messages	The number of ICMP Destination Unreachable messages received by the interface.
packet too big messages	The number of ICMP Packet Too Big messages received by the interface.
time exceeded messages	The number of ICMP Time Exceeded messages received by the interface.
parameter problem message	The number of ICMP Parameter Problem messages received by the interface.
echo request messages	The number of ICMP Echo (request) messages received by the interface.
echo reply messages	The number of ICMP Echo Reply messages received by the interface.
router solicit messages	The number of ICMP Router Solicit messages received by the interface.
router advertisement messages	The number of ICMP Router Advertisement messages received by the interface.

Table 185: show ipv6 traffic - display description (Continued)

Field	Description
neighbor solicit messages	The number of ICMP Neighbor Solicit messages received by the interface.
neighbor advertisement messages	The number of ICMP Neighbor Advertisement messages received by the interface.
redirect messages	The number of Redirect messages received by the interface.
group membership query messages	The number of ICMPv6 Group Membership Query messages received by the interface.
group membership response messages	The number of ICMPv6 Group Membership Response messages received by the interface.
group membership reduction messages	The number of ICMPv6 Group Membership Reduction messages received by the interface.
multicast listener discovery version 2 reports	The number of MLDv2 reports received by the interface.
ICMPv6 sent	
output	The total number of ICMP messages which this interface attempted to send. Note that this counter includes all those counted by icmpOutErrors.
destination unreachable messages	The number of ICMP Destination Unreachable messages sent by the interface.
packet too big messages	The number of ICMP Packet Too Big messages sent by the interface.
time exceeded messages	The number of ICMP Time Exceeded messages sent by the interface.
parameter problem message	The number of ICMP Parameter Problem messages sent by the interface.
echo request messages	The number of ICMP Echo (request) messages sent by the interface.
echo reply messages	The number of ICMP Echo Reply messages sent by the interface.
router solicit messages	$The number of ICMP\ Router\ Solicitation\ messages\ sent\ by\ the\ interface.$
router advertisement messages	The number of ICMP Router Advertisement messages sent by the interface.
neighbor solicit messages	The number of ICMP Neighbor Solicit messages sent by the interface.
neighbor advertisement messages	The number of ICMP Router Advertisement messages sent by the interface.
redirect messages	The number of Redirect messages sent. For a host, this object will always be zero, since hosts do not send redirects.
group membership query messages	The number of ICMPv6 Group Membership Query messages sent by the interface.
group membership response messages	The number of ICMPv6 Group Membership Response messages sent.
group membership reduction messages	The number of ICMPv6 Group Membership Reduction messages sent.
multicast listener discovery version 2 reports	The number of MLDv2 reports sent by the interface.

Table 185: show ipv6 traffic - display description (Continued)

Field	Description
UDP Statistics	
input	The total number of UDP datagrams delivered to UDP users.
no port errors	The total number of received UDP datagrams for which there was no application at the destination port.
other errors	The number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port.
output	The total number of UDP datagrams sent from this entity.

clear ipv6 traffic This command resets IPv6 traffic counters.

Command Mode

Privileged Exec

Command Usage

This command resets all of the counters displayed by the show ipv6 traffic command.

Example

Console#clear ipv6 traffic Console#

ping6 This command sends (IPv6) ICMP echo request packets to another node on the network.

Syntax

ping6 {ipv6-address | host-name} [count count] [size size]

ipv6-address - The IPv6 address of a neighbor device. You can specify either a link-local or global unicast address formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

host-name - A host name string which can be resolved into an IPv6 address through a domain name server.

count - Number of packets to send. (Range: 1-16)

size - Number of bytes in a packet. (Range: 48-18024 bytes) The actual packet size will be eight bytes larger than the size specified because the router adds header information.

Default Setting

count: 5 size: 100 bytes

Command Mode

Privileged Exec

Command Usage

- Use the **ping6** command to see if another site on the network can be reached, or to evaluate delays over the path.
- ◆ The same link-local address may be used by different interfaces/nodes in different zones (RFC 4007). Therefore, when specifying a link-local address, include zone-id information indicating the VLAN identifier after the % delimiter. For example, FE80::7272%1 identifies VLAN 1 as the interface from which the ping is sent.
- ◆ When pinging a host name, be sure the DNS server has been enabled (see page 858). If necessary, local devices can also be specified in the DNS static host table (see page 860).
- ♦ When using ping6 with a host name, the router first attempts to resolve the alias into an IPv6 address before trying to resolve it into an IPv4 address.

Example

traceroute6 This command shows the route packets take to the specified destination.

Syntax

traceroute6 {ipv6-address | host-name} [max-failures failure-count]

ipv6-address - The IPv6 address of a neighbor device. You can specify either a link-local or global unicast address formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

host-name - A host name string which can be resolved into an IPv6 address through a domain name server.

failure-count - The maximum number of failures before which the trace route is terminated. (Range: 1-255)

Default Setting

Maximum failures: 5

Command Mode

Privileged Exec

Command Usage

- Use the traceroute6 command to determine the path taken to reach a specified destination.
- ◆ The same link-local address may be used by different interfaces/nodes in different zones (RFC 4007). Therefore, when specifying a link-local address, include zone-id information indicating the VLAN identifier after the % delimiter. For example, FE80::7272%1 identifies VLAN 1 as the interface from which the ping is sent.
- ◆ A trace terminates when the destination responds, when the maximum timeout (TTL) is exceeded, or the maximum number of hops is exceeded.
- ◆ The traceroute command first sends probe datagrams with the TTL value set at one. This causes the first router to discard the datagram and return an error message. The trace function then sends several probe messages at each subsequent TTL level and displays the round-trip time for each message. Not all devices respond correctly to probes by returning an "ICMP port unreachable" message. If the timer goes off before a response is returned, the trace function prints a series of asterisks and the "Request Timed Out" message. A long sequence of these messages, terminating only when the maximum timeout has been reached, may indicate this problem with the target device.

Example

```
Console#traceroute6 FE80::2E0:CFF:FE9C:CA10%1/64
Press "ESC" to abort.

Traceroute to FE80::2E0:CFF:FE9C:CA10%1/64, 30 hops max, timeout is 3 seconds, 5 max failure(s) before termination.

Hop Packet 1 Packet 2 Packet 3 IPv6 Address

1 <10 ms <10 ms <10 ms FE80::2E0:CFF:FE9C:CA10%1/64

Trace completed.
Console#
```

Neighbor Discovery

ipv6 hop-limit This command configures the maximum number of hops used in router advertisements that are originated by this router. Use the **no** form to restore the default setting.

Syntax

ipv6 hop-limit hops

no ipv6 hop-limit

hops - The maximum number of hops in router advertisements and all IPv6 packets. (Range: 1-255)

Default Setting

Command Mode

Global Configuration

Example

The following sets the hop limit for router advertisements to 64:

```
Console(config) #ipv6 hop-limit 64
Console(config)#
```

ipv6 neighbor This command configures a static entry in the IPv6 neighbor discovery cache. Use the **no** form to remove a static entry from the cache.

Syntax

ipv6 neighbor *ipv6-address* **vlan** *vlan-id hardware-address*

no ipv6 mtu

ipv6-address - The IPv6 address of a neighbor device that can be reached through one of the network interfaces configured on this switch. You can specify either a link-local or global unicast address formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

vlan-id - VLAN ID (Range: 1-4094)

hardware-address - The 48-bit MAC layer address for the neighbor device. This address must be formatted as six hexadecimal pairs separated by hyphens.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- Address Resolution Protocol (ARP) has been replaced in IPv6 with the Neighbor Discovery Protocol (NDP). The **ipv6 neighbor** command is similar to the macaddress-table static command that is implemented using ARP.
- Static entries can only be configured on an IPv6-enabled interface.
- ◆ The switch does not determine whether a static entry is reachable before placing it in the IPv6 neighbor discovery cache.
- If the specified entry was dynamically learned through the IPv6 neighbor discovery process, and already exists in the neighbor discovery cache, it is converted to a static entry. Static entries in the IPv6 neighbor discovery cache are not modified if subsequently detected by the neighbor discovery process.
- Disabling IPv6 on an interface with the no ipv6 enable command (see page 911) deletes all dynamically learned entries in the IPv6 neighbor discovery cache for that interface, but does not delete static entries.

Example

The following maps a static entry for global unicast address to a MAC address:

```
Console(config)#ipv6 neighbor 2009:DB9:2229::81 vlan 1 30-65-14-01-11-86
Console(config)#end
Console#show ipv6 neighbors
State: I1 - Incomplete, I2 - Invalid, R - Reachable, S - Stale, D - Delay,
        P1 - Probe, P2 - Permanent, U - Unknown
                               Age Link-layer Addr State

    IPv6 Address
    Age
    Link-layer Addr
    State

    2009:DB9:2229::80
    956
    12-34-11-11-43-21
    R

    2009:DB9:2229::81
    Permanent
    30-65-14-01-11-86
    R

IPv6 Address
                                                                                       VIAN
                                                                                           1
                                                                                           1
                                                12-34-11-11-43-21
FE80::1034:11FF:FE11:4321 961
                                                                           R
                                                                                           1
Console#
```

Related Commands

show ipv6 neighbors (936)

ipv6 nd dad attempts This command configures the number of consecutive neighbor solicitation messages sent on an interface during duplicate address detection. Use the **no** form to restore the default setting.

Syntax

ipv6 nd dad attempts count

no ipv6 nd dad attempts

count - The number of neighbor solicitation messages sent to determine whether or not a duplicate address exists on this interface. (Range: 0-600)

Default Setting

3

Command Mode

Interface Configuration (VLAN)

Command Usage

- Configuring a value of 0 disables duplicate address detection.
- Duplicate address detection determines if a new unicast IPv6 address already exists on the network before it is assigned to an interface.
- Duplicate address detection is stopped on any interface that has been suspended (see the vlan command). While an interface is suspended, all unicast IPv6 addresses assigned to that interface are placed in a "pending" state. Duplicate address detection is automatically restarted when the interface is administratively re-activated.
- An interface that is re-activated restarts duplicate address detection for all unicast IPv6 addresses on the interface. While duplicate address detection is performed on the interface's link-local address, the other IPv6 addresses remain in a "tentative" state. If no duplicate link-local address is found, duplicate address detection is started for the remaining IPv6 addresses.
- If a duplicate address is detected, it is set to "duplicate" state, and a warning message is sent to the console. If a duplicate link-local address is detected, IPv6 processes are disabled on the interface. If a duplicate global unicast address is detected, it is not used. All configuration commands associated with a duplicate address remain configured while the address is in "duplicate" state.
- If the link-local address for an interface is changed, duplicate address detection is performed on the new link-local address, but not for any of the IPv6 global unicast addresses already associated with the interface.

Example

The following configures five neighbor solicitation attempts for addresses configured on VLAN 1. The show ipv6 interface command indicates that the duplicate address detection process is still on-going.

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 nd dad attempts 5
Console(config-if)#end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled
Link-local address:
 fe80::200:e8ff:fe90:0/64
Global unicast address(es):
  2009:db9:2229::79, subnet is 2009:db9:2229:0::/64
Joined group address(es):
 ff01::1/16
 ff02::1/16
 ff02::1:ff00:79/104
 ff02::1:ff90:0/104
IPv6 link MTU is 1500 bytes.
ND DAD is enabled, number of DAD attempts: 5.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
Console#
```

Related Commands

ipv6 nd ns-interval (929) show ipv6 neighbors (936)

ipv6 nd managed-config-flag

ipv6 ndThis command configures IPv6 router advertisements to indicate to attached hosts that they can use stateful autoconfiguration to obtain addresses. Use the **no** form to clear this flag from router advertisements.

Syntax

[no] ipv6 nd managed-config-flag

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- The "managed-address configuration" flag tells hosts that they should use stateful autoconfiguration to obtain addresses from a DHCPv6 server.
- ◆ The ipv6 nd other-config-flag command is used to tell hosts that they should use stateless address autoconfiguration to get IPv6 address (based on the IPv6

prefixes found in router advertisements) and stateful autoconfiguration to get other non-address parameters (such as DNS server addresses) from DHCPv6 servers.

- The absence of the "managed-address configuration" flag tells hosts to use only stateless address autoconfiguration (based on IPv6 prefixes found in router advertisements).
- ◆ The "managed address configuration" flag is only a suggestion to attached hosts. They may still use stateful and/or stateless address autoconfiguration. If hosts must be forced to use DHCPv6 for security reasons, ensure that no route prefixes are sent in router advertisements.

Example

The following tells hosts to use stateful autoconfiguration to obtain addresses:

```
Console(config)#interface vlan 1
Console(config)#ipv6 nd managed-config-flag
Console(config)#
```

ipv6 nd other-config-flag

ipv6 nd This command configures IPv6 router advertisements to indicate to attached hosts that they can obtain stateful autoconfiguration information other than addresses. Use the **no** form to clear this flag from router advertisements.

SYNTAX

[no] ipv6 nd other-config-flag

DEFAULT SETTING

Disabled

COMMAND MODE

Interface Configuration (VLAN)

COMMAND USAGE

- The "other-stateful-configuration" flag tells hosts that they should use stateful autoconfiguration to obtain information other than addresses from a DHCPv6 server.
- Some hosts interpret the "other stateful configuration" flag to indicate that they should use stateless address autoconfiguration to get IPv6 address (based on the IPv6 prefixes found in router advertisements) and stateful autoconfiguration to get other non-address parameters from DHCPv6 servers. In this case, the absence of both the "managed address configuration" flag and the "other stateful configuration" flag is interpreted to mean that they should use only stateless autoconfiguration to obtain addresses.

EXAMPLE

The following tells hosts to use stateful autoconfiguration to obtain other nonaddress information from a DHCPv6 server:

```
Console(config)#interface vlan 1
Console(config) #ipv6 nd other-config-flag
Console(config)#
```

ipv6 nd ns-interval This command configures the interval between transmitting IPv6 neighbor solicitation messages on an interface. Use the **no** form to restore the default value.

Syntax

ipv6 nd ns-interval milliseconds

no ipv6 nd ns-interval

milliseconds - The interval between transmitting IPv6 neighbor solicitation messages. (Range: 1000-3600000)

Default Setting

1000 milliseconds is used for neighbor discovery operations 0 milliseconds is advertised in router advertisements

Command Mode

Interface Configuration (VLAN)

Command Usage

- When a non-default value is configured, the specified interval is used both for router advertisements and by the router itself.
- This command specifies the interval between transmitting neighbor solicitation messages when resolving an address, or when probing the reachability of a neighbor. Therefore, avoid using very short intervals for normal IPv6 operations.
- Setting the neighbor solicitation interval to 0 means that the configured time is unspecified by this router.

Example

The following sets the interval between sending neighbor solicitation messages to 30000 milliseconds:

```
Console(config)#interface vlan 1
Console(config) #pv6 nd ns-interval 30000
Console(config)#end
Console#show ipv6 interface
VLAN 1 is up
IPv6 is enabled
```

Chapter 30 | IP Interface Commands

IPv6 Interface

```
Link-local address:
 fe80::200:e8ff:FE90:0/64
Global unicast address(es):
 2009:db9:2229::79, subnet is 2009:db9:2229:0::/64
Joined group address(es):
 ff01::1/16
 ff02::1/16
 ff02::1:ff00:79/104
  ff02::1:ff90:0/104
IPv6 link MTU is 1500 bytes.
ND DAD is enabled, number of DAD attempts: 5.
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised router lifetime is 1800 seconds
Console#
```

Related Commands

show running-config (129)

ipv6 nd raguard This command blocks incoming Router Advertisement and Router Redirect packets. Use the no form to disable this feature.

Syntax

[no] ipv6 nd raguard

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- ◆ IPv6 Router Advertisements (RA) convey information that enables nodes to auto-configure on the network. This information may include the default router address taken from the observed source address of the RA message, as well as on-link prefix information. However, unintended mis-configurations, or possibly malicious attacks on the network, may lead to bogus RAs being sent, which in turn can cause operational problems for hosts on the network.
- This command can be used to block RAs and Router Redirect (RR) messages on the specified interface. Determine which interfaces are connected to known routers, and enable RA Guard on all other untrusted interfaces.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if) #pv6 nd raguard
Console(config-if)#
```

ipv6 nd This command configures the amount of time that a remote IPv6 node is reachable-time considered reachable after some reachability confirmation event has occurred. Use the **no** form to restore the default setting.

Syntax

ipv6 nd reachable-time milliseconds

no ipv6 nd reachable-time

milliseconds - The time that a node can be considered reachable after receiving confirmation of reachability. (Range: 0-3600000)

Default Setting

30000 milliseconds is used for neighbor discovery operations 0 milliseconds is advertised in router advertisements

Command Mode

Interface Configuration (VLAN)

Command Usage

- The time limit configured by this command allows the router to detect unavailable neighbors.
- This time limit is included in all router advertisements sent out through an interface, ensuring that nodes on the same link use the same time value.
- Setting the time limit to 0 means that the configured time is unspecified by this router.

Example

The following sets the reachable time for a remote node to 1000 milliseconds:

```
Console(config) #interface vlan 1
Console(config) #pv6 nd reachable-time 1000
Console(config)#
```

ipv6 nd prefix This command configures the IPv6 prefixes to include in router advertisements. Use the **no** form to remove a prefix.

Syntax

ipv6 nd prefix ipv6-address/prefix-length {default | [valid-lifetime preferred-lifetime [no-autoconfig | off-link]]}

no ipv6 nd prefix ipv6-address/prefix-length

ipv6-address - An IPv6 address including the network prefix and host address bits.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix (i.e., the network portion of the address).

default - Uses default values for remaining parameters.

valid-lifetime - The amount of time that the specified IPv6 prefix is advertised as being valid. (Range: 0-4294967295 seconds)

preferred-lifetime - The amount of time that the specified IPv6 prefix is advertised as being preferred. The preferred lifetime is counted down in real time. (Range: 0-4294967295 seconds)

no-autoconfig - Indicates to hosts on the local link that the specified prefix cannot be used for IPv6 autoconfiguration.

off-link - Indicates that the specified prefix is assigned to the link. Nodes sending traffic to addresses that contain the prefix consider the destination to be locally reachable on the link.

Default Setting

valid-lifetime2592000 secondspreferred-lifetime2592000 secondsno-autoconfigDisabledoff-linkDisabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- Prefixes configured as addresses on an interface using the ipv6 address command are advertised in router advertisements. If prefixes are configured for advertisement using the ipv6 nd prefix command, then only these prefixes are advertised.
- ◆ The preferred lifetime and valid lifetime are counted down in real time. After the preferred lifetime expires, no new connections are made using this prefix. When the valid lifetime expires, this prefix will no longer be advertised.
- All prefixes are inserted in the routing table as Connected (i.e., on-line), unless specified with the off-link option. If the off-link option is specified, and the prefix is already present in the routing table as a Connected prefix, it will be removed.
- ◆ Do not include the link-local prefix in the list of advertised prefixes.

Example

The following configures a network prefix with a valid lifetime of 1000 seconds, and a preferred lifetime of 900 seconds:

```
Console(config)#interface vlan 1
Console(config) #ipv6 nd prefix 2011:0DBF::/35 1000 900
Console(config)#
```

ipv6 nd ra interval This command configures the interval between the transmission of IPv6 router advertisements on an interface. Use the **no** form to restore the default interval.

Syntax

ipv6 nd ra interval minimum-interval [maximum-interval]

no ipv6 nd ra interval

minimum-interval - The maximum interval between IPv6 router advertisements. (Range: 4-1800 seconds)

maximum-interval - The minimum interval between IPv6 router advertisements. (Range: 3-1350 seconds)

Command Mode

Interface Configuration (VLAN)

Default Setting

maximum interval: 600 seconds minimum interval: 198 seconds

Command Usage

- The interval between transmissions should be less than or equal to the IPv6 router advertisement lifetime if you configure a route as a default router by using the ipv6 nd ra lifetime command.
- To prevent synchronization with other IPv6 nodes, the actual interval used is randomly selected from a value between the minimum value set by the system (33% of the maximum RA interval) and the maximum value set by the ipv6 nd ra interval command.

Example

The following sets the maximum RA interval to 1800 seconds:

```
Console(config) #interface vlan 1
Console(config) #ipv6 nd ra interval 1800
Console(config)#
```

ipv6 nd ra lifetime This command configures the router lifetime value used in IPv6 router advertisements sent from an interface. Use the **no** form to restore the default setting.

Syntax

ipv6 nd ra lifetime lifetime

no ipv6 nd ra lifetime

lifetime - Router lifetime. (Range: 0-90000 seconds)

Command Mode

Interface Configuration (VLAN)

Default Setting

1800 seconds

Command Usage

- This command can be used to indicate the usefulness of this router as a default router on this interface.
- Set the router lifetime to 0 to indicate that this router should not be considered a default router. Set the lifetime to a non-zero value to indicate that it should be considered a default router. When a non-zero value is used, the lifetime should not be less than the router advertisement interval.

Example

The following sets the router lifetime to 8000 seconds:

```
Console(config)#interface vlan 1
Console(config) #ipv6 nd ra lifetime 8000
Console(config)#
```

ipv6 nd ra This command configures the default router preference for the router on an **router-preference** interface. Use the **no** form to restore the default setting.

Syntax

ipv6 nd ra router-preference {high | medium | low} no ipv6 nd ra router-preference

high - Preference for the router is high.

medium - Preference for the router is medium.

low - Preference for the router is low.

Command Mode

Interface Configuration (VLAN)

Default Setting

medium

Command Usage

Default router preference may be used to prioritize routers which provide equivalent, but not equal-cost, routing, and policy dictates that hosts should prefer one of the routers.

Example

The following sets the default router preference to high:

```
Console(config)#interface vlan 1
Console(config) #ipv6 nd ra router-preference high
Console(config)#
```

ipv6 nd ra suppress This command suppresses router advertisement transmissions on an interface. Use the **no** form to re-enable router advertisements.

Syntax

[no] ipv6 nd ra suppress

Command Mode

Interface Configuration (VLAN, IPv6/v4 Tunnel)

Default Setting

Not suppressed

Command Usage

This command suppresses periodic unsolicited router advertisements. It does not suppress advertisements sent in response to a router solicitation.

Example

The following suppresses router advertisements on the current interface:

```
Console(config)#interface vlan 1
Console(config)#ipv6 nd ra suppress
Console(config)#
```

clear ipv6 neighbors This command deletes all dynamic entries in the IPv6 neighbor discovery cache.

Command Mode

Privileged Exec

Example

The following deletes all dynamic entries in the IPv6 neighbor cache:

```
Console#clear ipv6 neighbors
Console#
```

show ipv6 nd raguard This command displays the configuration setting for RA Guard.

Syntax

```
show ipv6 nd raguard [interface]
```

interface

ethernet unit/port

unit - Unit identifier. (Range: 1-8)

port - Port number. (Range: 1-28/52)

port-channel channel-id (Range: 1-16)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 nd raguard interface ethernet 1/1
Interface RA Guard
Eth 1/ 1 Yes
Console#
```

show ipv6 neighbors This command displays information in the IPv6 neighbor discovery cache.

Syntax

show ipv6 neighbors [vlan vlan-id | ipv6-address]

```
vlan-id - VLAN ID (Range: 1-4094)
```

ipv6-address - The IPv6 address of a neighbor device. You can specify either a link-local or global unicast address formatted according to RFC 2373 "IPv6 Addressing Architecture," using 8 colon-separated 16-bit hexadecimal values. One double colon may be used in the address to indicate the appropriate number of zeros required to fill the undefined fields.

Default Setting

All IPv6 neighbor discovery cache entries are displayed.

Command Mode

Privileged Exec

Example

The following shows all known IPv6 neighbors for this switch:

```
Console#show ipv6 neighbors
State: I1 - Incomplete, I2 - Invalid, R - Reachable, S - Stale, D - Delay,
P1 - Probe, P2 - Permanent, U - Unknown
IPv6 Address Age Link-layer Addr State VLAN
FE80::2E0:CFF:FE9C:CA10 4 00-E0-0C-9C-CA-10 R 1
Console#
```

Table 186: show ipv6 neighbors - display description

Field	Description
rieia	Description
IPv6 Address	IPv6 address of neighbor
Age	The time since the address was verified as reachable (in seconds). A static entry is indicated by the value "Permanent."
Link-layer Addr	Physical layer MAC address.
State	The following states are used for dynamic entries: I1 (Incomplete) - Address resolution is being carried out on the entry. A neighbor solicitation message has been sent to the multicast address of the target, but it has not yet returned a neighbor advertisement message. I2 (Invalid) - An invalidated mapping. Setting the state to invalid dis-associates the interface identified with this entry from the indicated mapping (RFC 4293). R (Reachable) - Positive confirmation was received within the last ReachableTime interval that the forward path to the neighbor was functioning. While in REACH state, the device takes no special action when sending packets. S (Stale) - More than the ReachableTime interval has elapsed since the last positive confirmation was received that the forward path was functioning. While in STALE state, the device takes no action until a packet is sent. D (Delay) - More than the ReachableTime interval has elapsed since the last positive confirmation was received that the forward path was functioning. A packet was sent within the last DELAY_FIRST_PROBE_TIME interval. If no reachability confirmation is received within this interval after entering the DELAY state, the switch will send a neighbor solicitation message and change the state to PROBE. P1 (Probe) - A reachability confirmation is actively sought by resending neighbor solicitation messages every RetransTimer interval until confirmation of reachability is received. U (Unknown) - Unknown state. The following states are used for static entries: I1 (Incomplete)-The interface for this entry is down. R (Reachable) - The interface for this entry is up. Reachability detection is not
	applied to static entries in the IPv6 neighbor discovery cache. P2 (Permanent) - Indicates a static entry.
VLAN	VLAN interface from which the address was reached.

Related Commands

show mac-address-table (509)

ND Snooping

Neighbor Discover (ND) Snooping maintains an IPv6 prefix table and user address binding table. These tables can be used for stateless address auto-configuration or for address filtering by IPv6 Source Guard.

ND snooping maintains a binding table in the process of neighbor discovery. When it receives an Neighbor Solicitation (NS) packet from a host, it creates a new binding. If it subsequently receives a Neighbor Advertisement (NA) packet, this means that the address is already being used by another host, and the binding is therefore deleted. If it does not receive an NA packet after a timeout period, the binding will be bound to the original host. ND snooping can also maintain a prefix table used for stateless address auto-configuration by monitoring Router Advertisement (RA) packets sent from neighboring routers.

ND snooping can also detect if an IPv6 address binding is no longer valid. When a binding has been timed out, it checks to see if the host still exists by sending an NS packet to the target host. If it receives an NA packet in response, it knows that the target still exists and updates the lifetime of the binding; otherwise, it deletes the binding.

This section describes commands used to configure ND Snooping.

Table 187: ND Snooping Commands

Command	Function	Mode
ipv6 nd snooping	Enables ND snooping globally or on a specified VLAN or range of VLANs	GC
ipv6 nd snooping auto-detect	Enables automatic validation of binding table entries by periodically sending NS messages and awaiting NA replies	GC
ipv6 nd snooping auto-detect retransmit count	Sets the number of times to send an NS message to determine if a binding is still valid	GC
ipv6 nd snooping auto-detect retransmit interval	Sets the interval between sending NS messages to determine if a binding is still valid	GC
ipv6 nd snooping prefix timeout	Sets the time to wait for an RA message before deleting an entry in the prefix table	GC
ipv6 nd snooping max-binding	Sets the maximum number of address entries which can be bound to a port	IC
ipv6 nd snooping trust	Configures a port as a trusted interface from which prefix information in RA messages can be added to the prefix table, or NS messages can be forwarded without validation	IC
clear ipv6 nd snooping binding	Clears all entries in the address binding table	PE
clear ipv6 nd snooping prefix	Clears all entries in the prefix table	PE

Table 187: ND Snooping Commands (Continued)

Command	Function	Mode
show ipv6 nd snooping	Shows configuration settings for ND snooping	PE
show ipv6 nd snooping binding	Shows entries in the binding table	PE
show ipv6 nd snooping prefix	Show entries in the prefix table	PE

ipv6 nd snooping This command enables ND snooping globally or on a specified VLAN or range of VLANs. Use the **no** form to disable this feature.

Syntax

[no] ipv6 nd snooping [vlan {vlan-id | vlan-range}]

vlan-id - VLAN ID. (Range: 1-4094)

vlan-range - A consecutive range of VLANs indicated by the use a hyphen, or a random group of VLANs with each entry separated by a comma.

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- Use this command without any keywords to enable ND snooping globally on the switch. Use the VLAN keyword to enable ND snooping on a specific VLAN or a range of VLANs.
- Once ND snooping is enabled both globally and on the required VLANs, the switch will start monitoring RA messages to build an address prefix table as described below:
 - If an RA message is received on an untrusted interface, it is dropped. If received on a trusted interface, the switch adds an entry in the prefix table according to the Prefix Information option in the RA message. The prefix table records prefix, prefix length, valid lifetime, as well as the VLAN and port interface which received the message.
 - If an RA message is not received updating a table entry with the same prefix for a specified timeout period, the entry is deleted.
- Once ND snooping is enabled both globally and on the required VLANs, the switch will start monitoring NS messages to build a dynamic user binding table for use in Duplicate Address Detection (DAD) or for use by other security filtering protocols (e.g., IPv6 Source Guard) as described below:
 - If an NS message is received on an trusted interface, it is forwarded without further processing.

- If an NS message is received on an untrusted interface, and the address prefix does not match any entry in the prefix table, it drops the packet.
- If the message does match an entry in the prefix table, it adds an entry to the dynamic user binding table after a fixed delay, and forwards the packet. Each entry in the dynamic binding table includes the link-layer address, IPv6 address, lifetime, as well as the VLAN and port interface which received the message.
- If an RA message is received in response to the original NS message (indicating a duplicate address) before the dynamic binding timeout period expires, the entry is deleted. Otherwise, when the timeout expires, the entry is dropped if the auto-detection process is not enabled.
- If the auto-detection process is enabled, the switch periodically sends an NS message to determine is the client still exists. If it does not receive an RA message in response after the configured timeout, the entry is dropped. If the switch receives an RA message before the timeout expires, it resets the lifetime for the dynamic binding, and the auto-detection process resumes.

This example enables ND snooping globally and on VLAN 1.

```
Console(config)#ipv6 nd snooping
Console(config) #ipv6 nd snooping vlan 1
Console(config)#
```

ipv6 nd snooping This command enables automatic validation of dynamic user binding table entries auto-detect by periodically sending NS messages and awaiting NA replies. Use the **no** form to disable this feature.

Syntax

[no] ipv6 nd snooping auto-detect

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

If auto-detection is enabled, the switch periodically sends an NS message to determine is a client listed in the dynamic binding table still exists. If it does not receive an RA message in response after the configured timeout, the entry is dropped. If the switch receives an RA message before the timeout expires, it resets the lifetime for the dynamic binding, and the auto-detection process resumes.

```
Console(config) #ipv6 nd snooping auto-detect
Console(config)#
```

ipv6 nd snooping This command sets the number of times the auto-detection process sends an NS auto-detect message to determine if a dynamic user binding is still valid. Use the **no** form to retransmit count restore the default setting.

Syntax

ipv6 nd snooping auto-detect retransmit count retransmit-times no ipv6 nd snooping auto-detect retransmit count

retransmit-times – The number of times to send an NS message to determine if a client still exists. (Range: 1-5)

Default Setting

Command Mode

Global Configuration

Command Usage

The timeout after which the switch will delete a dynamic user binding if no RA message is received is set to the retransmit count x the retransmit interval (see the ipv6 nd snooping auto-detect retransmit interval command). Based on the default settings, this is 3 seconds.

Example

```
{\tt Console(config)\#ipv6\ nd\ snooping\ auto-detect\ retransmit\ count\ 5}
Console(config)#
```

ipv6 nd snooping This command sets the interval between which the auto-detection process sends auto-detect NS messages to determine if a dynamic user binding is still valid. Use the **no** form to retransmit interval restore the default setting.

Syntax

ipv6 nd snooping auto-detect retransmit interval retransmit-interval no ipv6 nd snooping auto-detect retransmit interval

retransmit-interval – The interval between which the switch sends an NS message to determine if a client still exists. (Range: 1-10 seconds)

Default Setting

1 second

Command Mode

Global Configuration

Command Usage

The timeout after which the switch will delete a dynamic user binding if no RA message is received is set to the retransmit count (see the ipv6 nd snooping autodetect retransmit count command) x the retransmit interval. Based on the default settings, this is 3 seconds.

Example

```
Console(config) #ipv6 nd snooping auto-detect retransmit interval 5
Console(config)#
```

ipv6 nd snooping This command sets the time to wait for an RA message before deleting an entry in **prefix timeout** the prefix table. Use the **no** form to restore the default setting.

Syntax

ipv6 nd snooping prefix timeout timeout

no ipv6 nd snooping prefix timeout

timeout – The time to wait for an RA message to confirm that a prefix entry is still valid. (Range: 3-1800 seconds)

Default Setting

Set to the valid lifetime field in received RA packet

Command Mode

Global Configuration

Command Usage

If ND snooping is enabled and an RA message is received on a trusted interface, the switch will add an entry in the prefix table based upon the Prefix Information contained in the message. If an RA message is not received for a table entry with the same prefix for the specified timeout period, the entry is deleted.

Example

```
Console(config) #ipv6 nd snooping prefix timeout 200
Console(config)#
```

max-binding

ipv6 nd snooping This command sets the maximum number of address entries in the dynamic user binding table which can be bound to a port. Use the **no** form to restore the default setting.

Syntax

ipv6 nd snooping max-binding max-bindings

no ipv6 nd snooping max-binding

max-bindings – The maximum number of address entries in the dynamic user binding table which can be bound to a port. (Range: 1-5)

Default Setting

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

```
Console(config) #ipv6 nd snooping prefix timeout 200
Console(config)#
```

ipv6 nd snooping trust This command configures a port as a trusted interface from which prefix information in RA messages can be added to the prefix table, or NS messages can be forwarded without validation. Use the **no** form to restore the default setting.

Syntax

[no] ipv6 nd snooping trust

Default Setting

Not trusted

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- In general, interfaces facing toward to the network core, or toward routers supporting the Network Discovery protocol, are configured as trusted interfaces.
- RA messages received from a trusted interface are added to the prefix table and forwarded toward their destination.
- NS messages received from a trusted interface are forwarded toward their destination. Nothing is added to the dynamic user binding table.

```
Console(config)#interface ethernet 1/1
Console(config-if)#ipv6 nd snooping trust
Console(config-if)#
```

clear ipv6 nd snooping binding

clear ipv6 nd This command clears all entries in the dynamic user address binding table.

Syntax

clear ipv6 nd snooping binding

Command Mode

Privileged Exec

Example

```
Console#clear ipv6 nd snooping binding
Console#show ipv6 nd snooping binding
MAC Address IPv6 Address Lifetime VLAN Interface
Console#
```

clear ipv6 nd snooping prefix

clear ipv6 nd This command clears all entries in the address prefix table.

Syntax

clear ipv6 nd snooping prefix [interface vlan vlan-id]

vlan-id - VLAN ID. (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#clear ipv6 nd snooping prefix
Console#show ipv6 nd snooping prefix
Prefix entry timeout: (seconds)
Prefix Len Valid-Time Expire VLAN Interface

Console#
```

show ipv6 nd snooping

show ipv6 nd This command shows the configuration settings for ND snooping.

Syntax

show ipv6 nd snooping

Command Mode

Privileged Exec

Example

```
Console#show ipv6 nd snooping
Global ND Snooping status: enabled
ND Snooping auto-detection: disabled
ND Snooping auto-detection retransmit count: 3
ND Snooping auto-detection retransmit interval: 1 (second)
ND Snooping is configured on the following VLANs:
VLAN 1,
                Trusted
Interface
                             Max-binding
Eth 1/1
                 Yes
Eth 1/2
                 No
                                        5
Eth 1/3
                 No
                                         5
Eth 1/4
                                         5
                  No
Eth 1/5
                  No
                                         5
```

show ipv6 nd snooping binding

show ipv6 nd This command shows all entries in the dynamic user binding table.

Syntax

show ipv6 nd snooping binding

Command Mode

Privileged Exec

Example

Console#show ipv6 nd snooping binding MAC Address IPv6 Address	Lifetime	VLAN	Interface
0013-49aa-3926 2001:b001::211:95ff:fe84:cb9e	100	1	Eth 1/1
0012-cf01-0203 2001::1	3400	2	Eth 1/2
Console#			

show ipv6 nd snooping prefix

show ipv6 nd This command shows all entries in the address prefix table.

Syntax

show ipv6 nd snooping prefix [interface vlan vlan-id]

vlan-id - VLAN ID. (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 nd snooping prefix Prefix entry timeout: 100 (second)
```

Chapter 30 | IP Interface Commands ND Snooping

Prefix	Len	Valid-Time	Expire	VLAN	Interface
2001:b000::	64	2592000	100	1	Eth 1/1
2001::	64	600	34	2	Eth 1/2
Console#					

VRRP Commands

Virtual Router Redundancy Protocol (VRRP) use a virtual IP address to support a primary router and multiple backup routers. The backup routers can be configured to take over the workload if the master router fails, or can also be configured to share the traffic load. The primary goal of router redundancy is to allow a host device which has been configured with a fixed gateway to maintain network connectivity in case the primary gateway goes down.

To configure VRRP, select an interface on each router in the group that will participate in the protocol as the master router or a backup router. To select a specific device as the master router, set the address of this interface as the virtual router address for the group. Now set the same virtual address and a priority on the backup routers, and configure an authentication string. You can also enable the preempt feature which allows a router to take over as the master router when it comes on line if it has a higher priority than the currently active master router.

Table 188: VRRP Commands

Command	Function	Mode
vrrp authentication	Configures a key used to authenticate VRRP packets received from other routers	IC
vrrp ip	Enables VRRP and sets the IP address of the virtual router	IC
vrrp preempt	Configures the router to take over as master virtual router for a VRRP group if it has a higher priority than the current master virtual router	IC
vrrp priority	Sets the priority of this router in the VRRP group	IC
vrrp timers advertise	Sets the interval between successive advertisements by the master virtual router	IC
show vrrp	Displays VRRP status information	PE
show vrrp interface	Displays VRRP status information for the specified interface	PE
show vrrp interface counters	Displays VRRP statistics for the specified interface	PE
show vrrp router counters	Displays VRRP statistics	PE

vrrp authentication This command specifies the key used to authenticate VRRP packets received from other routers. Use the **no** form to prevent authentication.

Syntax

vrrp group authentication key

no vrrp group authentication

group - Identifies the virtual router group. (Range: 1-255)

key - Authentication string. (Range: 1-8 alphanumeric characters)

Default Setting

No key is defined.

Command Mode

Interface (VLAN)

Command Usage

- All routers in the same VRRP group must be configured with the same authentication key.
- When a VRRP packet is received from another router in the group, its authentication key is compared to the string configured on this router. If the keys match, the message is accepted. Otherwise, the packet is discarded.
- Plain text authentication does not provide any real security. It is supported only to prevent a misconfigured router from participating in VRRP.

Example

```
Console(config-if) #vrrp 1 authentication bluebird
Console(config-if)#
```

This command enables the Virtual Router Redundancy Protocol (VRRP) on an interface and specifies the IP address of the virtual router. Use the **no** form to disable VRRP on an interface and remove the IP address from the virtual router.

Syntax

[no] vrrp group ip ip-address

group - Identifies the virtual router group. (Range: 1-255)

ip-address - The IP address of the virtual router. This is the IP address that end-hosts set as their default gateway.

Default Setting

No virtual router groups are configured.

Command Mode

Interface (VLAN)

Command Usage

- The interfaces of all routers participating in a virtual router group must be within the same IP subnet.
- If the IP address assigned to the virtual router with this command is already configured as the primary address on this interface, this router is considered the Owner, and will assume the role of the Master virtual router in the group.
- This interface is used for two purposes to send/receive advertisement messages and to forward on behalf of the virtual router when operating as the Master VRRP router.
- VRRP is enabled as soon as this command is entered. If you need to customize any of the other parameters for VRRP such as authentication, priority, or advertisement interval, then first configure these parameters before enabling VRRP.

Example

This example creates VRRP group 1 using the primary interface for VLAN 1 as the VRRP group Owner.

```
Console(config)#interface vlan 1
Console(config-if) #vrrp 1 ip 192.168.1.6
Console(config-if)#
```

vrrp preempt This command configures the router to take over as the master virtual router for a VRRP group if it has a higher priority than the current acting master router. Use the **no** form to disable preemption.

Syntax

```
vrrp group preempt [delay seconds]
```

no vrrp group preempt

```
group - Identifies the VRRP group. (Range: 1-255)
```

seconds - The time to wait before issuing a claim to become the master. (Range: 0-120 seconds)

Default Setting

Preempt: Enabled Delay: 0 seconds

Command Mode

Interface (VLAN)

Command Usage

- If preempt is enabled, and this backup router has a priority higher than the current acting master, it will take over as the new master. However, note that if the original master (i.e., the owner of the VRRP IP address) comes back on line, it will always resume control as the master.
- The delay can give additional time to receive an advertisement message from the current master before taking control. If the router attempting to become the master has just come on line, this delay also gives it time to gather information for its routing table before actually preempting the currently active router.

Example

```
Console(config-if) #vrrp 1 preempt delay 10
Console(config-if)#
```

Related Commands

vrrp priority (950)

vrrp priority This command sets the priority of this router in a VRRP group. Use the **no** form to restore the default setting.

Syntax

```
vrrp group priority level
no vrrp group priority
    group - Identifies the VRRP group. (Range: 1-255)
    level - Priority of this router in the VRRP group. (Range: 1-254)
```

Default Setting

Master: 255 Backup: 100

Command Mode

Interface (VLAN)

Command Usage

- A router that has a physical interface with the same IP address as that used for the virtual router (that is, the owner of the VRRP IP address) will become the master virtual router. The backup router with the highest priority will become the master router if the current master fails. When the original master router recovers, it will take over as the active master router again.
- ◆ If two or more routers are configured with the same VRRP priority, the router with the highest IP address is elected as the new master router if the current master fails.

- If the backup preempt function is enabled with the vrrp preempt command, and a backup router with a priority higher than the current acting master comes on line, this backup router will take over as the new acting master. However, note that if the original master (i.e., the owner of the VRRP IP address) comes back on line, it will always resume control as the master.
- If the virtual IP address for the VRRP group is the same as that of the configured device, the priority will automatically be set to 255 prior to using this command.

```
Console(config-if) #vrrp 1 priority 1
Console(config-if)#
```

Related Commands

vrrp preempt (949)

vrrp timers advertise This command sets the interval at which the master virtual router sends advertisements communicating its state as the master. Use the **no** form to restore the default interval.

Syntax

vrrp group timers advertise interval

no vrrp group timers advertise

```
group - Identifies the VRRP group. (Range: 1-255)
```

interval - Advertisement interval for the master virtual router.

(Range: 1-255 seconds)

Default Setting

1 second

Command Mode

Interface (VLAN)

Command Usage

- VRRP advertisements from the current master virtual router include information about its priority and current state as the master.
- VRRP advertisements are sent to the multicast address 224.0.0.18. Using a multicast address reduces the amount of traffic that has to processed by network devices that are not part of the designated VRRP group.
- If the master router stops sending advertisements, backup routers will bid to become the master router based on priority. The dead interval before

attempting to take over as the master is three times the hello interval plus half a second

Example

```
Console(config-if)#vrrp 1 timers advertise 5
Console(config-if)#
```

show vrrp This command displays status information for VRRP.

Syntax

```
show vrrp [brief | group]
```

brief - Displays summary information for all VRRP groups on this router. *group* - Identifies a VRRP group. (Range: 1-255)

Defaults

None

Command Mode

Privileged Exec

Command Usage

- Use this command without any keywords to display the full listing of status information for all VRRP groups configured on this router.
- Use this command with the **brief** keyword to display a summary of status information for all VRRP groups configured on this router.
- Specify a group number to display status information for a specific group

Example

This example displays the full listing of status information for all groups.

```
Console#show vrrp
VLAN 1 - Group 1,
 State
                               Master
Virtual IP Address
                               192.168.1.6
 Virtual MAC Address
                                00-00-5E-00-01-01
 Advertisement Interval
                               5 sec
Preemption
                                Enabled
Min Delay
                               10 sec
Priority
                               255
                               SimpleText
Authentication
Authentication Key
                              bluebird
                              192.168.1.6
Master Router
                               255
Master Priority
Master Advertisement Interval
                                5 sec
Master Down Interval
Console#
```

Table 189: show vrrp - display description

Field	Description
State	VRRP role of this interface (master or backup)
Virtual IP address	Virtual address that identifies this VRRP group
Virtual MAC address	Virtual MAC address derived from the owner of the virtual IP address
Advertisement interval	Interval at which the master virtual router advertises its role as the master
Preemption	Shows whether or not a higher priority router can preempt the current acting master
Min delay	Delay before a router with a higher priority can preempt the current acting master
Priority	Priority of this router
Authentication	Authentication mode used to verify VRRP packets
Authentication key	Key used to authenticate VRRP packets received from other routers
Master Router	IP address of the router currently acting as the VRRP group master
Master priority	The priority of the router currently acting as the VRRP group master
Master Advertisement interval	The advertisement interval configured on the VRRP master.
Master down interval	The down interval configured on the VRRP master (This interval is used by all the routers in the group regardless of their local settings)

This example displays the brief listing of status information for all groups.

Console#sho	-	brief State	Virtual Addr	Interval	Preemnt	Priority
VLAN 1	1	 Master	192.168.0.3		E	255
Console#						

Table 190: show vrrp brief - display description

Field	Description
Interface	VLAN interface
Grp	VRRP group
State	VRRP role of this interface (master or backup)
Virtual Addr	Virtual address that identifies this VRRP group
Interval	Interval at which the master virtual router advertises its role as the master
Preempt	Shows whether or not a higher priority router can preempt the current acting master
Priority	Priority of this router

show vrrp interface This command displays status information for the specified VRRP interface.

Syntax

show vrrp interface vlan *vlan-id* [**brief**]

vlan-id - Identifier of configured VLAN interface. (Range: 1-4094)

brief - Displays summary information for all VRRP groups on this router.

Defaults

None

Command Mode

Privileged Exec

Example

This example displays the full listing of status information for VLAN 1.

```
Console#show vrrp interface vlan 1
 Vlan 1 - Group 1,
 State
                                Master
Virtual IP Address
                                192.168.1.6
Virtual MAC Address
                               00-00-5E-00-01-01
Advertisement Interval
                               5 sec
                               Enabled
Preemption
Min Delay
                               10 sec
Priority
                                1
Authentication
                                SimpleText
                                bluebird
 Authentication Key
Master Router
                                192.168.1.6
Master Priority
                                1
                              5 sec
Master Advertisement Interval
Master Down Interval
                                15
Console#
```

show vrrp interface This command displays counters for VRRP protocol events and errors that have **counters** occurred for the specified group and interface.

show vrrp group interface vlan interface counters

```
group - Identifies a VRRP group. (Range: 1-255)
interface - Identifier of configured VLAN interface. (Range: 1-4094)
```

Defaults

None

Command Mode

Privileged Exec

^{*} Refer to the show vrrp command for a description of the display items.

```
Console#show vrrp 1 interface vlan 1 counters
 Total Number of Times Transitioned to MASTER
 Total Number of Received Advertisements Packets
Total Number of Received Error Advertisement Interval Packets
Total Number of Received Authentication Failures Packets
                                                                   : 0
Total Number of Received Error IP TTL VRRP Packets
                                                                   : 0
Total Number of Received Priority O VRRP Packets
                                                                   : 0
Total Number of Sent Priority 0 VRRP Packets
                                                                   : 5
Total Number of Received Invalid Type VRRP Packets
                                                                   : 0
Total Number of Received Error Address List VRRP Packets
Total Number of Received Invalid Authentication Type VRRP Packets : 0
Total Number of Received Mismatch Authentication Type VRRP Packets: 0
Total Number of Received Error Packet Length VRRP Packets
Console#
```

Table 191: show vrrp interface counters - display description

Parameter	Description
Times Transitioned to Master	Number of times this router has transitioned to master.
Received Advertisement Packets	Number of VRRP advertisements received by this router.
Received Error Advertisement Interval Packets	Number of VRRP advertisements received for which the advertisement interval is different from the one configured for the local virtual router.
Received Authentication Failure Packets	Number of VRRP packets received that do not pass the authentication check.
Received Error IP TTL VRRP Packets	Number of VRRP packets received by the virtual router with IP TTL (Time-To-Live) not equal to 255.
Received Priority 0 VRRP Packets	Number of VRRP packets received by the virtual router with priority set to $0. \ \ $
Sent Priority 0 VRRP Packets	Number of VRRP packets sent by the virtual router with priority set to 0. A priority value of zero indicates that the group master has stopped participating in VRRP, and is used to quickly transition a backup unit to master mode without having to wait for the master to time out.
Received Invalid Type VRRP Packets	Number of VRRP packets received by the virtual router with an invalid value in the "type" field.
Received Error Address List VRRP Packets	Number of packets received for which the address list does not match the locally configured list for the virtual router.
Received Invalid Authentication Type VRRP Packets	Number of packets received with an unknown authentication type.
Received Mismatch Authentication Type VRRP Packets	Number of packets received with "Auth Type" not equal to the locally configured authentication method.
Received Error Packets Length VRRP Packets	Number of packets received with a packet length less than the length of the VRRP header.

show vrrp router counters

show vrrp router This command displays counters for errors found in VRRP protocol packets.

Command Mode

Privileged Exec

Example

Note that unknown errors indicate VRRP packets received with an unknown or unsupported version number.

```
Console#show vrrp router counters

Total Number of VRRP Packets with Invalid Checksum : 0

Total Number of VRRP Packets with Unknown Error : 0

Total Number of VRRP Packets with Invalid VRID : 0

Console#
```

IP Routing Commands

After network interfaces are configured for the switch, the paths used to send traffic between different interfaces must be set. If routing is enabled on the switch, traffic will automatically be forwarded between all of the local subnetworks. However, to forward traffic to devices on other subnetworks, either configure fixed paths with static routing commands, or enable a dynamic routing protocol that exchanges information with other routers on the network to automatically determine the best path to any subnetwork.

This section includes commands for both static and dynamic routing. These commands are used to connect between different local subnetworks or to connect the router to the enterprise network.

Table 1: IP Routing Commands

Command Group	Function
Global Routing Configuration	Configures global parameters for static and dynamic routing, displays the routing table and statistics for protocols used to exchange routing information
Routing Information Protocol (RIP)	Configures global and interface specific parameters for RIP
Open Shortest Path First (OSPFv2)	Configures global and interface specific parameters for OSPFv2
Open Shortest Path First (OSPFv3)	Configures global and interface specific parameters for OSPFv3
Border Gateway Protocol (BGPv4)	Configures global and interface specific parameters for BGP
Policy-based Routing for BGP	Configures policy-based routing maps for BGP

Global Routing Configuration

Table 2: Global Routing Configuration Commands

Command	Function	Mode
IPv4 Commands		
ip route	Configures static routes	GC
maximum-paths	Sets the maximum number of paths allowed	GC
show ip host-route	Displays the interface associated with known routes	PE
show ip route	Displays specified entries in the routing table	PE
show ip route database	Displays static or dynamically learned entries in the routing table	PE
show ip route summary	Displays summary information for the routing table	PE

Table 2: Global Routing Configuration Commands (Continued)

Command	Function	Mode
show ip traffic	Displays statistics for IP, ICMP, UDP, TCP and ARP protocols	PE
IPv6 Commands		
ipv6 route	Configures static routes	GC
show ipv6 route	Displays specified entries in the routing table	PE

IPv4 Commands

ip route This command configures static routes. Use the **no** form to remove static routes.

Syntax

ip route destination-ip netmask next-hop [distance]

no ip route {destination-ip netmask next-hop | *}

destination-ip – IP address of the destination network, subnetwork, or host.

netmask - Network mask for the associated IP subnet. This mask identifies the host address bits used for routing to specific subnets.

next-hop – IP address of the next hop router used for this route.

distance – An administrative distance indicating that this route can be overridden by dynamic routing information if the distance of the dynamic route is less than that configured for the static route. Note that the default administrative distances used by the dynamic unicast routing protocols is 110 for OSPF, 120 for RIP, 20 for eBGP, and 200 for iBGP. (Range: 1-255, Default: 1)

* – Removes all static routing table entries.

Default Setting

No static routes are configured.

Command Mode

Global Configuration

Command Usage

- Up to 512 static routes can be configured.
- Up to eight equal-cost multipaths (ECMP) can be configured for static routing using the maximum-paths command.
- ◆ If an administrative distance is defined for a static route, and the same destination can be reached through a dynamic route at a lower administration distance, then the dynamic route will be used.

- If both static and dynamic paths have the same lowest cost, the first route stored in the routing table, either statically configured or dynamically learned via a routing protocol, will be used.
- Static routes are included in RIP, OSPF or BGP updates periodically sent by the router if this feature is enabled by the RIP, OSPF or BGP redistribute command (see page 973, page 993, page 1085 respectively).

This example forwards all traffic for subnet 192.168.1.0 to the gateway router 192.168.5.254, using the default metric of 1.

```
Console(config) #ip route 192.168.1.0 255.255.255.0 192.168.5.254
Console(config)#
```

maximum-paths This command sets the maximum number of paths allowed. Use the no form to restore the default settings.

Syntax

maximum-paths path-count

no maximum-paths

path-count - The maximum number of equal-cost paths to the same destination that can be installed in the routing table. (Range: 1-8)

Default Setting

Enabled, 4 paths

Command Mode

Global Configuration

Example

```
switch(config) #maximum-paths 8
switch(config)#
```

Global Routing Configuration

show ip host-route This command displays the interface associated with known routes.

COMMAND MODE

Privileged Exec

EXAMPLE

IP Address	MAC Address	VLAN Port	
192.168.0.99	00-E0-29-94-34-64	1 1/1	
192.168.1.250	00-00-30-01-01-01	3 1/ 1	
10.2.48.2	00-00-30-01-01-02	1 1/ 1	
10.2.5.6	00-00-30-01-01-03	1 1/ 2	
10.3.9.1	00-00-30-01-01-04	2 1/ 3	

Table 3: show ip host-route - display description

Field	Description
IP Address	IP address of the destination network, subnetwork, or host.
MAC Address	The physical layer address associated with the IP address.
VLAN	The VLAN that connects to this IP address.
Port	The port that connects to this IP address.

show ip route This command displays information in the Forwarding Information Base (FIB).

Syntax

show ip route [bgp | connected | database | ospf | rip | static | summary]

bgp – Displays external routes imported from the Border Gateway Protocol (BGP) into this routing domain.

connected – Displays all currently connected entries.

database - All known routes, including inactive routes.

ospf – Displays external routes imported from the Open Shortest Path First (OSPF) protocol into this routing domain.

rip – Displays all entries learned through the Routing Information Protocol (RIP).

static – Displays all static entries.

summary – Displays a brief list of summary information about entries in the routing table, including the maximum number of entries supported, the number of connected routes, the total number of routes currently stored in the routing table, and the number of entries in the FIB.

Command Mode

Privileged Exec

Command Usage

◆ The FIB contains information required to forward IP traffic. It contains the interface identifier and next hop information for each reachable destination network prefix based on the IP routing table. When routing or topology changes occur in the network, the routing table is updated, and those changes are immediately reflected in the FIB.

The FIB is distinct from the routing table (or, Routing Information Base), which holds all routing information received from routing peers. The forwarding information base contains unique paths only. It does not contain any secondary paths. A FIB entry consists of the minimum amount of information necessary to make a forwarding decision on a particular packet. The typical components within a forwarding information base entry are a network prefix, a router port identifier, and next hop information.

This command only displays routes which are currently accessible for forwarding. The router must be able to directly reach the next hop, so the VLAN interface associated with any dynamic or static route entry must be up. Note that routes currently not accessible for forwarding, may still be displayed by using the show ip route database command.

Example

In the following example, note that the entry for RIP displays both the distance and metric for this route.

```
Console#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

R 10.1.1.0/24 [120/2] via 192.168.1.10, VLAN1, 00:00:14
C 127.0.0.0/8 is directly connected, lo
C 192.168.1.0/24 is directly connected, VLAN1
Console#
```

show ip route database

show ip route This command displays entries in the Routing Information Base (RIB).

Command Mode

Privileged Exec

Command Usage

The RIB contains all available routes learned through dynamic routing protocols, directly attached networks, and any additionally configured routes such as static routes. The RIB contains the set of all available routes from which optimal entries are selected for use by the Forwarding Information Base (see Command Usage under the show ip route command).

```
Console#show ip route database

Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

> - selected route, * - FIB route, p - stale info

C *> 127.0.0.0/8 is directly connected, lo0

C *> 192.168.1.0/24 is directly connected, VLAN1

Console#
```

show ip route summary

show ip route This command displays summary information for the routing table.

Command Mode

Privileged Exec

Example

In the following example, the numeric identifier following the routing table name (0) indicates the Forwarding Information Base identifier.

```
Console#show ip route summary
IP routing table name is Default-IP-Routing-Table(0)
IP routing table maximum-paths is 8
Connected 2
Total 2
Console#
```

show ip traffic This command displays statistics for IP, ICMP, UDP, TCP and ARP protocols.

Command Mode

Privileged Exec

Example

discards no routes

generated fragments fragment succeeded fragment failed

ICMP Statistics:
ICMP received

input errors

destination unreachable messages

time exceeded messages
parameter problem message
echo request messages
echo reply messages
redirect messages

timestamp reply messages source quench messages address mask request messages address mask reply messages

timestamp request messages

ICMP sent

output errors

destination unreachable messages

time exceeded messages parameter problem message echo request messages echo reply messages redirect messages

timestamp request messages timestamp reply messages source quench messages address mask request messages

address mask request messages address mask reply messages

UDP Statistics:

2 input

no port errors other errors output

TCP Statistics:

4698 input

input errors

5867 output

Console#

IPv6 Commands

ipv6 route This command configures static IPv6 routes. Use the **no** form to remove static routes.

Syntax

[no] ipv6 route destination-ipv6-address/prefix-length {gateway-address [distance] | link-local-address%zone-id [distance]}

destination-ipv6-address – The IPv6 address of a destination network, subnetwork, or host. This must be a full IPv6 address including the network prefix and host address bits.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix (i.e., the network portion of the address).

gateway-address – IP address of the next hop router used for this route.

link-local-address%zone-id – a link-local address, including a zone-id indicating the VLAN identifier after the % delimiter.

distance – An administrative distance indicating that this route can be overridden by dynamic routing information if the distance of the dynamic route is less than that configured for the static route. Note that the default administrative distances used by the dynamic unicast routing protocols is 110 for OSPF, 120 for RIP, 20 for eBGP, and 200 for iBGP. (Range: 1-255, Default: 1)

Default Setting

No static routes are configured.

Command Mode

Global Configuration

Command Usage

- Up to 1K static routes can be configured.
- Up to eight equal-cost multipaths (ECMP) can be configured for static routing using the maximum-paths command.
- If an administrative distance is defined for a static route, and the same destination can be reached through a dynamic route at a lower administration distance, then the dynamic route will be used.
- The default distance of 1 will take precedence over any other type of route, except for local routes.
- If both static and dynamic paths have the same lowest cost, the first route stored in the routing table, either statically configured or dynamically learned via a routing protocol, will be used.

 Static routes are included in RIP, OSPF and BGP updates periodically sent by the router if this feature is enabled by the RIP, OSPF or BGP redistribute command (see page 973, page 993, page 1085 respectively).

Example

This example forwards all traffic for subnet 2001::/64 to the next hop router 2001:DB8:2222:7272::254, using the default metric of 1.

```
Console(config) #ipv6 route 2001::/64 2001:DB8:2222:7272::254
Console(config)#
```

Related Commands

show ip route summary (962)

show ipv6 route This command displays information in the Forwarding Information Base (FIB).

Syntax

show ipv6 route [ipv6-address[/prefix-length] database | interface [vlan vlan-id] | local | ospf | static]

ipv6-address - A full IPv6 address including the network prefix and host address bits.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix (i.e., the network portion of the address).

database – All known routes, including inactive routes.

interface – Displays all routes that be accessed through this interface.

local – Displays all entries for destinations attached directly to this router.

ospf – Displays external routes imported from the Open Shortest Path First (OSPF) protocol into this routing domain.

static - Displays all static entries.

vlan-id - VLAN ID. (Range: 1-4094)

Command Mode

Privileged Exec

Command Usage

The FIB contains information required to forward IP traffic. It contains the interface identifier and next hop information for each reachable destination network prefix based on the IP routing table. When routing or topology changes occur in the network, the routing table is updated, and those changes are immediately reflected in the FIB.

The FIB is distinct from the routing table (or, Routing Information Base), which holds all routing information received from routing peers. The forwarding

Routing Information Protocol (RIP)

information base contains unique paths only. It does not contain any secondary paths. A FIB entry consists of the minimum amount of information necessary to make a forwarding decision on a particular packet. The typical components within a forwarding information base entry are a network prefix, a router port identifier, and next hop information.

◆ This command only displays routes which are currently accessible for forwarding. The router must be able to directly reach the next hop, so the VLAN interface associated with any dynamic or static route entry must be up.

Example

In the following example, note that the last entry displays both the distance and metric for this route.

```
Console#show ipv6 route
Codes: C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
С
    ::1/128, 100
   FE80::/64, VLAN1 inactive
2
   FE80::/64, VLAN1
C.
    FF00::/8, VLAN1 inactive
O IA 3FFF:1::/32 [110/3]
     via FE80::204:FF:FE05:6, VLAN1
Console#
```

Routing Information Protocol (RIP)

Table 4: Routing Information Protocol Commands

Command	Function	Mode
router rip	Enables the RIP routing protocol	GC
default-information originate	Generates a default external route into an autonomous system	RC
default-metric	Sets the default metric assigned to external routes imported from other protocols	RC
distance	Defines an administrative distance for external routes learned from other routing protocols	RC
maximum-prefix	Sets the maximum number of RIP routes allowed	RC
neighbor	Defines a neighboring router with which to exchange information	RC
network	Specifies the network interfaces that are to use RIP routing	RC
passive-interface	Stops RIP from sending routing updates on the specified interface	RC
redistribute	Redistribute routes from one routing domain to another	RC

Table 4: Routing Information Protocol Commands (Continued)

Command	Function	Mode
timers basic	Sets basic timers, including update, timeout, garbage collection	RC
version	Specifies the RIP version to use on all network interfaces (if not already specified with a receive version or send version command)	RC
ip rip authentication mode	Specifies the type of authentication used for RIP2 packets	IC
ip rip authentication string	Enables authentication for RIP2 packets and specifies keys	IC
ip rip receive version	Sets the RIP receive version to use on a network interface	IC
ip rip receive-packet	Configures the interface to receive of RIP packets	IC
ip rip send version	Sets the RIP send version to use on a network interface	IC
ip rip send-packet	Configures the interface to send RIP packets	IC
ip rip split-horizon	Enables split-horizon or poison-reverse loop prevention	IC
clear ip rip route	Clears specified data from the RIP routing table	PE
show ip protocols rip	Displays RIP process parameters	PE
show ip rip	Displays information about RIP routes and configuration settings	PE

router rip This command enables Routing Information Protocol (RIP) routing for all IP interfaces on the router. Use the **no** form to disable it.

Syntax

[no] router rip

Command Mode

Global Configuration

Default Setting

Disabled

Command Usage

- RIP is used to specify how routers exchange routing table information.
- This command is also used to enter router configuration mode.

Example

Console(config) #router rip Console(config-router)#

Related Commands

network (971)

Routing Information Protocol (RIP)

default-information This command generates a default external route into the local RIP autonomous **originate** system. Use the **no** form to disable this feature.

Syntax

[no] default-information originate

Default Setting

Disabled

Command Mode

Router Configuration

Command Usage

This command sets a default route for every Layer 3 interface where RIP is enabled. The response packet to external queries marks each active RIP interface as a default router with the IP address 0.0.0.0.

Example

```
Console(config-router) #default-information originate
Console(config-router)#
```

Related Commands

ip route (958) redistribute (973)

default-metric This command sets the default metric assigned to external routes imported from other protocols. Use the **no** form to restore the default value.

Syntax

default-metric metric-value

no default-metric

metric-value – Metric assigned to external routes. (Range: 1-15)

Default Setting

1

Command Mode

Router Configuration

Command Usage

◆ This command does not override the metric value set by the redistribute command. When a metric value has not been configured by the redistribute command, the default-metric command sets the metric value to be used for all imported external routes.

- ◆ The default metric must be used to resolve the problem of redistributing external routes with incompatible metrics.
- It is advisable to use a low metric when redistributing routes from another protocol into RIP. Using a high metric limits the usefulness of external routes redistributed into RIP. For example, if a metric of 10 is defined for redistributed routes, these routes can only be advertised to routers up to 5 hops away, at which point the metric exceeds the maximum hop count of 15. By defining a low metric of 1, traffic can follow a imported route the maximum number of hops allowed within a RIP domain. However, note that using a low metric can increase the possibility of routing loops For example, this can occur if there are multiple redistribution points and the router learns about the same external network with a better metric from a redistribution point other than that derived from the original source.

This example sets the default metric to 5.

```
Console(config-router)#default-metric 5
Console(config-router)#
```

Related Commands

redistribute (973)

distance This command defines an administrative distance for external routes learned from other routing protocols. Use the **no** form to restore the default setting.

Syntax

[no] distance distance network-address netmask

distance - Administrative distance for external routes. External routes are routes for which the best path is learned from a neighbor external to the local RIP autonomous system. Routes with a distance of 255 are not installed in the routing table. (Range: 1-255)

network-address - IP address of a route entry.

netmask - Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

Default Setting

None

Command Mode

Router Configuration

Routing Information Protocol (RIP)

Command Usage

- Administrative distance is used by the routers to select the preferred path when there are two or more different routes to the same destination from two different routing protocols. A smaller administrative distance indicates a more reliable protocol.
- The administrative distance is applied to all routes learned for the specified network.

Example

```
Console(config-router) #distance 2 192.168.3.0 255.255.255.0
Console(config-router)#
```

maximum-prefix This command sets the maximum number of RIP routes allowed by the system. Use the **no** form to restore the default setting.

Syntax

maximum-prefix maximum-routes

no maximum-prefix

maximum-routes - The maximum number of RIP routes which can be installed in the routing table. (Range: 1-11766)

Default Setting

11766

Command Mode

Router Configuration

Command Usage

All the learned RIP routes may not be copied to the hardware tables in ASIC for fast data forwarding because of hardware resource limitations.

Example

```
Console(config-router) #maximum-prefix 1024
Console(config-router)#
```

neighbor This command defines a neighboring router with which this router will exchange routing information. Use the **no** form to remove an entry.

Syntax

[no] neighbor ip-address

ip-address - IP address of a neighboring router.

Default Setting

No neighbors are defined.

Command Mode

Router Configuration

Command Usage

- This command can be used to configure a static neighbor (specifically for pointto-point links) with which this router will exchange routing information, rather than relying on broadcast or multicast messages generated by the RIP protocol.
- Use this command in conjunction with the passive-interface command to control the routing updates sent to specific neighbors.

Example

```
Console(config-router) #neighbor 10.2.0.254
Console(config-router)#
```

Related Commands

passive-interface (972)

network This command specifies the network interfaces that will be included in the RIP routing process. Use the **no** form to remove an entry.

Syntax

[no] network {ip-address netmask | vlan vlan-id}

ip-address – IP address of a network directly connected to this router.

netmask - Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

vlan-id - VLAN ID. (Range: 1-4094)

Default Setting

No networks are specified.

Command Mode

Router Configuration

Command Usage

 RIP only sends and receives updates on interfaces specified by this command. If a network is not specified, the interfaces in that network will not be advertised in any RIP updates.

Routing Information Protocol (RIP)

- Subnet addresses are interpreted as class A, B or C, based on the first field in the specified address. In other words, if a subnet address nnn.xxx.xxx.xxx is entered, the first field (nnn) determines the class:
 - 0 127 is class A, and only the first field in the network address is used.
 - 128 191 is class B, and the first two fields in the network address are used.
 - 192 223 is class C, and the first three fields in the network address are used.

Example

This example includes network interface 10.1.0.0 in the RIP routing process.

```
Console(config-router) #network 10.1.0.0
Console(config-router)#
```

Related Commands

router rip (967)

passive-interface This command stops RIP from sending routing updates on the specified interface. Use the **no** form to disable this feature.

Syntax

[no] passive-interface vlan vlan-id

vlan-id - VLAN ID. (Range: 1-4094)

Default Setting

Disabled

Command Mode

Router Configuration

Command Usage

- If this command is used to stop sending routing updates on an interface, the attached subnet will still continue to be advertised to other interfaces, and updates from other routers on that interface will continue to be received and processed.
- Use this command in conjunction with the neighbor command to control the routing updates sent to specific neighbors.

Example

```
Console(config-router)#passive-interface vlan1
Console(config-router)#
```

Related Commands

neighbor (970)

redistribute This command imports external routing information from other routing domains (that is, directly connected routes, protocols, or static routes) into the autonomous system. Use the **no** form to disable this feature.

Syntax

[no] redistribute (bgp | connected | ospf | static} [metric metric-value]

bgp - External routes will be imported from the Border Gateway Protocol (BGP) into this routing domain.

connected - Imports routes that are established automatically just by enabling IP on an interface.

ospf - External routes will be imported from the Open Shortest Path First (OSPF) protocol into this routing domain.

static - Static routes will be imported into this routing domain.

metric-value - Metric value assigned to all external routes for the specified protocol. (Range: 1-16)

Default Setting

redistribution - none metric-value - set by the default-metric command

Command Mode

Router Configuration

- When a metric value has not been configured by the **redistribute** command, the default-metric command sets the metric value to be used for all imported external routes.
- A route metric must be used to resolve the problem of redistributing external routes with incompatible metrics.
- It is advisable to use a low metric when redistributing routes from another protocol into RIP. Using a high metric limits the usefulness of external routes redistributed into RIP. For example, if a metric of 10 is defined for redistributed routes, these routes can only be advertised to routers up to 5 hops away, at which point the metric exceeds the maximum hop count of 15. By defining a low metric of 1, traffic can follow a imported route the maximum number of hops allowed within a RIP domain. However, using a low metric can increase the possibility of routing loops For example, this can occur if there are multiple redistribution points and the router learns about the same external network with a better metric from a redistribution point other than that derived from the original source.

Routing Information Protocol (RIP)

Example

This example redistributes routes learned from OSPF and sets the metric for all external routes imported from OSPF to a value of 3.

```
Console(config-router) #redistribute ospf metric 3
Console(config-router)#
```

This example redistributes static routes and sets the metric for all of these routes to a value of 3.

```
Console(config-router)#redistribute static metric 3
Console(config-router)#
```

Related Commands

default-metric (968)

timers basic This command configures the RIP update timer, timeout timer, and garbagecollection timer. Use the **no** form to restore the defaults.

Syntax

timers basic update timeout garbage

no timers basic

```
update – Sets the update timer to the specified value.
(Range: 5-2147483647 seconds)
timeout – Sets the timeout timer to the specified value. (Range: 90-360
seconds)
garbage – Sets the garbage collection timer to the specified value.
(Range: 60-240 seconds)
```

Default Setting

Update: 30 seconds Timeout: 180 seconds

Garbage collection: 120 seconds

Command Mode

Router Configuration

- The *update* timer sets the rate at which updates are sent. This is the fundamental timer used to control all basic RIP processes.
- The timeout timer is the time after which there have been no update messages that a route is declared dead. The route is marked inaccessible (i.e., the metric

set to infinite) and advertised as unreachable. However, packets are still forwarded on this route.

- ◆ After the *timeout* interval expires, the router waits for an interval specified by the *garbage-collection* timer before removing this entry from the routing table. This timer allows neighbors to become aware of an invalid route prior to it being purged by this device.
- Setting the update timer to a short interval can cause the router to spend an excessive amount of time processing updates.
- These timers must be set to the same values for all routers in the network.

Example

This example sets the update timer to 40 seconds. The timeout timer is subsequently set to 240 seconds, and the garbage-collection timer to 160 seconds.

```
Console(config-router)#timers basic 15
Console(config-router)#
```

version This command specifies a RIP version used globally by the router. Use the **no** form to restore the default value.

Syntax

version {1 | 2}

no version

- 1 RIP Version 1
- 2 RIP Version 2

Default Setting

Receive: Accepts RIPv1 or RIPv2 packets

Send: Route information is broadcast to other routers with RIPv2.

Command Mode

Router Configuration

- When this command is used to specify a global RIP version, any VLAN interface not previously set by the ip rip receive version or ip rip send version command will use the global RIP version setting.
- When the **no** form of this command is used to restore the default value, any VLAN interface not previously set by the ip rip receive version or ip rip send version command will be set to the default send or receive version.

Routing Information Protocol (RIP)

Any configured interface settings take precedence over the global settings.

Example

This example sets the global version for RIP to send and receive version 2 packets.

```
Console(config-router) #version 2
Console(config-router)#
```

Related Commands

ip rip receive version (978) ip rip send version (979)

ip rip authentication This command specifies the type of authentication that can be used for RIPv2 mode packets. Use the no form to restore the default value.

Syntax

ip rip authentication mode {md5 | text} no ip rip authentication mode

md5 - Message Digest 5 (MD5) authentication

text - Indicates that a simple password will be used.

Default Setting

Text authentication

Command Mode

Interface Configuration (VLAN)

- ◆ The password to be used for authentication is specified in the ip rip authentication string command.
- This command requires the interface to exchange routing information with other routers based on an authorized password. (Note that this command only applies to RIPv2.)
- For authentication to function properly, both the sending and receiving interface must be configured with the same password or authentication key.
- ♦ MD5 is a one-way hash algorithm is that takes the authentication key and produces a 128 bit message digest or "fingerprint." This makes it computationally infeasible to produce two messages having the same message digest, or to produce any message having a given pre-specified target message digest.

Example

This example sets the authentication mode to plain text.

```
Console(config)#interface vlan 1
Console(config-if) #ip rip authentication mode text
Console(config-if)#
```

Related Commands

ip rip authentication string (977)

ip rip authentication This command specifies an authentication key for RIPv2 packets. Use the **no** form to string delete the authentication key.

Syntax

ip rip authentication string key-string

no ip rip authentication string

key-string - A password used for authentication. (Range: 1-16 characters, case sensitive)

Default Setting

No authentication key

Command Mode

Interface Configuration (VLAN)

Command Usage

- ◆ This command can be used to restrict the interfaces that can exchange RIPv2 routing information. (Note that this command does not apply to RIPv1.)
- For authentication to function properly, both the sending and receiving interface must be configured with the same password, and authentication enabled by the ip rip authentication mode command.

Example

This example sets an authentication password of "small" to verify incoming routing messages and to tag outgoing routing messages.

```
Console(config)#interface vlan 1
Console(config-if) #ip rip authentication string small
Console(config-if)#
```

Related Commands

ip rip authentication mode (976)

Routing Information Protocol (RIP)

ip rip receive version This command specifies a RIP version to receive on an interface. Use the **no** form to restore the default value.

Syntax

ip rip receive version {1 | 2}

no ip rip receive version

- 1 Accepts only RIPv1 packets.
- 2 Accepts only RIPv2 packets.

Default Setting

RIPv1 and RIPv2 packets

Command Mode

Interface Configuration (VLAN)

Command Usage

- Use this command to override the global setting specified by the RIP version command.
- You can specify the receive version based on these options:
 - Use version 1 or version 2 if all routers in the local network are based on RIPv1 or RIPv2, respectively.
 - Use the default of version 1 or 2 if some routers in the local network are using RIPv2, but there are still some older routers using RIPv1.

Example

This example sets the interface version for VLAN 1 to receive RIPv1 packets.

```
Console(config)#interface vlan 1
Console(config-if) #ip rip receive version 1
Console(config-if)#
```

Related Commands

version (975)

ip rip receive-packet This command configures the interface to receive RIP packets. Use the **no** form to disable this feature.

Syntax

[no] ip rip receive-packet

Default Setting

Enabled

Command Mode

Interface Configuration (VLAN)

Default Setting

Enabled

Command Usage

Use the **no** form of this command if it is not required to add any dynamic entries to the routing table for an interface. For example, when only static routes are to be allowed for a specific interface.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip rip receive-packet
Console(config-if)#
```

Related Commands

ip rip send-packet (980)

ip rip send version This command specifies a RIP version to send on an interface. Use the **no** form to restore the default value.

Syntax

```
ip rip send version {1 | 2 | 1-compatible}
```

no ip rip send version

- 1 Sends only RIPv1 packets.
- 2 Sends only RIPv2 packets.

1-compatible - Route information is broadcast to other routers with RIPv2.

Default Setting

1-compatible (Route information is broadcast to other routers with RIPv2)

Command Mode

Interface Configuration (VLAN)

- Use this command to override the global setting specified by the RIP version command.
- You can specify the send version based on these options:
 - Use version 1 or version 2 if all routers in the local network are based on RIPv1 or RIPv2, respectively.
 - Use "1-compatible" to propagate route information by broadcasting to other routers on the network using RIPv2, instead of multicasting as

Routing Information Protocol (RIP)

normally required by RIPv2. (Using this mode allows older RIPv2 routers which only receive RIP broadcast messages to receive all of the information provided by RIPv2, including subnet mask, next hop and authentication information.)

Example

This example sets the interface version for VLAN 1 to send RIPv1 packets.

```
Console(config)#interface vlan 1
Console(config-if) #ip rip send version 1
Console(config-if)#
```

Related Commands

version (975)

ip rip send-packet This command configures the interface to send RIP packets. Use the **no** form to disable this feature.

[no] ip rip send-packet

Default Setting

Enabled

Command Mode

Interface Configuration (VLAN)

Default Setting

Enabled

Command Usage

The **no** form of this command allows the router to passively monitor route information advertised by other routers attached to the network, without transmitting any RIP updates.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip rip send-packet
Console(config-if)#
```

Related Commands

ip rip receive-packet (978)

ip rip split-horizon This command enables split-horizon or poison-reverse (a variation) on an interface. Use the **no** form to disable this function.

Syntax

```
ip rip split-horizon [poisoned]
no rip ip split-horizon
```

poisoned - Enables poison-reverse on the current interface.

Command Mode

Interface Configuration (VLAN)

Default Setting

split-horizon poisoned

Command Usage

- Split horizon never propagates routes back to an interface from which they have been acquired.
- Poison reverse propagates routes back to an interface port from which they have been acquired, but sets the distance-vector metrics to infinity. (This provides faster convergence.)
- If split-horizon is disabled with the **no rip ip split-horizon** command, and a loop occurs, the hop count for a route may be gradually incremented to infinity (that is, 16) before the route is deemed unreachable.

Example

This example propagates routes back to the source using poison-reverse.

```
Console(config)#interface vlan 1
Console(config-if) #ip split-horizon poison-reverse
Console(config-if)#
```

clear ip rip route This command clears specified data from the RIP routing table.

Syntax

clear ip rip route {ip-address netmask | all | connected | ospf | rip | static}

ip-address - IP address of a route entry.

netmask - Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

all - Deletes all entries from the routing table.

connected - Deletes all currently connected entries.

Routing Information Protocol (RIP)

ospf - Deletes all entries learned through the Open Shortest Path First routing protocol.

rip - Deletes all entries learned through the Routing Information Protocol.

static - Deletes all static entries.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command with the "all" parameter clears the RIP table of all routes. To avoid deleting the entire RIP network, use the redistribute connected command to make the RIP network a connected route. To delete the RIP routes learned from neighbors and also keep the RIP network intact, use the "rip" parameter with this command (clear ip rip route rip).

Example

This example clears one specific route.

```
Console#clear ip rip route 192.168.1.0 255.255.255.0
Console#
```

show ip protocols rip This command displays RIP process parameters.

Command Mode

Privileged Exec

Example

```
Console#show ip protocols rip
Routing Protocol is "rip"
  Sending updates every 30 seconds with \pm -5 seconds
  Timeout after 180 seconds, garbage collect after 120 seconds
  Outgoing update filter list for all interface is not set
  Incoming update filter list for all interface is not set
 Default redistribution metric is 1
  Redistributing:
  Default version control: send version by interface set, receive version by
 interface set
   Interface Send
                          Recv
   VLAN1 1-compatible 1 2
 Routing for Networks:
   10.0.0.0/24
  Routing Information Sources:
   Gateway Distance Last Update Bad Packets Bad Routes 10.0.0.2 120 00:00:13 0 0
  The maximum number of RIP routes allowed: 11766
```

```
Distance: Default is 120 Console#
```

show ip rip This command displays information about RIP routes and configuration settings. Use this command without any keywords to display all RIP routes.

Syntax

show ip rip [interface [vlan vlan-id]]

interface - Shows RIP configuration settings for all interfaces or for a specified interface.

vlan-id - VLAN ID. (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#show ip rip
Codes: R - RIP, Rc - RIP connected, Rs - RIP static,
      C - Connected, S - Static, O - OSPF
  Network
                                    Metric From
                                                           Interface Time
                    Next Hop
Rc 192.168.0.0/24
                                                           VLAN1 01:57
Console#show ip rip interface vlan 1
Interface: vlan1
 Routing Protocol: RIP
   Receive RIPv1 and RIPv2 packets
   Send RIPv1 Compatible
    Passive interface: Disabled
   Authentication mode: (None)
   Authentication string: (None)
   Split horizon: Enabled with Poisoned Reverse
   IP interface address: 192.168.0.2/24
Console#
```

Table 5: Open Shortest Path First Commands

Command	Function	Mode
General Configuration		
router ospf	Enables or disables OSPFv2	GC
compatible rfc1583	Calculates summary route costs using RFC 1583 (early OSPFv2)	RC
default-information originate	Generates a default external route into an autonomous system	RC
router-id	Sets the router ID for this device	RC
timers spf	Configures the delay after a topology change and the hold time between consecutive SPF calculations	RC
clear ip ospf process	Clears and restarts the OSPF routing process	PE
Route Metrics and Summarie.	s	
area default-cost	Sets the cost for a default summary route sent into a stub or NSSA	RC
area range	Summarizes routes advertised by an ABR	RC
auto-cost reference-bandwidth	Calculates default metrics for an interface based on bandwidth	RC
default-metric	Sets the default metric for external routes imported from other protocols	RC
redistribute	Redistribute routes from one routing domain to another	RC
summary-address	Summarizes routes advertised by an ASBR	RC
Area Configuration		
area authentication	Enables authentication for an OSPF area	RC
area nssa	Defines a not-so-stubby that can import external routes	RC
area stub	Defines a stubby area that cannot send or receive LSAs	RC
area virtual-link	Defines a virtual link from an area border routers to the backbone	RC
network area	Assigns specified interface to an area	RC
Interface Configuration		
ip ospf authentication	Specifies the authentication type for an interface	IC
ip ospf authentication-key	Assigns a simple password to be used by neighboring routers	IC
ip ospf cost	Specifies the cost of sending a packet on an interface	IC
ip ospf dead-interval	Sets the interval at which hello packets are not seen before neighbors declare the router down	IC
ip ospf hello-interval	Specifies the interval between sending hello packets	IC
ip ospf message-digest-key	Enables MD5 authentication and sets the key for an interface	IC

Table 5: Open Shortest Path First Commands (Continued)

Command	Function	Mode
ip ospf priority	Sets the router priority used to determine the designated router	IC
ip ospf retransmit-interval	Specifies the time between resending a link-state advertisement	IC
ip ospf transmit-delay	Estimates time to send a link-state update packet over an interface	IC
passive-interface	Suppresses OSPF routing traffic on the specified interface	RC
Display Information		
show ip ospf	Displays general information about the routing processes	PE
show ip ospf border-routers	Displays routing table entries for Area Border Routers (ABR) and Autonomous System Boundary Routers (ASBR)	PE
show ip ospf database	Shows information about different LSAs in the database	PE
show ip ospf interface	Displays interface information	PE
show ip ospf neighbor	Displays neighbor information	PE
show ip ospf route	Displays the OSPF routing table	PE
show ip ospf virtual-links	Displays parameters and the adjacency state of virtual links	PE
show ip protocols ospf	Displays OSPF process parameters	PE

General Configuration

router ospf This command enables Open Shortest Path First (OSPFv2) routing for all IP interfaces on the router and enters router configuration mode. Use the **no** form to disable OSPF for all processes or for a specified process.

Syntax

[no] router ospf [process-id]

process-id - Process ID must be entered when configuring multiple routing instances. (Range: 1-65535; Default: 1)

Command Mode

Global Configuration

Default Setting

No routing process is defined.

- OSPF is used to specify how routers exchange routing table information.
- ◆ This command is also used to enter router configuration mode.
- If the process ID is not defined, the default is instance 1.

Chapter 50 | IP Routing Commands

Open Shortest Path First (OSPFv2)

Example

Console(config) #router ospf Console(config-router)#

Related Commands

network area (1002)

compatible rfc1583 This command calculates summary route costs using RFC 1583 (early OSPFv2). Use the **no** form to calculate costs using RFC 2328 (OSPFv2).

Syntax

[no] compatible rfc1583

Command Mode

Router Configuration

Default Setting

RFC 1583 compatible

Command Usage

- When RFC 1583 compatibility is enabled, only cost is used when choosing among multiple AS-external LSAs advertising the same destination. When disabled, preference is based on type of path (where type 1 external paths are preferred over type 2 external paths, using cost only to break ties (RFC 2328).
- All routers in an OSPF routing domain should use the same RFC for calculating summary routes.
- If there are any OSPF routers in an area exchanging summary information (specifically, ABRs) which have not been upgraded to OSPFv2, this command should be used on the newly upgraded OSPFv2 routers to ensure compatibility with routers still running older OSPFv2 code. Once all systems have been upgraded to newer OSPFv2 code, use the no form of this command to restore compatibility for all systems with RFC 2328.

Example

Console(config-router)#compatible rfc1583 Console(config-router)#

default-information This command generates a default external route into an autonomous system. Use originate the no form to disable this feature.

Syntax

default-information originate [always] [metric interface-metric] [metric-type metric-type]

no default-information originate [always | metric | metric-type]

always - Always advertise itself as a default external route for the local AS regardless of whether the router has a default route. (See "ip route" on page 958.)

interface-metric - Metric assigned to the default route. (Range: 0-16777214) *metric-type* - External link type used to advertise the default route. (Options: Type 1, Type 2)

Command Mode

Router Configuration

Default Setting

Disabled Metric: 20 Metric Type: 2

- If the **always** parameter is not selected, the router can only advertise a default external route into the AS if it has been configured to import external routes through other routing protocols or static routing, and such a route is known. (See the redistribute command.)
- The metric for the default external route is used to calculate the path cost for traffic passed from other routers within the AS out through the ASBR.
- When you use this command to redistribute routes into a routing domain (i.e., an Autonomous System, this router automatically becomes an Autonomous System Boundary Router (ASBR). However, an ASBR does not, by default, generate a default route into the routing domain.
 - If you use the **always** keyword, the router will advertise itself as a default external route into the AS, even if a default external route does not actually exist. To define a default route, use the ip route command.
 - If you do not use the always keyword, the router can only advertise a default external route into the AS if the redistribute command is used to import external routes via RIP or static routing, and such a route is known.
- Type 1 route advertisements add the internal cost to the external route metric. Type 2 routes do not add the internal cost metric. When comparing Type 2

routes, the internal cost is only used as a tie-breaker if several Type 2 routes have the same cost.

This command should not be used to generate a default route for a stub or NSSA. To generate a default route for these area types, use the area stub or area nssa commands.

Example

This example assigns a metric of 20 to the default external route advertised into an autonomous system, sending it as a Type 2 external metric.

Console(config-router) #default-information originate metric 20 metric-type 2 Console(config-router)#

Related Commands

ip route (958) redistribute (1035)

router-id This command assigns a unique router ID for this device within the autonomous system for the current OSPF process. Use the **no** form to use the default router identification method (i.e., the highest interface address).

Syntax

router-id ip-address

no router-id

ip-address - Router ID formatted as an IPv4 address.

Command Mode

Router Configuration

Default Setting

Highest interface address

- This command sets the router ID for the OSPF process specified in the router ospf command.
- The router ID must be unique for every router in the autonomous system. Using the default setting based on the highest interface address ensures that each router ID is unique. (Note that the router ID cannot be set to 255.255.255.255.)
- If this router already has registered neighbors, the new router ID will be used when the router is rebooted, or manually restarted by entering the **no router ospf** followed by the **router ospf** command.

◆ If the priority values of the routers bidding to be the designated router or backup designated router for an area are equal, the router with the highest ID is elected.

Example

```
Console(config-router) #router-id 10.1.1.1
Console(config-router)#
```

Related Commands

router ospf (985)

timers spf This command configures the delay after receiving a topology change and starting the shortest path first (SPF) calculation, and the hold time between making two consecutive SPF calculations. Use the **no** form to restore the default values.

Syntax

timers spf spf-delay spf-holdtime

no timers spf

spf-delay - The delay after receiving a topology change notification and starting the SPF calculation. (Range: 0-2147483647 seconds)

spf-holdtime - Minimum time between two consecutive SPF calculations. (Range: 0-2147483647 seconds)

Command Mode

Router Configuration

Default Setting

SPF delay: 5 seconds SPF holdtime: 10 seconds

Command Usage

- ◆ Setting the SPF holdtime to 0 means that there is no delay between consecutive calculations.
- Using a low value allows the router to switch to a new path faster, but uses more CPU processing time.

Example

```
Console(config-router) #timers spf 20
Console(config-router)#
```

Chapter 50 | IP Routing Commands

Open Shortest Path First (OSPFv2)

clear ip ospf process This command clears and restarts the OSPF routing process. Specify the process ID to clear a particular OSPF process. When no process ID is specified, this command clears all running OSPF processes.

Syntax

clear ip ospf [process-id] process

process-id - Specifies the routing process ID. (Range: 1-65535)

Default Setting

Clears all routing processes.

Command Mode

Privileged Exec

Example

Console#clear ip ospf process Console#

Route Metrics and Summaries

area default-cost This command specifies a cost for the default summary route sent into a stub or NSSA from an Area Border Router (ABR). Use the **no** form to remove the assigned default cost.

Syntax

area area-id default-cost cost

no area area-id default-cost

area-id - Identifies the stub or NSSA. (The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.)

cost - Cost for the default summary route sent to a stub or NSSA. (Range: 0-16777215)

Command Mode

Router Configuration

Default Setting

Default cost: 1

Command Usage

◆ If the default cost is set to "0," the router will not advertise a default route into the attached stub or NSSA.

Example

```
Console(config-router) #area 10.3.9.0 default-cost 10
Console(config-router)#
```

Related Commands

area stub (999) area nssa (997)

area range This command summarizes the routes advertised by an Area Border Router (ABR). Use the **no** form to disable this function.

Syntax

[no] area area-id range ip-address netmask [advertise | not-advertise]

area-id - Identifies an area for which the routes are summarized. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

ip-address - Base address for the routes to summarize.

netmask - Network mask for the summary route.

advertise - Advertises the specified address range.

not-advertise - The summary is not sent, and the routes remain hidden from the rest of the network.

Command Mode

Router Configuration

Default Setting

Disabled

- This command can be used to summarize intra-area routes and advertise this information to other areas through Area Border Routers (ABRs).
- If the network addresses within an area are assigned in a contiguous manner, the ABRs can advertise a summary route that covers all of the individual networks within the area that fall into the specified range using a single area range command.
- If routes are set to be advertised by this command, the router will issue a Type 3 summary LSA for each address range specified by this command.
- ◆ This router supports up 64 summary routes for area ranges.

Example

This example creates a summary address for all area routes in the range of 10.2.x.x.

```
Console(config-router) #area 10.2.0.0 range 10.2.0.0 255.255.0.0 advertise
Console(config-router)#
```

auto-cost Use this command to calculate the default metrics for an interface based on **reference-bandwidth** bandwidth. Use the **no** form to automatically assign costs based on interface type.

Syntax

auto-cost reference-bandwidth reference-value

no auto-cost reference-bandwidth

reference-value - Bandwidth of interface. (Range: 1-4294967 Mbps)

Command Mode

Router Configuration

Default Setting

1 Mbps

Command Usage

- ◆ The system calculates the cost for an interface by dividing the reference bandwidth by the interface bandwidth. By default, the cost is 1 Mbps for all port types (including 100 Mbps ports, 1 Gigabit ports, and 10 Gigabit ports).
- ◆ A higher reference bandwidth can be used for aggregate links to indicate preferred use as a lower cost interface.
- ◆ The ip ospf cost command overrides the cost calculated by the **auto-cost** reference-bandwidth command.

Example

This example sets the reference value to 10000, which generates a cost of 100 for 100 Mbps ports, 10 for 1 Gbps ports and 1 for 10 Gbps ports.

```
Console(config-router) #auto-cost reference-bandwidth 10000
Console(config-router)#
```

Related Commands

ip ospf cost (1006)

default-metric This command sets the default metric for external routes imported from other protocols. Use the **no** form to remove the default metric for the supported protocol types.

Syntax

default-metric metric-value

no default-metric

metric-value – Metric assigned to all external routes imported from other protocols. (Range: 0-16777214)

Command Mode

Router Configuration

Default Setting

20

Command Usage

- ◆ The default metric must be used to resolve the problem of redistributing external routes from other protocols that use incompatible metrics.
- This command does not override the metric value set by the redistribute command. When a metric value has not been configured by the redistribute command, the default-metric command sets the metric value to be used for all imported external routes.

Example

```
Console(config-router) #default-metric 100
Console(config-router)#
```

Related Commands

redistribute (993)

redistribute This command redistributes external routing information from other routing protocols and static routes into an autonomous system. Use the **no** form to disable this feature or to restore the default settings.

Syntax

```
redistribute {bgp | connected | rip | static} [metric metric-value]
   [metric-type type-value] [tag tag-value]
```

no redistribute {bgp | connected | static} [metric] [metric-type] [tag]

connected - Imports all currently connected entries.

rip - Imports entries learned through the Routing Information Protocol.

static - Static routes will be imported into this Autonomous System.

metric-value - Metric assigned to all external routes for the specified protocol. (Range: 0-16777214: Default: 10)

type-value

- 1 Type 1 external route
- **2** Type 2 external route (default) Routers do not add internal route metric to external route metric.

tag-value - A tag placed in the AS-external LSA to identify a specific external routing domain, or to pass additional information between routers. (Range: 0-4294967295)

Command Mode

Router Configuration

Default Setting

redistribution - none metric-value - 10 type-metric - 2

- ◆ This command is used to import routes learned from other routing protocols into the OSPF domain, and to generate AS-external-LSAs.
- When you redistribute external routes into an OSPF autonomous system (AS), the router automatically becomes an autonomous system boundary router (ASBR). If the **redistribute** command is used in conjunction with the default-information originate command to generate a "default" external route into the AS, the metric value specified in this command supersedes the metric specified in the default-information originate command.
- Metric type specifies the way to advertise routes to destinations outside the AS through External LSAs. When a Type 1 LSA is received by a router, it adds the internal cost to the external route metric. In other words, the cost of the route from any router within the AS is equal to the cost associated with reaching the advertising ASBR, plus the cost of the external route. When a Type 2 LSA is received by a router, it only uses the external route metric to determine route cost.
- ◆ A tag can be used to distinguish between routes learned from different external autonomous systems (other routing protocols). For example, if there are two ASBRs in a routing domain: A and B. ASBR A can be configured to redistribute routes learned from RIP domain 1 (identified by tag 1) and ASBR B can redistribute routes learned from RIP domain 2 (identified by tag 2).

Example

This example redistributes routes learned from RIP as Type 1 external routes.

```
Console(config-router) #redistribute rip metric-type 1
Console(config-router)#
```

Related Commands

default-information originate (987)

summary-address This command aggregates routes learned from other protocols. Use the **no** form to remove a summary address.

Syntax

[no] summary-address summary-address netmask

summary-address - Summary address covering a range of addresses. netmask - Network mask for the summary route.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

Redistributing routes from other protocols into OSPF normally requires the router to advertise each route individually in an external LSA. An Autonomous System Boundary Router (ASBR) can be configured to redistribute routes learned from other protocols by advertising an aggregate route into all attached autonomous systems. This helps both to decrease the number of external LSAs and the size of the OSPF link state database.

Example

This example creates a summary address for all routes contained in 192.168.x.x.

```
Console(config-router) #summary-address 192.168.0.0 255.255.0.0
Console(config-router)#
```

Related Commands

area range (1033) redistribute (1035)

Area Configuration

area authentication This command enables authentication for an OSPF area. Use the no form to remove authentication for an area.

Syntax

[no] area area-id authentication [message-digest]

area-id - Identifies an area for which authentication is to be configured. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

message-digest - Specifies message-digest (MD5) authentication.

Command Mode

Router Configuration

Default Setting

No authentication

- Use authentication to prevent routers from inadvertently joining an unauthorized area. Configure routers in the same area with the same password or key. All neighboring routers on the same network with the same password will exchange routing data.
- Specifying authentication for an area without the **message-digest** keyword sets authentication to Type 1 (simple password). Before specifying plain-text password authentication for an area, configure a password with the ip ospf authentication-key interface command. This password is inserted into the OSPF header when routing protocol packets are originated by this device. Assign a separate password to each area for different interfaces.
- When using simple password authentication, a password is included in the packet. If it does not match the password configured on the receiving router, the packet is discarded. This method provides very little security as it is possible to learn the authentication key by snooping on routing protocol packets.
- When using Message-Digest 5 (MD5) authentication, the router uses the MD5 algorithm to verify data integrity by creating a 128-bit message digest from the authentication key. Without the proper key and key-id, it is nearly impossible to produce any message that matches the pre-specified target message digest.
- Before specifying MD5 authentication for an area, configure the messagedigest key-id and key with the ip ospf message-digest-key interface command.
- The plain-text authentication-key, or the MD5 key-id and key, must be used consistently throughout the autonomous system.

Example

This example enables message-digest authentication for the specified area.

```
Console(config-router) #area 10.3.0.0 authentication Console(config-router)#
```

Related Commands

ip ospf authentication-key (1005) ip ospf message-digest-key (1008)

area nssa

This command defines a not-so-stubby area (NSSA). To remove an NSSA, use the **no** form without any optional keywords. To remove an optional attribute, use the **no** form without the relevant keyword.

Syntax

[no] area area-id nssa

[translator-role [candidate | never | always]] |
[no-redistribution] | [no-summary] | [default-information-originate
[metric metric-value | metric-type type-value]]

area-id - Identifies the NSSA. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

translator-role - Indicates NSSA-ABR translator role for Type 5 external LSAs.

candidate - Router translates NSSA LSAs to Type-5 external LSAs if elected.

never - Router never translates NSSA LSAs to Type-5 external LSAs.

always - Router always translates NSSA LSAs to Type-5 external LSAs.

no-redistribution - Use this keyword when the router is an NSSA Area Border Router (ABR) and you want the <u>redistribute</u> command to import routes only into normal areas, and not into the NSSA. In other words, this keyword prevents the NSSA ABR from advertising external routing information (learned via routers in other areas) into the NSSA.

no-summary - Allows an area to retain standard NSSA features, but does not inject inter-area routes into this area.

default-information-originate - When the router is an NSSA Area Border Router (ABR) or an NSSA Autonomous System Boundary Router (ASBR), this parameter causes it to generate Type-7 default LSA into the NSSA. This default provides a route to other areas within the AS for an NSSA ABR, or to areas outside the AS for an NSSA ASBR.

metric-value - Metric assigned to Type-7 default LSAs. (Range: 1-16777214: Default: 1)

type-value

- 1 Type 1 external route
- **2** Type 2 external route (default) Routers do not add internal cost to the external route metric.

Command Mode

Router Configuration

Default Setting

No NSSA is configured.

Command Usage

- All routers in a NSSA must be configured with the same area ID.
- An NSSA is similar to a stub, because when the router is an ABR, it can send a default route for other areas in the AS into the NSSA using the **default-information-originate** keyword. However, an NSSA is different from a stub, because when the router is an ASBR, it can import a default external AS route (for routing protocol domains adjacent to the NSSA but not within the OSPF AS) into the NSSA using the **default-information-originate** keyword.
- External routes advertised into an NSSA can include network destinations outside the AS learned via OSPF, the default route, static routes, routes imported from other routing protocols such as RIP, and networks directly connected to the router that are not running OSPF.
- NSSA external LSAs (Type 7) are converted by any ABR adjacent to the NSSA into external LSAs (Type-5), and propagated into other areas within the AS.
- Also, note that unlike stub areas, all Type-3 summary LSAs are always imported into NSSAs to ensure that internal routes are always chosen over Type-7 NSSA external routes.
- This router supports up to 16 total areas (either normal transit areas, stubs, or NSSAs).

EXAMPLE

This example creates a stub area 10.3.0.0, and assigns all interfaces with class B addresses 10.3.x.x to the NSSA. It also instructs the router to generate external LSAs into the NSSA when it is an NSSA ABR or NSSA ASBR.

Console(config-router) #area 10.3.0.0 nssa default-information-originate Console(config-router) #network 10.3.0.0 255.255.0.0 area 10.2.0.0 Console(config-router)#

area stub This command defines a stub area. To remove a stub, use the **no** form without the optional keyword. To remove the summary attribute, use the **no** form with the summary keyword.

Syntax

[no] area area-id stub [no-summary]

area-id - Identifies the stub area. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

no-summary - Stops an Area Border Router (ABR) from sending summary link advertisements into the stub area.

Command Mode

Router Configuration

Default Setting

No stub is configured.

Summary advertisement are sent into the stub.

Command Usage

- ◆ All routers in a stub must be configured with the same area ID.
- Routing table space is saved in a stub by blocking Type-4 AS summary LSAs and Type 5 external LSAs. The default setting for this command completely isolates the stub by blocking Type-3 summary LSAs that advertise the default route for destinations external to the local area or the autonomous system.
- Use the **no-summary** parameter of this command on the ABR attached to the stub to define a totally stubby area. Define an area as a totally stubby area only if routers in the area do not require summary LSAs from other areas.
- Use the area default-cost command to specify the cost of a default summary route sent into a stub by an ABR attached to the stub area.

Example

This example creates a stub area 10.2.0.0, and assigns all interfaces with class B addresses 10.2.x.x to the stub.

```
Console(config-router) #area 10.2.0.0 stub
Console(config-router) #network 10.2.0.0 0.255.255.255 area 10.2.0.0
Console(config-router)#
```

Related Commands

area default-cost (990)

area virtual-link This command defines a virtual link. To remove a virtual link, use the **no** form with no optional keywords. To restore the default value for an attribute, use the **no** form with the required keyword.

SYNTAX

area area-id virtual-link router-id

[authentication] [dead-interval seconds] [hello-interval seconds] [retransmit-interval seconds] [transmit-delay seconds]

no area area-id virtual-link router-id

[authentication | dead-interval | hello-interval | retransmit-interval | transmit-delay]

area area-id virtual-link router-id

authentication [message-digest | null] [authentication-key key | message-digest-key key-id md5 key]

no area area-id virtual-link router-id

authentication [authentication-key | message-digest-key key-id]

area area-id virtual-link router-id

[authentication-key key | message-digest-key key-id md5 key]

no area area-id virtual-link router-id

[authentication-key | message-digest-key key-id]

area-id - Identifies the transit area for the virtual link. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

router-id - Router ID of the virtual link neighbor. This specifies the Area Border Router (ABR) at the other end of the virtual link. To create a virtual link, enter this command for an ABR at both ends of the link. One of the ABRs must be next to the isolated area and the transit area at one end of the link, while the other ABR must be next to the transit area and backbone at the other end of the link.

dead-interval seconds - Specifies the time that neighbor routers will wait for a hello packet before they declare the router down. This value must be the same for all routers attached to an autonomous system. (Range: 1-65535 seconds; Default: 4 x hello interval, or 40 seconds)

hello-interval seconds - Specifies the transmit delay between sending hello packets. Setting the hello interval to a smaller value can reduce the delay in detecting topological changes, but will increase the routing traffic. This value must be the same for all routers attached to an autonomous system. (Range: 1-65535 seconds; Default: 10 seconds)

retransmit-interval seconds - Specifies the interval at which the ABR retransmits link-state advertisements (LSA) over the virtual link. The retransmit interval should be set to a conservative value that provides an adequate flow of routing information, but does not produce unnecessary protocol traffic. However, note that this value should be larger for virtual links. (Range: 1-3600 seconds; Default: 5 seconds)

transmit-delay seconds - Estimates the time required to send a link-state update packet over the virtual link, considering the transmission and propagation delays. LSAs have their age incremented by this amount before transmission. This value must be the same for all routers attached to an autonomous system. (Range: 1-65535 seconds; Default: 1 second)

authentication - Specifies the authentication mode. If no optional parameters follow this keyword, then plain text authentication is used along with the password specified by the **authentication-key**. If **message-digest** authentication is specified, then the **message-digest-key** and **md5** parameters must also be specified. If the **null** option is specified, then no authentication is performed on any OSPF routing protocol messages.

message-digest - Specifies message-digest (MD5) authentication.

null - Indicates that no authentication is used.

authentication-key *key* - Sets a plain text password (up to 8 characters) that is used by neighboring routers on a virtual link to generate or verify the authentication field in protocol message headers. A separate password can be assigned to each network interface. However, this key must be the same for all neighboring routers on the same network (i.e., autonomous system). This key is only used when authentication is enabled for the backbone.

message-digest-key key-id md5 key - Sets the key identifier and password to be used to authenticate protocol messages passed between neighboring routers and this router when using message digest (MD5) authentication. The key-id is an integer from 0-255, and the key is an alphanumeric string up to 16 characters long. If MD5 authentication is used on a virtual link, then it must be enabled on all routers within an autonomous system; and the key identifier and key must also be the same for all routers.

Command Mode

Router Configuration

Default Setting

area-id: None router-id: None

hello-interval: 10 seconds retransmit-interval: 5 seconds transmit-delay: 1 second dead-interval: 40 seconds authentication-key: None message-digest-key: None

Command Usage

 All areas must be connected to a backbone area (0.0.0.0) to maintain routing connectivity throughout the autonomous system. If it not possible to physically connect an area to the backbone, you can use a virtual link. A virtual link can provide a logical path to the backbone for an isolated area, or can be

configured as a backup connection that can take over if the normal connection to the backbone fails.

- A virtual link can be configured between any two backbone routers that have an interface to a common non-backbone area. The two routers joined by a virtual link are treated as if they were connected by an unnumbered point-topoint network.
- Any area disconnected from the backbone must include the transit area ID and the router ID for a virtual link neighbor that is adjacent to the backbone.

Example

This example creates a virtual link using the defaults for all optional parameters.

```
Console(config-router) #network 10.4.0.0 0.255.255.0.0 area 10.4.0.0
Console(config-router) #area 10.4.0.0 virtual-link 10.4.3.254
Console(config-router)#
```

This example creates a virtual link using MD5 authentication.

```
Console(config-router) #network 10.4.0.0 0.255.255.0.0 area 10.4.0.0
Console(config-router) #area 10.4.0.0 virtual-link 10.4.3.254 message-digest-
 key 5 md5 ld83jdpg
Console(config-router)#
```

Related Commands

show ip protocols ospf (1025)

network area This command defines an OSPF area and the interfaces that operate within this area. Use the **no** form to disable OSPF for a specified interface.

Syntax

[no] network ip-address netmask area area-id

ip-address - Address of the interfaces to add to the area.

netmask - Network mask of the address range to add to the area.

area-id - Area to which the specified address or range is assigned. An OSPF area identifies a group of routers that share common routing information. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

- An area ID uniquely defines an OSPF broadcast area. The area ID 0.0.0.0 indicates the OSPF backbone for an autonomous system. Each router must be connected to the backbone via a direct connection or a virtual link.
- Set the area ID to the same value for all routers on a network segment using the network mask to add one or more interfaces to an area.
- If an address range is overlapped in subsequent network area commands, the router will use the network area with the address range that most closely matches the interface address. Also, note that if a more specific address range is removed from an area, the interface belonging to that range may still remain active if a less specific address range covering that area has been specified.

Example

This example creates the backbone 0.0.0.0 covering class B addresses 10.1.x.x, and a normal transit area 10.2.9.0 covering the class C addresses 10.2.9.x.

```
Console(config-router) #network 10.1.0.0 255.255.0.0 area 0.0.0.0
Console(config-router) #network 10.2.9.0 255.255.255.0 area 10.1.0.0
Console(config-router)#
```

Interface Configuration

ip ospf authentication This command specifies the authentication type used for an interface. Enter this command without any optional parameters to specify plain text (or simple password) authentication. Use the **no** form to restore the default of no authentication.

Syntax

ip ospf [ip-address] authentication [message-digest | null]

no ip ospf [ip-address] authentication

ip-address - IP address of the interface. Enter this parameter to specify a unique authentication type for a primary or secondary IP address associated with the current VLAN. If not specified, the command applies to all networks connected to the current interface.

message-digest - Specifies message-digest (MD5) authentication.

null - Indicates that no authentication is used.

Command Mode

Interface Configuration (VLAN)

Default Setting

No authentication

Command Usage

- Use authentication to prevent routers from inadvertently joining an unauthorized area. Configure routers in the same area with the same password or key. All neighboring routers on the same network with the same password will exchange routing data.
- This command creates a password (key) that is inserted into the OSPF header when routing protocol packets are originated by this device. Assign a separate password to each network for different interfaces.
- When using simple password authentication, a password is included in the packet. If it does not match the password configured on the receiving router, the packet is discarded. This method provides very little security as it is possible to learn the authentication key by snooping on routing protocol packets.
- When using Message-Digest 5 (MD5) authentication, the router uses the MD5 algorithm to verify data integrity by creating a 128-bit message digest from the authentication key. Without the proper key and key-id, it is nearly impossible to produce any message that matches the pre-specified target message digest.
- Before specifying plain-text password authentication for an interface, configure a password with the ip ospf authentication-key command. Before specifying MD5 authentication for an interface, configure the message-digest key-id and key with the ip ospf message-digest-key command.
- ◆ The plain-text authentication-key, or the MD5 *key-id* and *key*, must be used consistently throughout the autonomous system.

Example

This example enables message-digest authentication for the specified interface.

```
Console(config)#interface vlan 1
Console(config-if)#ip ospf authentication message-digest
Console(config-if)#
```

Related Commands

ip ospf authentication-key (1005) ip ospf message-digest-key (1008)

ip ospf This command assigns a simple password to be used by neighboring routers to authentication-key verify the authenticity of routing protocol messages. Use the no form to remove the password.

Syntax

ip ospf [ip-address] **authentication-key** key

no ip ospf [ip-address] authentication-key

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

key - Sets a plain text password. (Range: 1-8 characters)

Command Mode

Interface Configuration (VLAN)

Default Setting

No password

Command Usage

- Before specifying plain-text password authentication for an interface with the ip ospf authentication command, configure a password with this command.
- This command creates a password (key) that is inserted into the OSPF header when routing protocol packets are originated by this device. Assign a separate password to each network for different interfaces. All neighboring routers on the same network with the same password will exchange routing data.
- A different password can be assigned to each network interface, but the password must be used consistently on all neighboring routers throughout a network (i.e., autonomous system).

This example sets a password for the specified interface.

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf authentication-key badboy
Console(config-if)#
```

Related Commands

ip ospf authentication (1003)

ip ospf cost This command explicitly sets the cost of sending a protocol packet on an interface, where higher values indicate slower ports. Use the **no** form to restore the default value.

Syntax

```
ip ospf [ip-address] cost cost
```

```
no ip ospf [ip-address] cost
```

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

cost - Link metric for this interface. Use higher values to indicate slower ports. (Range: 1-65535)

Command Mode

Interface Configuration (VLAN)

Default Setting

Command Usage

- The interface cost indicates the overhead required to send packets across a certain interface. This is advertised as the link cost in router link state advertisements.
- Routes are assigned a metric equal to the sum of all metrics for each interface link in the route.
- This router uses a default cost of 1 for all port types. Therefore, if any VLAN contains 10 Gbps ports, you may want to reset the cost for other VLANs which do not contain 10 Gbps ports to a value greater than 1.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf cost 10
Console(config-if)#
```

ip ospf dead-interval This command sets the interval at which hello packets are not seen before neighbors declare the router down. Use the **no** form to restore the default value.

Syntax

ip ospf [ip-address] dead-interval seconds

no ip ospf [ip-address] dead-interval

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

seconds - The maximum time that neighbor routers can wait for a hello packet before declaring the transmitting router down. This interval must be set to the same value for all routers on the network. (Range: 1-65535)

Command Mode

Interface Configuration (VLAN)

Default Setting

40, or four times the interval specified by the ip ospf hello-interval command.

Command Usage

The dead-interval is advertised in the router's hello packets. It must be a multiple of the hello-interval and be the same for all routers on a specific network.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf dead-interval 50
Console(config-if)#
```

Related Commands

ip ospf hello-interval (1007)

ip ospf hello-interval This command specifies the interval between sending hello packets on an interface. Use the **no** form to restore the default value.

Syntax

ip ospf [ip-address] hello-interval seconds

no ip ospf [ip-address] hello-interval

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

seconds - Interval at which hello packets are sent from an interface. This interval must be set to the same value for all routers on the network. (Range: 1-65535)

Command Mode

Interface Configuration (VLAN)

Default Setting

10 seconds

Command Usage

Hello packets are used to inform other routers that the sending router is still active. Setting the hello interval to a smaller value can reduce the delay in detecting topological changes, but will increase routing traffic.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf hello-interval 5
Console(config-if)#
```

ip ospf This command enables message-digest (MD5) authentication on the specified message-digest-key interface and assigns a key-id and key to be used by neighboring routers. Use the **no** form to remove an existing key.

Syntax

ip ospf [ip-address] message-digest-key key-id md5 key

no ip ospf [ip-address] message-digest-key key-id

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

key-id - Index number of an MD5 key. (Range: 0-255)

key - Alphanumeric password used to generate a 128 bit message digest or "fingerprint." (Range: 1-16 characters)

Command Mode

Interface Configuration (VLAN)

Default Setting

MD5 authentication is disabled.

- Before specifying MD5 authentication for an interface with the ip ospf authentication command, configure the message-digest key-id and key with this command.
- Normally, only one key is used per interface to generate authentication information for outbound packets and to authenticate incoming packets. Neighbor routers must use the same key identifier and key value.

When changing to a new key, the router will send multiple copies of all protocol messages, one with the old key and another with the new key. Once all the neighboring routers start sending protocol messages back to this router with the new key, the router will stop using the old key. This rollover process gives the network administrator time to update all the routers on the network without affecting the network connectivity. Once all the network routers have been updated with the new key, the old key should be removed for security reasons.

Example

This example sets a message-digest key identifier and password.

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf message-digest-key 1 md5 aiebel
Console(config-if)#
```

Related Commands

ip ospf authentication (1003)

ip ospf priority This command sets the router priority used when determining the designated router (DR) and backup designated router (BDR) for an area. Use the **no** form to restore the default value.

Syntax

```
ip ospf [ip-address] priority priority
no ip ospf [ip-address] priority
```

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

priority - Sets the interface priority for this router. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

Command Usage

- A designated router (DR) and backup designated router (BDR) are elected for each OSPF network segment based on Router Priority. The DR forms an active adjacency to all other routers in the network segment to exchange routing topology information. If for any reason the DR fails, the BDR takes over this role.
- Set the priority to zero to prevent a router from being elected as a DR or BDR. If set to any value other than zero, the router with the highest priority will

become the DR and the router with the next highest priority becomes the BDR. If two or more routers are tied with the same highest priority, the router with the higher ID will be elected.

- If a DR already exists for a network segment when this interface comes up, the new router will accept the current DR regardless of its own priority. The DR will not change until the next time the election process is initiated.
- Configure router priority for multi-access networks only and not for point-topoint networks.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf priority 5
Console(config-if)#
```

ip ospf This command specifies the time between resending link-state advertisements **retransmit-interval** (LSAs). Use the **no** form to restore the default value.

Syntax

ip ospf [ip-address] retransmit-interval seconds

no ip ospf [ip-address] retransmit-interval

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

seconds - Sets the interval at which LSAs are retransmitted from this interface. (Range: 1-65535)

Command Mode

Interface Configuration (VLAN)

Default Setting

5 seconds

Command Usage

- A router will resend an LSA to a neighbor if it receives no acknowledgment after the specified retransmit interval. The retransmit interval should be set to a conservative value that provides an adequate flow of routing information, but does not produce unnecessary protocol traffic. Note that this value should be larger for virtual links.
- Set this interval to a value that is greater than the round-trip delay between any two routers on the attached network to avoid unnecessary retransmissions.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf retransmit-interval 7
Console(config-if)#
```

ip ospf transmit-delay This command sets the estimated time to send a link-state update packet over an interface. Use the **no** form to restore the default value.

Syntax

```
ip ospf [ip-address] transmit-delay seconds
```

no ip ospf [ip-address] transmit-delay

ip-address - This parameter can be used to indicate a specific IP address connected to the current interface. If not specified, the command applies to all networks connected to the current interface.

seconds - Sets the estimated time required to send a link-state update. (Range: 1-65535)

Command Mode

Interface Configuration (VLAN)

Default Setting

1 second

Command Usage

- LSAs have their age incremented by this delay before transmission. When estimating the transmit delay, consider both the transmission and propagation delays for an interface. Set the transmit delay according to link speed, using larger values for lower-speed links.
- If this delay is not added, the time required to transmit an LSA over the link is not taken into consideration by the routing process. On slow links, the router may send packets more quickly than devices can receive them. To avoid this problem, use the transmit delay to force the router to wait a specified interval between transmissions.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip ospf transmit-delay 6
Console(config-if)#
```

passive-interface This command suppresses OSPF routing traffic on the specified interface. Use the **no** form to allow routing traffic to be sent and received on the specified interface.

Syntax

[no] passive-interface vlan vlan-id [ip-address]

```
vlan-id - VLAN ID. (Range: 1-4094)
```

ip-address - An IPv4 address configured on this interface.

Command Mode

Router Configuration

Default Setting

None

Command Usage

You can configure an OSPF interface as passive to prevent OSPF routing traffic from exiting or entering that interface. No OSPF adjacency can be formed if one of the interfaces involved is set to passive mode. The specified interface will appear as a stub in the OSPF domain. Also, if you configure an OSPF interface as passive where an adjacency already exists, the adjacency will drop almost immediately.

Example

```
Console(config-router) #passive-interface vlan 1
Console(config-router)#
```

Display Information

show ip ospf This command shows basic information about the routing configuration.

Syntax

```
show ip ospf [process-id]
```

process-id - The ID of the router process for which information will be displayed. (Range: 1-65535)

Command Mode

Privileged Exec

Example

```
Console#show ip ospf
Routing Process "ospf 1" with ID 192.168.1.3
Process uptime is 20 minutes
Conforms to RFC2328, and RFC1583Compatibility flag is disabled
Supports only single TOS(TOS0) routes
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Refresh timer 10 secs
Number of incoming current DD exchange neighbors 0/5
```

```
Number of outgoing current DD exchange neighbors 0/5
Number of external LSA 0. Checksum 0x000000
Number of opaque AS LSA 0. Checksum 0x0000000
LSDB database overflow limit is 20480
Number of LSA originated 1
Number of LSA received 0
Number of areas attached to this router: 1

Area 192.168.1.3

Number of interfaces in this area is 1(1)
Number of fully adjacent neighbors in this area is 0
Area has no authentication
SPF algorithm last executed 00:00:08.739 ago
SPF algorithm executed 1 times
Number of LSA 1. Checksum 0x007f09
Console#
```

Table 6: show ip ospf - display description

Field	Description
Routing Process with ID	OSPF process ID and router ID. The router ID uniquely identifies the router in the autonomous system. By convention, this is normally set to one of the router's IP interface addresses.
Process uptime	The time this process has been running
Conforms to RFC2328	Shows that this router is compliant with OSPF Version 2.
RFC1583 Compatibility flag	Shows whether or not compatibility with the RFC 1583 (an earlier version of OSPFv2) is enabled.
Supports only single TOS (TOS0) routes	Optional Type of Service (ToS) specified in OSPF Version 2, Appendix F.1.2 is not supported, so only one cost per interface can be assigned.
SPF schedule delay	Delay between receiving a change to SPF calculation.
Hold time	Sets the hold time between two consecutive SPF calculations.
Refresh timer	The time between refreshing the LSA database.
Number of current DD exchange neighbors	Number of neighbors currently exchanging database descriptor packets.
Number of external LSA	The number of external link-state advertisements (Type 5 LSAs) in the link-state database. These LSAs advertise information about routes outside of the autonomous system.
Checksum	The sum of the LS checksums of the external link-state advertisements contained in the link-state database. $ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^$
Number of opaque AS LSA	Number of opaque link-state advertisements (Type 9, 10 and 11 LSAs) in the link-state database. These LSAs advertise information about external applications, and are only used by OSPF for the graceful restart process.
Checksum	The sum of the LS checksums of opaque link-state advertisements contained in the link-state database.
LSDB database overflow limit	The maximum number of LSAs allowed in the external database.

Table 6: show ip ospf - display description (Continued)

Field	Description
Number of LSA originated	The number of new link-state advertisements that have been originated.
Number of LSA received	The number of link-state advertisements that have been received.
Number of areas attached to this router	The number of configured areas attached to this router.
Number of interfaces in this area is	The number of interfaces attached to this area
Number of fully adjacent neighbors in this area is	The number of neighbors for which the exchange of recognition protocol messages has been completed and are now fully adjacent
Area has (no) authentication	Shows whether or not the authentication has been enabled
SPF algorithm last executed	The last time the shortest path first algorithm was executed
SPF algorithm executed x times	The number of times the shortest path first algorithm has been executed for this area
Number of LSA	The number of new link-state advertisements that have been originated.
Checksum	The sum of the link-state advertisements' LS checksums contained in this area's link-state database.

show ip ospf This command shows entries in the routing table that lead to an Area Border Router **border-routers** (ABR) or Autonomous System Boundary Router (ASBR).

Syntax

show ip ospf [process-id] **border-routers**

process-id - The ID of the router process for which information will be displayed. (Range: 1-65535)

Command Mode

Privileged Exec

Example

```
Console#show ip ospf border-routers
OSPF process 1 internal Routing Table
Codes: i - Intra-area route, I - Inter-area route
i 192.168.0.3 [1] via 192.168.0.3, vlan1, ABR, ASBR, Area 0.0.0.0
Console#
```

show ip ospf database This command shows information about different OSPF Link State Advertisements (LSAs) stored in this router's database.

Syntax

show ip ospf [process-id] database

[asbr-summary | external | network | nssa-external | router | summary] [adv-router ip-address | link-state-id | self-originate]

process-id - The ID of the router process for which information will be displayed. (Range: 1-65535)

adv-router - IP address of the advertising router. If not entered, information about all advertising routers is displayed.

ip-address - IP address of the specified router. If no address is entered, information about the local router is displayed.

link-state-id - The network portion described by an LSA. The link-state-id entered should be:

- An IP network number for Type 3 Summary and External LSAs
- A Router ID for Router, Network, and Type 4 AS Summary LSAs

Also, note that when an Type 5 ASBR External LSA is describing a default route, its link-state-id is set to the default destination (0.0.0.0).

self-originate - Shows LSAs originated by this router.

asbr-summary - Shows information about Autonomous System Boundary Router summary LSAs.

external - Shows information about external LSAs.

network - Shows information about network LSAs.

nssa-external - Shows information about NSSA external LSAs.

router - Shows information about router LSAs.

summary - Shows information about summary LSAs.

Command Mode

Privileged Exec

Examples

The following shows output for the **show ip ospf database** command.

```
Console#show ip ospf database
                 OSPF Router with ID (192.168.0.2) (Process ID 1)
                      Router Link States (Area 0.0.0.0)
Link ID ADV Router Age Seq# CkSum Link count 192.168.0.2 192.168.0.2 225 0x80000004 0xdac5 1 192.168.0.3 192.168.0.3 220 0x80000004 0xd8c4 1
```

Table 7: show ip ospf database - display description

Field	Description
OSPF Router Process with ID	OSPF process ID and router ID. The router ID uniquely identifies the router in the autonomous system. By convention, this is normally set to one of the router's IP interface addresses.
Link ID	Either a Router ID or an IP Address; it identifies the piece of the routing domain that is being described by the advertisement
ADV Router	Advertising router ID
Age	Age of LSA (in seconds)
Seq#	Sequence number of LSA (used to detect older duplicate LSAs)
CkSum	Checksum of the complete contents of the LSA
Link count	Number of interfaces attached to the router
Route	Type 1 or Type 2 external metric (see the redistribute command) and route
Tag	Optional tag if defined (see the redistribute command)

The following shows output when using the **asbr-summary** keyword.

```
Console#show ip ospf database asbr-summary

OSPF Router with ID (0.0.0.0) (Process ID 1)

ASBR-Summary Link States (Area 0.0.0.1)

LS Age: 0
Options: 0x2 (*|-|-|-|-|E|-)
LS Type: ASBR-summary-LSA
Link State ID: 2.1.0.0 (AS Boundary Router address)
Advertising Router: 192.168.2.1
LS Seq Number: 80000001
Checksum: 0x7b67
Length: 28
Network Mask: /0
TOS: 0 Metric: 10

Console#
```

Table 8: show ip ospf database summary - display description

Field	Description
OSPF Router ID	Router ID
LS Age	Age of LSA (in seconds)
Options	Optional capabilities associated with the LSA
LS Type	Summary Links - LSA describes routes to AS boundary routers
Link State ID	Interface address of the autonomous system boundary router
Advertising Router	Advertising router ID
LS Sequence Number	Sequence number of LSA (used to detect older duplicate LSAs)
Checksum	Checksum of the complete contents of the LSA
Length	The length of the LSA in bytes
Network Mask	Address mask for the network
TOS	Type of Service – This router only supports TOS 0 (or normal service)
Metric	Cost of the link

The following shows output when using the **external** keyword.

```
Console#show ip ospf database external
OSPF Router process 100 with ID (10.10.11.50)
AS External Link States LS age: 298
Options: 0x2 (* | - | - | - | - | E | -)
LS Type: AS-external-LSA
Link State ID: 10.10.100.0 (External Network Number)
Advertising Router: 10.10.11.50
LS Seq Number: 8000001
Checksum: 0x7033
Length: 36
Network Mask: /24
Metric Type: 2 (Larger than any link state path)
TOS: 0
Metric: 20
Forward Address: 10.10.11.50
External Route Tag: 0
            OSPF Router with ID (0.0.0.0) (Process ID 1)
                AS External Link States
  LS Age: 0
  Options: 0x2 (* |-|-|-|-|E|-)
  LS Type: AS-external-LSA
  Link State ID: 0.0.0.0 (External Network Number)
  Advertising Router: 192.168.0.2
  LS Seq Number: 8000005
  Checksum: 0xcc95
  Length: 36
  Network Mask: /0
        Metric Type: 2 (Larger than any link state path)
        TOS: 0
```

Metric: 1 Forward Address: 0.0.0.0 External Route Tag: 0

Console#

Table 9: show ip ospf database external - display description

Field	Description
OSPF Router ID	Router ID
LS Age	Age of LSA (in seconds)
Options	Optional capabilities associated with the LSA
LS Type	AS External Links - LSA describes routes to destinations outside the AS (including default external routes for the AS) $$
Link State ID	IP network number (External Network Number)
Advertising Router	Advertising router ID
LS Sequence Number	Sequence number of LSA (used to detect older duplicate LSAs)
Checksum	Checksum of the complete contents of the LSA
Length	The length of the LSA in bytes
Network Mask	Address mask for the network
Metric Type	Type 1 or Type 2 external metric (see the redistribute command)
TOS	Type of Service – This router only supports TOS 0 (or normal service)
Metric	Cost of the link
Forward Address	Next hop address. If this field is set to 0.0.0.0, data is forwarded to the originator of the advertisement.
External Route Tag	Optional tag if defined (see the redistribute command)

The following shows output when using the **network** keyword.

```
Console#show ip ospf database network

OSPF Router with ID (0.0.0.0) (Process ID 1)

Net Link States (Area 0.0.0.0)

LS Age: 0
Options: 0x2 (* |- |- |- |- |E|-)
LS Type: network-LSA
Link State ID: 192.168.0.2 (address of Designated Router)
Advertising Router: 192.168.0.2
LS Seq Number: 80000005
Checksum: 0x9413
Length: 32
Network Mask: /24
Attached Router: 192.168.0.2
Attached Router: 192.168.0.3
```

:

Table 10: show ip ospf database network - display description

Field	Description
OSPF Router ID	Router ID
LS Age	Age of LSA (in seconds)
Options	Optional capabilities associated with the LSA
LS Type	Network Link - LSA describes the routers attached to the network
Link State ID	Interface address of the designated router
Advertising Router	Advertising router ID
LS Sequence Number	Sequence number of LSA (used to detect older duplicate LSAs)
Checksum	Checksum of the complete contents of the LSA
Length	The length of the LSA in bytes
Network Mask	Address mask for the network
Attached Router	List of routers attached to the network; i.e., fully adjacent to the designated router, including the designated router itself

The following shows output when using the router keyword.

```
Console#show ip ospf database router
            OSPF Router with ID (0.0.0.0) (Process ID 1)
                Router Link States (Area 0.0.0.0)
 LS Age: 0
  Options: 0x2 (* |-|-|-|-|E|-)
  Flags: 0x2 : ASBR
  LS Type: router-LSA
 Link State ID: 192.168.0.2
  Advertising Router: 192.168.0.2
 LS Seq Number: 80000008
  Checksum: 0xd2c9
  Length: 36
   Link connected to: a Transit Network
     (Link ID) Designated Router address: 192.168.0.2
     (Link Data) Router Interface address: 192.168.0.2
     Number of TOS metrics: 0
     TOS 0 Metric: 1
```

Table 11: show ip ospf database router - display description

Field	Description
OSPF Router ID	Router ID
LS Age	Age of LSA (in seconds)
Options	Optional capabilities associated with the LSA
Flags	Indicate if this router is a virtual link endpoint, an ASBR, or an ABR
LS Type	Router Link - LSA describes the router's interfaces.
Link State ID	Router ID of the router that originated the LSA
Advertising Router	Advertising router ID
LS Sequence Number	Sequence number of LSA (used to detect older duplicate LSAs)
Checksum	Checksum of the complete contents of the LSA
Length	The length of the LSA in bytes
Link connected to	Link-state type, including transit network, stub network, or virtual link
Link ID	Link type and corresponding Router ID or network address
Link Data	Router ID for transit network Network's IP address mask for stub network Neighbor Router ID for virtual link
Number of TOS metrics	Type of Service metric – This router only supports TOS 0 (or normal service)
TOS	Type of Service – This router only supports TOS 0 (or normal service)
Metric	Cost of the link

The following shows output when using the **summary** keyword.

```
Console#show ip ospf database summary

OSPF Router with ID (0.0.0.0) (Process ID 1)

Summary Link States (Area 0.0.0.0)

LS Age: 1
Options: 0x0 (*|-|-|-|-|-|)
LS Type: summary-LSA
Link State ID: 192.168.10.0 (summary Network Number)
Advertising Router: 2.1.0.0
LS Seq Number: 80000005
Checksum: 0x479d
Length: 28
Network Mask: /24

TOS: 0 Metric: 0
:
```

Table 12: show ip ospf database summary - display description

Field	Description
OSPF Router ID	Router ID
LS Age	Age of LSA (in seconds)
Options	Optional capabilities associated with the LSA
LS Type	Summary Links - LSA describes routes to networks
Link State ID	Router ID of the router that originated the LSA
Advertising Router	Advertising router ID
LS Sequence Number	Sequence number of LSA (used to detect older duplicate LSAs)
Checksum	Checksum of the complete contents of the LSA
Length	The length of the LSA in bytes
Network Mask	Destination network's IP address mask
Metrics	Cost of the link

show ip ospf interface This command displays summary information for OSPF interfaces.

Syntax

show ip ospf interface [vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Command Mode

Privileged Exec

Example

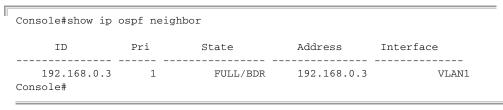
```
Console#show ip ospf interface vlan 1
VLAN1 is up, line protocol is up
 Internet Address 192.168.0.2/24, Area 0.0.0.0, MTU 1500
 Process ID 1, Router ID 192.168.0.2, Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 192.168.0.2, Interface Address 192.168.0.2
  Backup Designated Router (ID) 192.168.0.3, Interface Address 192.168.0.3
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:10
 Neighbor Count is 1, Adjacent neighbor count is 1
 Hello received 920 sent 975, DD received 5 sent 4
 LS-Req received 1 sent 1, LS-Upd received 14 sent 18
 LS-Ack received 17 sent 13, Discarded 0
Console#
```

Table 13: show ip ospf interface - display description

Field	Description
VLAN	VLAN ID and Status of physical link
Internet Address	IP address of OSPF interface
Area	OSPF area to which this interface belongs
MTU	Maximum transfer unit
Process ID	OSPF process ID
Router ID	Router ID
Network Type	Includes broadcast, non-broadcast, or point-to-point networks
Cost	Interface transmit cost
Transmit Delay	Interface transmit delay (in seconds)
State	 Disabled – OSPF not enabled on this interface Down – OSPF is enabled on this interface, but interface is down Loopback – This is a loopback interface Waiting – Router is trying to find the DR and BDR DR – Designated Router BDR – Backup Designated Router DRother – Interface is on a multiaccess network, but is not the DR or BDR
Priority	Router priority
Designated Router	Designated router ID and respective interface address
Backup Designated Router	Backup designated router ID and respective interface address
Timer intervals	Configuration settings for timer intervals, including Hello, Dead and Retransmit
Neighbor Count	Count of network neighbors and adjacent neighbors
Adjacent neighbor count	Count of adjacent neighbors
Hello	Number of Hello LSAs received and sent
DD	Number of Database Descriptor packets received and sent.
LS-Req	Number of LSA requests
LS-Upd	Number of LSA updates
LS-Ack	Number of LSA acknowledgements
Discarded	Number of LSAs discarded

show ip ospf neighbor This command displays information about neighboring routers on each interface within an OSPF area.

Syntax


show ip ospf [process-id] neighbor

process-id - The ID of the router process for which information will be displayed. (Range: 1-65535)

Command Mode

Privileged Exec

Example

Table 14: show ip ospf neighbor - display description

Field	Description
Neighbor ID	Neighbor's router ID
Pri	Neighbor's router priority
State	OSPF state and identification flag States include: Down – Connection down Attempt – Connection down, but attempting contact (for non-broadcast networks) Init – Have received Hello packet, but communications not yet established Two-way – Bidirectional communications established ExStart – Initializing adjacency between neighbors Exchange – Database descriptions being exchanged Loading – LSA databases being exchanged Full – Neighboring routers now fully adjacent Identification flags include: D – Dynamic neighbor S – Static neighbor DR – Designated router BDR – Backup designated router
Address	IP address of this interface
Interface	The interface to which this neighbor is attached

show ip ospf route This command displays the OSPF routing table.

Syntax

show ip ospf [process-id] route

process-id - The ID of the router process for which information will be displayed. (Range: 1-65535)

Command Mode

Privileged Exec

Example

```
Console#show ip ospf route
OSPF process 1:
Codes: C - connected, D - Discard, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
0 10.10.0.0/24 [10] is directly connected, fe1/1, Area 0.0.0.0
O 10.10.11.0/24 [10] is directly connected, fe1/2, Area 0.0.0.0
O 10.10.11.100/32 [10] is directly connected, lo, Area 0.0.0.0
E2 10.15.0.0/24 [10/50] via 10.10.0.1, VLAN1
IA 172.16.10.0/24 [30] via 10.10.11.50, VLAN2, Area 0.0.0.0
E2 192.168.0.0/16 [10/20] via 10.10.11.50, VLAN2
Console#
```

virtual-links

show ip ospf This command displays detailed information about virtual links.

Syntax

show ip ospf virtual-links

Command Mode

Privileged Exec

Example

```
Console#show ip ospf virtual-links
Virtual Link VLINK1 to router 192.168.0.2 is up
  Transit area 0.0.0.1 via interface VLAN1
  Local address 192.168.0.3
  Remote address 192.168.0.2
  Transmit Delay is 1 sec, State Point-To-Point,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:08
    Adjacency state Down
Console#
```

Table 15: show ip ospf virtual-links - display description

Field	Description
Virtual Link to router	OSPF neighbor and link state (up or down)
Transit area	Common area the virtual link crosses to reach the target router
Local address	The IP address of ABR that serves as an endpoint connecting the isolated area to the common transit area.
Remote address	The IP address this virtual neighbor is using. The neighbor must be an ABR at the other endpoint connecting the common transit area to the backbone itself.
Transmit Delay	Estimated transmit delay (in seconds) on the virtual link
Timer intervals	Configuration settings for timer intervals, including Hello, Dead and Retransmit

Related Commands

area virtual-link (1000)

show ip protocols ospf This command displays OSPF process parameters.

Syntax

show ip protocols ospf

Command Mode

Privileged Exec

Example

```
Console#show ip protocols ospf
Routing Protocol is "ospf 200"
Redistributing: rip
Routing for Networks:
192.30.30.0/24
192.40.40.0/24
 Routing for Summary Address:
    192.168.1.0/24
    192.168.3.0/24
Distance: (default is 110)
Console#
```

Table 16: show ip protocols ospf - display description

Field	Description
Routing Protocol	Name and autonomous system number of this OSPF process.
Redistributing	Shows if route redistribution has been enabled with the redistribute command.
Routing for Networks	Networks for which the OSPF is currently registering routing information.

Table 16: show ip protocols ospf - display description (Continued)

Field	Description
Routing for Summary Address	Shows the networks for which route summarization is in effect
Distance	The administrative distance used for external routes learned by OSPF (see the ip route command).

OPEN SHORTEST PATH FIRST (OSPFV3)

Table 17: Open Shortest Path First Commands (Version 3)

Command	Function	Mode
General Configuration		
router ipv6 ospf	Enables or disables OSPFv3 routing process	GC
abr-type	Sets the criteria used to determine if this router can declare itself an ABR and issue Type 3 and Type 4 summary LSAs	RC
max-current-dd	Sets the maximum number of neighbors with which the switch can concurrently exchange database descriptor packets	RC
router-id	Sets the router ID for this device	RC
timers spf	Configures the delay after a topology change and the hold time between consecutive SPF calculations	RC
Route Metrics and Summarie	es	
area default-cost	Sets the cost for a default summary route sent into a stub	RC
area range	Summarizes routes advertised by an ABR	RC
default-metric	Sets the default metric for external routes imported from other protocols	RC
redistribute	Redistribute routes from one routing domain to another	RC
Area Configuration		
area stub	Defines a stubby area that cannot send or receive LSAs	RC
area virtual-link	Defines a virtual link from an area border routers to the backbone	RC
ipv6 router ospf area	Binds an area to the selected interface	IC
ipv6 router ospf tag area	Binds an area to the selected interface and process	IC
Interface Configuration		
ipv6 ospf cost	Specifies the cost of sending a packet on an interface	IC
ipv6 ospf dead-interval	Sets the interval at which hello packets are not seen before neighbors declare the router down	IC
ipv6 ospf hello-interval	Specifies the interval between sending hello packets	IC
ipv6 ospf priority	Sets the router priority used to determine the designated router	IC

Table 17: Open Shortest Path First Commands (Version 3) (Continued)

Command	Function	Mode
ipv6 ospf retransmit-interval	Specifies the time between resending a link-state advertisement	IC
ipv6 ospf transmit-delay	Estimates time to send a link-state update packet over an interface	IC
passive-interface	Suppresses OSPF routing traffic on the specified interface	RC
Display Information		
show ipv6 ospf	Displays general information about the routing processes	PE
show ipv6 ospf database	Shows information about different LSAs in the database	PE
show ipv6 ospf interface	Displays interface information	PE
show ipv6 ospf neighbor	Displays neighbor information	PE
show ipv6 ospf route	Displays the OSPF routing table	PE
show ipv6 ospf virtual-links	Displays parameters and the adjacency state of virtual links	PE

General Guidelines

Follow these basic steps to configure OSPFv3:

- 1. Assign an IPv6 link-local address to each VLAN interface that will participate in an OSPF routing process. You can automatically generate a link-local address using the ipv6 enable command, or manually assign an address to an interface using the ipv6 address link-local command.
- **2.** Use the router ipv6 ospf command to create a local OSPF router process and enter router configuration mode.
- **3.** Use the router-id command to assign a unique identifier to the router. Note that the default router ID of "0.0.0.0" cannot be used with the current software version.
- **4.** Use the ipv6 router ospf area command or the ipv6 router ospf tag area command to assign an area to each interface that will participate in the specified OSPF process.

General Configuration

router ipv6 ospf This command creates an Open Shortest Path First (OSPFv3) routing process and enters router configuration mode. Use the **no** form to disable OSPF for all processes or for a specified process.

Syntax

[no] router ipv6 ospf [tag process-name]

process-name - A process name must be entered when configuring multiple routing instances. (Range: Alphanumeric string up to 16 characters)

Command Mode

Global Configuration

Default Setting

Disabled

Command Usage

- This command is used to enable an OSPFv3 routing process, and to enter router configuration mode.
- The *process-name* is only used on the local router to distinguish between different routing processes. It should not be confused with the instance-id configured with the ipv6 router ospf area command which is used to distinguish between different routing processes running on the same link-local network segment.

Example

```
Console(config) #router ipv6 ospf tag 0
Console(config-router)#end
Console#show ipv6 ospf
Routing Process "ospf r&d" with ID 192.168.0.2
 Process uptime is 1 hour 34 minutes
 Supports only single TOS(TOS0) routes
 SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Number of incoming concurrent DD exchange neighbors 0/5
Number of outgoing concurrent DD exchange neighbors 0/5
Number of external LSA 0. Checksum 0x000000
Number of opaque AS LSA 0. Checksum 0x000000
Number of LSA received 0
Number of areas attached to this router: 1
    Area 0.0.0.0 (BACKBONE)
        SPF algorithm executed 1 times
        Number of LSA 2. Checksum 0x00ab4f
Console#
```

Related Commands

ipv6 router ospf area (1039)

abr-type This command sets the criteria used to determine if this router can declare itself an ABR and issue Type 3 and Type 4 summary LSAs. Use the **no** form to restore the default setting.

Syntax

abr-type {cisco | ibm | standard}

no abr-type

cisco - ABR criteria and functional behavior is based on RFC 3509.

ibm - ABR criteria and functional behavior is briefly described in RFC 3509, and fully documented in IBM Nways Multiprotocol Routing Services (MRS) 3.3.

standard - ABR criteria and functional behavior is based on RFC 2328.

Command Mode

Router Configuration

Default Setting

cisco

Command Usage

- The basic criteria for a router to serve as an ABR is shown below:
 - Cisco Systems Interpretation: A router is considered to be an ABR if it has more than one area actively attached and one of them is the backbone area.
 - IBM Interpretation: A router is considered to be an ABR if it has more than one actively attached area and the backbone area is configured.
 - Standard Interpretation: A router is considered to be an ABR if it is attached to two or more areas. It does not have to be attached to the backbone area.
- To successfully route traffic to inter-area and AS external destinations, an ABR must be connected to the backbone. If an ABR has no backbone connection, all traffic destined for areas not connected to it or outside the AS will be dropped. This situation is normally resolved, by configuring a virtual link from the ABR to the backbone area.
- ◆ In both the Cisco and IBM interpretation, a router connected to more than one area cannot issue a Type 1 router LSA declaring itself as an ABR unless it meets the other criteria listed above.

Routing table calculations are changed to allow the router to consider summary-LSAs from all attached areas if it is not an ABR, but has more than one attached area, or it does not have an active backbone connection.

In other words, inter-area routes are calculated by examining summary-LSAs. If the router is an ABR and has an active backbone connection, only backbone summary-LSAs are examined. Otherwise (when either the router is not an ABR or it has no active backbone connection), the router should consider summary-LSAs from all actively attached areas.

This ensures that the summary-LSAs originated by area border routers advertise only intra-area routes into the backbone if the router has an active backbone connection, and advertises both intra-area and inter-area routes into the other areas. Otherwise, the router only advertises intra-area routes into non-backbone areas.

Example

```
Console(config-router) #abr-type ibm
Console(config-router)#
```

max-current-dd This command sets the maximum number of neighbors with which the switch can concurrently exchange database descriptor (DD) packets. Use the **no** form to restore the default setting.

Syntax

max-current-dd max-packets

no max-current-dd

max-packets - The maximum number of neighbors with which the switch can concurrently send or receive DD packets. (Range: 1-65535)

Command Mode

Router Configuration

Default Setting

Command Usage

• This limit applies separately to the number of neighbors to which DD packets can be concurrently sent, and to the number of neighbors from which DD packets can be concurrently received.

Example

```
Console(config-router) #maximum-current-dd 10
Console(config-router)#
```

Related Commands

show ipv6 ospf (1047)

router-id This command assigns a unique router ID for this device within the autonomous system for the current OSPFv3 process. Use the **no** form to restore the default setting.

Syntax

router-id ip-address

no router-id

ip-address - Router ID formatted as an IPv4 address.

Command Mode

Router Configuration

Default Setting

None

Command Usage

- ◆ This command sets the router ID for the OSPF process specified in the router ipv6 ospf command.
- ◆ The router ID must be unique for every router in the autonomous system. (Note that the router ID can also be set to 0.0.0.0 or 255.255.255.255).
- If this router already has registered neighbors, the new router ID will be used when the router is rebooted, or manually restarted by entering the no router ipv6 ospf followed by the router ipv6 ospf command.
- If the priority values of the routers bidding to be the designated router or backup designated router for an area are equal, the router with the highest ID is elected.
- The current routing process will not be enabled until a Router ID is configured with this command.

Example

```
Console(config-router) #router-id 10.1.1.1
Console(config-router) #
```

Related Commands

router ipv6 ospf (1028)

Chapter 50 | IP Routing Commands

Open Shortest Path First (OSPFv3)

timers spf This command configures the delay after receiving a topology change and starting the shortest path first (SPF) calculation, and the hold time between making two consecutive SPF calculations. Use the **no** form to restore the default values.

Syntax

timers spf spf-delay spf-holdtime

no timers spf

spf-delay - The delay after receiving a topology change notification and starting the SPF calculation. (Range: 0-2147483647 seconds)

spf-holdtime - The minimum time between two consecutive SPF calculations. (Range: 0-2147483647 seconds)

Command Mode

Router Configuration

Default Setting

SPF delay: 5 seconds SPF holdtime: 10 seconds

Command Usage

- Setting the SPF holdtime to 0 means that there is no delay between consecutive calculations.
- Using a low value for the holdtime allows the router to switch to a new path faster, but uses more CPU processing time.

Example

```
Console(config-router) #timers spf 20
Console(config-router)#
```

Route Metrics and Summaries

area default-cost This command specifies a cost for the default summary route sent into a stub from an Area Border Router (ABR). Use the **no** form to remove the assigned default cost.

Syntax

area area-id default-cost cost

no area area-id default-cost

area-id - Identifies the stub. (The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.)

cost - Cost for the default summary route sent to a stub. (Range: 0-16777215)

Command Mode

Router Configuration

Default Setting

Default cost: 1

Command Usage

If the default cost is set to "0," the router will not advertise a default route into the attached stub.

Example

```
Console(config) #router ipv6 ospf tag 1
Console(config-router) #area 1 default-cost 1
Console(config-router)#
```

Related Commands

area stub (999)

area range This command summarizes the routes advertised by an Area Border Router (ABR). Use the **no** form to disable this function.

Syntax

[no] area area-id range ipv6-prefix/prefix-length {advertise | not-advertise}

area-id - Identifies an area for which the routes are summarized. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

ipv6-prefix - A full IPv6 address including the network prefix and host address bits.

prefix-length - A decimal value indicating how many contiguous bits (from the left) of the address comprise the prefix (i.e., the portion of the address to summarize).

advertise - Advertises the specified address range.

not-advertise - The summary is not sent, and the routes remain hidden from the rest of the network.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

 This command can be used to summarize intra-area routes and advertise this information to other areas through Area Border Routers (ABRs).

- If the network addresses within an area are assigned in a contiguous manner, the ABRs can advertise a summary route that covers all of the individual networks within the area that fall into the specified range using a single area range command.
- If routes are set to be advertised by this command, the router will issue a Type 3 summary LSA for each address range specified by this command.
- This router supports up 64 summary routes for area ranges.

Example

This example creates a summary address for all area routes in the range of 73::/8, or all IPv6 address that start with the first byte 73 (hexadecimal).

```
Console(config-router) #area 1 range 73::/8 advertise
Console(config-router)#
```

default-metric This command sets the default metric for external routes imported from other protocols. Use the **no** form to remove the default metric for the supported protocol types.

Syntax

default-metric metric-value

no default-metric

metric-value – Metric assigned to all external routes imported from other protocols. (Range: 0-16777214)

Command Mode

Router Configuration

Default Setting

20

Command Usage

- The default metric must be used to resolve the problem of redistributing external routes from other protocols that use incompatible metrics.
- ◆ This command does not override the metric value set by the redistribute command. When a metric value has not been configured by the redistribute command, the **default-metric** command sets the metric value to be used for all imported external routes.

Example

```
Console(config-router)#default-metric 100
Console(config-router)#
```

Related Commands

redistribute (1035)

redistribute This command redistributes external routing information from other routing protocols and static routes into an autonomous system. Use the **no** form to disable this feature or to restore the default settings.

Syntax

[no] redistribute {connected | static} [metric metric-value] [metric-type type-value]

connected - Imports all currently connected entries.

static - IPv6 static routes will be imported into this Autonomous System.

metric-value - Metric assigned to all external routes for the specified protocol. (Range: 0-16777214: Default: 20)

type-value

- 1 Type 1 external route
- 2 Type 2 external route (default) Routers do not add internal route metric to external route metric.

Command Mode

Router Configuration

Default Setting

redistribution - none metric-value - 20 type-metric - 2

Command Usage

- This command is used to import routes learned from other routing protocols into the OSPF domain, and to generate AS-external-LSAs.
- When you redistribute external routes into an OSPF autonomous system (AS), the router automatically becomes an autonomous system boundary router (ASBR).
- Metric type specifies the way to advertise routes to destinations outside the AS through External LSAs. When a Type 1 LSA is received by a router, it adds the internal cost to the external route metric. In other words, the cost of the route from any router within the AS is equal to the cost associated with reaching the advertising ASBR, plus the cost of the external route. When a Type 2 LSA is received by a router, it only uses the external route metric to determine route cost.

Example

This example redistributes automatically connected routes as Type 1 external routes.

```
Console(config-router) #redistribute connected metric-type 1
Console(config-router)#
```

Area Configuration

area stub This command defines a stub area. To remove a stub, use the **no** form without the optional keyword. To remove the summary attribute, use the **no** form with the summary keyword.

Syntax

[no] area area-id stub [no-summary]

area-id - Identifies the stub area. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

no-summary - Stops an Area Border Router (ABR) from sending summary link advertisements into the stub area.

Command Mode

Router Configuration

Default Setting

No stub is configured.

Summary advertisement are sent into the stub.

Command Usage

- All routers in a stub must be configured with the same area ID.
- Routing table space is saved by stopping an ABR from flooding Type-4 Inter-Area Router and Type 5 AS-External LSAs into the stub. Since no information on external routes is known inside the stub, an ABR will advertise the default route 0::0/0 using a Type 3 Inter-Area Prefix LSA.
- The default setting for this command blocks Type-4 Inter-Area Router and Type 5 AS-External LSAs. Therefore, any destinations that cannot be matched to an inter-area or intra-area route will have to use the default route.
- Use the **no-summary** parameter of this command on an ABR attached to the stub to define a totally stubby area, blocking all Type 3 network summary LSAs. Define an area as a totally stubby area only if routers in the area do not require summary LSAs from other areas.
- Use the area default-cost command to specify the cost of a default summary route sent into a stub by an ABR attached to the stub area.

Example

This example creates a stub area 2, and makes it totally stubby by blocking all Type 3 summary LSAs.

```
Console(config-router) #area 2 stub no-summary
Console(config-router)#
```

Related Commands

area default-cost (1032)

area virtual-link This command defines a virtual link. To remove a virtual link, use the **no** form with no optional keywords. To restore the default value for an attribute, use the **no** form with the required keyword.vvvv

Syntax

area area-id virtual-link router-id [dead-interval seconds] [hello-interval seconds] [retransmit-interval seconds] [transmit-delay seconds]

no area area-id virtual-link router-id

[dead-interval | hello-interval | retransmit-interval | transmit-delay]

area-id - Identifies the transit area for the virtual link. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

router-id - Router ID of the virtual link neighbor. This specifies the Area Border Router (ABR) at the other end of the virtual link. To create a virtual link, enter this command for an ABR at both ends of the link. One of the ABRs must be next to the isolated area and the transit area at one end of the link, while the other ABR must be next to the transit area and backbone at the other end of the link.

dead-interval seconds - Specifies the time that neighbor routers will wait for a hello packet before they declare the router down. This value must be the same for all routers attached to an autonomous system. (Range: 1-65535 seconds; Default: 4 x hello interval, or 40 seconds)

hello-interval seconds - Specifies the transmit delay between sending hello packets. Setting the hello interval to a smaller value can reduce the delay in detecting topological changes, but will increase the routing traffic. This value must be the same for all routers attached to an autonomous system. (Range: 1-65535 seconds; Default: 10 seconds)

retransmit-interval seconds - Specifies the interval at which the ABR retransmits link-state advertisements (LSA) over the virtual link. The retransmit interval should be set to a conservative value that provides an adequate flow of routing information, but does not produce unnecessary protocol traffic. However, note that this value should be larger for virtual links. (Range: 1-65535 seconds; Default: 5 seconds)

transmit-delay seconds - Estimates the time required to send a link-state update packet over the virtual link, considering the transmission and propagation delays. LSAs have their age incremented by this amount before transmission. This value must be the same for all routers attached to an autonomous system. (Range: 1-65535 seconds; Default: 1 second)

Command Mode

Router Configuration

Default Setting

area-id: None *router-id*: None

hello-interval: 10 seconds retransmit-interval: 5 seconds transmit-delay: 1 second dead-interval: 40 seconds

Command Usage

- ◆ All areas must be connected to a backbone area (0.0.0.0) to maintain routing connectivity throughout the autonomous system. If it not possible to physically connect an area to the backbone, you can use a virtual link. A virtual link can provide a logical path to the backbone for an isolated area, or can be configured as a backup connection that can take over if the normal connection to the backbone fails.
- ◆ A virtual link can be configured between any two backbone routers that have an interface to a common non-backbone area. The two routers joined by a virtual link are treated as if they were connected by an unnumbered point-to-point network.
- ◆ Any area disconnected from the backbone must include the transit area ID and the router ID for a virtual link neighbor that is adjacent to the backbone.

Example

This example creates a virtual link using the defaults for all optional parameters.

```
Console(config-router) #area 3 virtual-link 192.168.0.9
Console(config-router)#
```

ipv6 router ospf area This command binds an OSPF area to the selected interface. Use the no form to remove an OSPF area, disable an OSPF process, or remove an instance identifier from an interface.

Syntax

[no] ipv6 router ospf area area-id [tag process-name | **instance-id** *instance-id*

area-id - Area to bind to the current Layer 3 interface. An OSPF area identifies a group of routers that share common routing information. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

process-name - A process name must be entered when configuring multiple routing instances. (Range: Alphanumeric string up to 16 characters)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration

Default Setting

None

Command Usage

- ◆ An area ID uniquely defines an OSPF broadcast area. The area ID 0.0.0.0 indicates the OSPF backbone for an autonomous system. Each router must be connected to the backbone via a direct connection or a virtual link.
- Set the area ID to the same value for all routers on a network segment.
- The *process-name* is only used on the local router to distinguish between different routing processes (and must be configured with the router ipv6 ospf command before using it in the **ipv6 router ospf area** command).
- The *instance-id* is used on the link-local network segment to distinguish between different routing processes running on the same link, and allows routers participating in a common routing process to form adjacencies and exchange routing information.
- The backbone (area 0.0.0.0) must be created before any other area.

Example

This example creates the backbone 0.0.0.0.

```
Console(config) #router ipv6 ospf tag 0
Console(config-router) #router-id 192.168.0.2
Console(config-router)#exit
Console(config) #interface vlan 1
```

Console(config-if)#ipv6 router ospf area 0 tag 0 instance-id 0 Console(config-if)#

Related Commands

router ipv6 ospf (1028) router-id (1031) ipv6 router ospf tag area (1040)

ipv6 router ospf This command binds an OSPF area to the selected interface and process. Use the tag area no form to remove the specified area from an interface.

[no] ipv6 router ospf tag process-name area area-id [instance-id instance-id]

area-id - Area to bind to the current Layer 3 interface. An OSPF area identifies a group of routers that share common routing information. The area ID can be in the form of an IPv4 address or as a four octet unsigned integer ranging from 0-4294967295.

process-name - A process name used to distinguish between multiple routing instances configured on the local router. (Range: Alphanumeric string up to 16 characters)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

No areas are defined.

Command Usage

- ◆ An area ID uniquely defines an OSPF broadcast area. The area ID 0.0.0.0 indicates the OSPF backbone for an autonomous system. Each router must be connected to the backbone via a direct connection or a virtual link.
- Set the area ID to the same value for all routers on a network segment.
- ◆ The *process-name* is only used on the local router to distinguish between different routing processes (and must be configured with the router ipv6 ospf command before using it in this command.
- ◆ The *instance-id* is used on the link-local network segment to distinguish between different routing processes running on the same link, and allows routers participating in a common routing process to form adjacencies and exchange routing information.
- The backbone (area 0.0.0.0) must be created before any other area.

Example

This example assigns area 0.0.0.1 to the currently selected interface under routing process "1."

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 router ospf tag 1 area 0.0.0.1
Console(config-if)#
```

Related Commands

router ipv6 ospf (1028) router-id (1031) ipv6 router ospf area (1039)

Interface Configuration

ipv6 ospf cost This command explicitly sets the cost of sending a protocol packet on an interface, where higher values indicate slower ports. Use the **no** form to restore the default value.

Syntax

ipv6 ospf cost cost [instance-id instance-id]

no ipv6 ospf cost [instance-id instance-id]

cost - Link metric for this interface. Use higher values to indicate slower ports. (Range: 1-65535)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

Command Usage

- The interface cost indicates the overhead required to send packets across a certain interface. This is advertised as the link cost in router link state advertisements.
- Routes are assigned a metric equal to the sum of all metrics for each interface link in the route.
- This router uses a default cost of 1 for all interfaces. Therefore, if you install a 10 Gigabit module, you may need to reset the cost for all other VLAN interfaces with only 1 Gbps ports to a value greater than 1 to reflect the actual interface bandwidth.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 ospf cost 10
Console(config-if)#
```

ipv6 ospf This command sets the interval at which hello packets are not seen before dead-interval neighbors declare the router down. Use the **no** form to restore the default value.

Syntax

ipv6 ospf dead-interval seconds [instance-id instance-id]

no ipv6 ospf dead-interval [instance-id instance-id]

seconds - The maximum time that neighbor routers can wait for a hello packet before declaring the transmitting router down. This interval must be set to the same value for all routers on the network. (Range: 1-65535)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

40 seconds, or four times the interval specified by the ipv6 ospf hello-interval command.

Command Usage

The dead-interval is advertised in the router's hello packets. It must be a multiple of the hello-interval and be the same for all routers on a specific network.

Example

```
Console(config) #interface vlan 1
Console(config-if)#ipv6 ospf dead-interval 50
Console(config-if)#
```

Related Commands

ipv6 ospf hello-interval (1043)

ipv6 ospf This command specifies the interval between sending hello packets on an **hello-interval** interface. Use the **no** form to restore the default value.

Syntax

ipv6 ospf hello-interval seconds [instance-id instance-id]

no ipv6 ospf hello-interval [instance-id instance-id]

seconds - Interval at which hello packets are sent from an interface. This interval must be set to the same value for all routers on the network. (Range: 1-65535)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

10 seconds

Command Usage

Hello packets are used to inform other routers that the sending router is still active. Setting the hello interval to a smaller value can reduce the delay in detecting topological changes, but will increase routing traffic.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 ospf hello-interval 5
Console(config-if)#
```

Related Commands

ipv6 ospf dead-interval (1042)

ipv6 ospf priority

This command sets the router priority used when determining the designated router (DR) and backup designated router (BDR) for an area. Use the **no** form to restore the default value.

Syntax

ipv6 ospf priority priority [instance-id instance-id]

no ipv6 ospf priority [instance-id instance-id]

priority - Sets the interface priority for this router. (Range: 0-255)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

Command Usage

- A designated router (DR) and backup designated router (BDR) are elected for each OSPF area based on Router Priority. The DR forms an active adjacency to all other routers in the area to exchange routing topology information. If for any reason the DR fails, the BDR takes over this role.
- Set the priority to zero to prevent a router from being elected as a DR or BDR. If set to any value other than zero, the router with the highest priority will become the DR and the router with the next highest priority becomes the BDR. If two or more routers are tied with the same highest priority, the router with the higher ID will be elected.
- If a DR already exists for a network segment when this interface comes up, the new router will accept the current DR regardless of its own priority. The DR will not change until the next time the election process is initiated.
- Configure router priority for multi-access networks only and not for point-topoint networks.

Example

```
Console(config)#interface vlan 1
Console(config-if)#ipv6 ospf priority 5
Console(config-if)#
```

ipv6 ospf This command specifies the time between resending link-state advertisements retransmit-interval (LSAs). Use the **no** form to restore the default value.

Syntax

ipv6 ospf retransmit-interval seconds [instance-id instance-id]

no ipv6 ospf retransmit-interval [instance-id instance-id]

seconds - Sets the interval at which LSAs are retransmitted from this interface. (Range: 1-65535)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

5 seconds

Command Usage

- A router will resend an LSA to a neighbor if it receives no acknowledgment after the specified retransmit interval. The retransmit interval should be set to a conservative value that provides an adequate flow of routing information, but does not produce unnecessary protocol traffic. Note that this value should be larger for virtual links.
- Set this interval to a value that is greater than the round-trip delay between any two routers on the attached network to avoid unnecessary retransmissions.

Example

```
Console(config)#interface vlan 1
Console(config-if)#ipv6 ospf retransmit-interval 7
Console(config-if)#
```

ipv6 ospf This command sets the estimated time to send a link-state update packet over an **transmit-delay** interface. Use the **no** form to restore the default value.

Syntax

ipv6 ospf transmit-delay seconds [instance-id instance-id]

no ipv6 ospf transmit-delay [instance-id instance-id]

seconds - Sets the estimated time required to send a link-state update. (Range: 1-65535)

instance-id - Identifies a specific OSPFv3 routing process on the link-local network segment attached to this interface. (Range: 0-255)

Command Mode

Interface Configuration (VLAN)

Default Setting

1 second

Command Usage

- LSAs have their age incremented by this delay before transmission. When estimating the transmit delay, consider both the transmission and propagation delays for an interface. Set the transmit delay according to link speed, using larger values for lower-speed links.
- If this delay is not added, the time required to transmit an LSA over the link is not taken into consideration by the routing process. On slow links, the router may send packets more quickly than devices can receive them. To avoid this

Open Shortest Path First (OSPFv3)

problem, use the transmit delay to force the router to wait a specified interval between transmissions.

Example

```
Console(config)#interface vlan 1
Console(config-if)#ipv6 ospf transmit-delay 6
Console(config-if)#
```

passive-interface This command suppresses OSPF routing traffic on the specified interface. Use the **no** form to allow routing traffic to be sent and received on the specified interface.

Syntax

[no] passive-interface vlan vlan-id [ipv6-address]

```
vlan-id - VLAN ID. (Range: 1-4094)
```

ipv6-address - A full IPv6 address including the network prefix and host address bits.

Command Mode

Router Configuration

Default Setting

None

Command Usage

You can configure an OSPF interface as passive to prevent OSPF routing traffic from exiting or entering that interface. No OSPF adjacency can be formed if one of the interfaces involved is set to passive mode. The specified interface will appear as a stub in the OSPF domain. Also, if you configure an OSPF interface as passive where an adjacency already exists, the adjacency will drop almost immediately.

Example

```
Console(config-router) #passive-interface vlan 1 73::9
Console(config-router)#
```

Display Information

show ipv6 ospf This command shows basic information about the routing configuration.

Command Mode

Privileged Exec

Example

```
Console#show ipv6 ospf
 Routing Process "ospf 1" with ID 192.168.0.2
 Process uptime is 24 minutes
 Supports only single TOS(TOS0) routes
 SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Number of incoming concurrent DD exchange neighbors 0/5
Number of outgoing concurrent DD exchange neighbors 0/5
Number of external LSA 0. Checksum 0x000000
Number of opaque AS LSA 0. Checksum 0x000000
Number of LSA received 0
Number of areas attached to this router: 2
    Area 0.0.0.0 (BACKBONE)
       SPF algorithm executed 2 times
        Number of LSA 1. Checksum 0x001aa9
    Area 0.0.0.1
        SPF algorithm executed 2 times
        Number of LSA 1. Checksum 0x001aa9
Console#
```

Table 18: show ip ospf - display description

Field	Description
Routing Process	
Routing Process	OSPF process name and router ID. The router ID uniquely identifies the router in the autonomous system. By convention, this is normally set to one of the router's IP interface addresses.
Process uptime	The time this process has been running
Supports only single TOS (TOS0) routes	Optional Type of Service (ToS) specified in OSPF Version 2, Appendix F.1.2 is not supported, so only one cost per interface can be assigned.
SPF schedule delay	The delay after receiving a topology change notification and starting the SPF calculation.
Hold time	Sets the hold time between two consecutive SPF calculations.
Number of concurrent DD exchange neighbors	Number of neighbors currently exchanging database descriptor packets.
Number of external LSA	The number of external link-state advertisements (Type 5 LSAs) in the link-state database. These LSAs advertise information about routes outside of the autonomous system.
Checksum	The sum of the LS checksums of the external link-state advertisements contained in the link-state database.

Table 18: show ip ospf - display description (Continued)

Field	Description	
Number of opaque AS LSA	Number of opaque link-state advertisements (Type 9, 10 and 11 LSAs) in the link-state database. These LSAs advertise information about external applications, and are only used by OSPF for the graceful restart process.	
Checksum	The sum of the LS checksums of opaque link-state advertisements contained in the link-state database.	
Number of LSA received	The number of link-state advertisements that have been received.	
Number of areas attached to this router	The number of configured areas attached to this router.	
Area Information		
Area	The area identifier. Note that "(Inactive)" will be displayed if no IPv6 address has been configured on the interface.	
SPF algorithm executed x times	The number of times the shortest path first algorithm has been executed for this area	
Number of LSA	The total number of link-state advertisements in this area's link-state database, excluding AS External LSA's.	
Checksum	The sum of the LS checksums of link-state advertisements for this network (area) contained in the link-state database.	

show ipv6 ospf This command shows information about different OSPF Link State Advertisements database (LSAs) stored in this router's database.

Syntax

show ipv6 ospf [tag process-id] database

process-id - The ID of the router process for which information will be displayed. (Range: 1-10)

Command Mode

Privileged Exec

Examples

The following shows output for the **show ip ospf database** command.

```
Console#show ipv6 ospf database
             OSPF Router with ID (192.168.0.2) (TAG: 1)
                  Link-LSA
Link State ID ADV Router Age Seq# CkSum 1001 192.168.0.2 71 0x80000001 0x06b7
                                                                Link
1001
                 192.168.0.2
                                  71 0x80000001 0x06b7
                 Router-LSA (Area 0)
Link State ID ADV Router Age Seq# CkSum 0 192.168.0.2 31 0x80000002 0x14b1
```

AS-external-LSA

Link State ID ADV Router Age Seq# CkSum

Console#

Table 19: show ip ospf database - display description

Field	Description
OSPF Router Process with ID	OSPF router ID and process ID. The router ID uniquely identifies the router in the autonomous system. By convention, this is normally set to one of the router's IP interface addresses.
Link State ID	This field identifies the piece of the routing domain that is being described by the advertisement.
ADV Router	Advertising router ID
Age	Age of LSA (in seconds)
Seq#	Sequence number of LSA (used to detect older duplicate LSAs)
CkSum	Checksum of the complete contents of the LSA
Link	Number of interfaces attached to the router

show ipv6 ospf interface

show ipv6 ospf This command displays summary information for OSPF interfaces.

Syntax

show ipv6 ospf interface [vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 ospf interface vlan 1
VLAN 1 is up, line protocol is up
Link local Address FE80::200:E8FF:FE93:82A0/64, Area 0.0.0.0
Tag 1, Router ID 192.168.0.2, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 192.168.0.2, Interface Address
FE80::200:E8FF:FE93:82A0
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Neighbor Count is 0, Adjacent neighbor count is 0
Hello received 0 sent 92, DD received 0 sent 0
LS-Req received 0 sent 0, LS-Upd received 0 sent 0
LS-Ack received 0 sent 0, Discarded 0
Console#
```

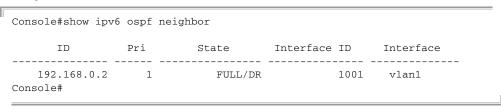
Open Shortest Path First (OSPFv3)

Table 20: show ip ospf interface - display description

Field	Description	
VLAN	VLAN ID and Status of physical link	
Link local Address	Link local address of OSPF interface	
Area	OSPF area to which this interface belongs	
Tag	OSPF process identifier string	
Router ID	Identifier for this router	
Network Type	Includes broadcast, non-broadcast, or point-to-point networks	
Cost	Interface transmit cost	
Transmit Delay	Interface transmit delay (in seconds)	
State	 Backup – Backup Designated Router Down – OSPF is enabled on this interface, but interface is down DR – Designated Router DROther – Interface is on a multiaccess network, but is not the DR or BDR Loopback – This is a loopback interface PointToPoint – A direct link between two routers. Waiting – Router is trying to find the DR and BDR 	
Priority	Router priority	
Designated Router	Designated router ID and respective interface address	
Backup Designated Router	Backup designated router ID and respective interface address	
Timer intervals	Configuration settings for timer intervals, including Hello, Dead and Retransmit	
Neighbor Count	Count of network neighbors and adjacent neighbors	
Hello	Number of Hello LSAs received and sent	
DD	Number of Database Descriptor packets received and sent	
LS-Req	Number of LSA requests	
LS-Upd	Number of LSA updates	
LS-Ack	Number of LSA acknowledgements	
Discarded	Number of LSAs discarded	

show ipv6 ospf This command displays information about neighboring routers on each interface **neighbor** within an OSPF area.

Syntax


show ipv6 ospf [tag process-id] neighbor

process-id - The ID of the router process for which information will be displayed. (Range: 1-10)

Command Mode

Privileged Exec

Example

Table 21: show ipv6 ospf neighbor - display description

Field	Description
ID	Neighbor's router ID
Pri	Neighbor's router priority
State	OSPF state and identification flag States include: Down – Connection down Attempt – Connection down, but attempting contact (for non-broadcast networks) Init – Have received Hello packet, but communications not yet established Two-way – Bidirectional communications established ExStart – Initializing adjacency between neighbors Exchange – Database descriptions being exchanged Loading – LSA databases being exchanged Full – Neighboring routers now fully adjacent Identification flags include: D – Dynamic neighbor S – Static neighbor DR – Designated router BDR – Backup designated router
Interface ID	The Interface identifier that the neighbor advertises in its Hello Packets. This is a 32-bit number uniquely identifying the neighbor router's interface. MIB-II IfIndex is used for this identifier in some implementations.
Interface	The interface to which this neighbor is attached

show ipv6 ospf route This command displays the OSPF routing table.

Syntax

show ipv6 ospf [tag process-id] route

process-id - The ID of the router process for which information will be displayed. (Range: 1-10)

Command Mode

Privileged Exec

Open Shortest Path First (OSPFv3)

Example

```
Console#show ipv6 ospf route
Codes: C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
С
     ::1/128, 100
     2001:DB8:2222:7272::/64, VLAN1
0
     2001:DB8:2222:7272::/64, VLAN1
C.
?
     FE80::/64, VLAN1 inactive
     FE80::/64, VLAN1
     FF00::/8, VLAN1 inactive
Console#
```

virtual-links

show ipv6 ospf This command displays detailed information about virtual links.

Syntax

show ipv6 ospf [tag process-id] virtual-links

process-id - The ID of the router process for which information will be displayed. (Range: 1-10)

Command Mode

Privileged Exec

Example

```
Console#show ipv6 ospf virtual-links
Virtual Link VLINK1 to router 192.168.0.2 is up
  Transit area 0.0.0.1 via interface VLAN1
 Local address 192.168.0.3
  Remote address 192.168.0.2
  Transmit Delay is 1 sec, State Point-To-Point,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:02
    Adjacency state Full
Console#
```

Table 22: show ipv6 ospf virtual-links - display description

Field	Description
Virtual Link to router	OSPF neighbor and link state (up or down)
Transit area	Common area the virtual link crosses to reach the target router
Local address	The IP address of ABR that serves as an endpoint connecting the isolated area to the common transit area.
Remote address	The IP address this virtual neighbor is using. The neighbor must be an ABR at the other endpoint connecting the common transit area to the backbone itself.
Transmit Delay	Estimated transmit delay (in seconds) on the virtual link

Table 22: show ipv6 ospf virtual-links - display description (Continued)

Field	Description	
Timer intervals	Configuration settings for timer intervals, including Hello, Dead and Retransmit	
Hello due	The timeout for the next hello message from the neighbor	
Adjacency state	The adjacency state between these neighbors: Down – Connection down Attempt – Connection down, but attempting contact (for non-broadcast networks) Init – Have received Hello packet, but communications not yet established Two-way – Bidirectional communications established ExStart – Initializing adjacency between neighbors Exchange – Database descriptions being exchanged Loading – LSA databases being exchanged Full – Neighboring routers now fully adjacent	

Related Commands area virtual-link (1037)

Border Gateway Protocol (BGPv4)

BGP Overview An autonomous system (AS) functions as a separate routing domain under one administrative authority, which implements its own routing policies. An AS exchanges routing information within its boundaries using Interior Gateway Protocols (IGPs) such as RIP or OSPF, and connects to external organizations or to the Internet using an Exterior Gateway Protocol (EGP). BGP version 4 is the primary EGP deployed on the Internet today.

> A communication session must be maintained between bordering ASs to support the periodic exchange of routing information. One of the major design choices for BGP is the use of a TCP connection to exchange routing information between peers. Exchanging connectivity information over a reliable transport mechanism effectively delegates all error control functions to TCP.

> The other major innovation for BGP is the use of path vectors which carry the full list of transit networks, or ASs, traversed between the source and destination. Loops are prevented simply by checking the path vector to see if same AS is listed twice. This approach solves many of the scalability problems encountered when applying distance-vector or link-state methods to make routing decisions in complex topologies.

External and Internal When connecting to the Internet, external BGP (eBGP) is used. Although BGP is **BGP** widely used as an exterior gateway protocol (EGP), it is also used in many organizations with complex internal networks. Internal networks can be simplified by exchanging routing information among BGP peers within the same organization through internal BGP (iBGP) peering sessions.

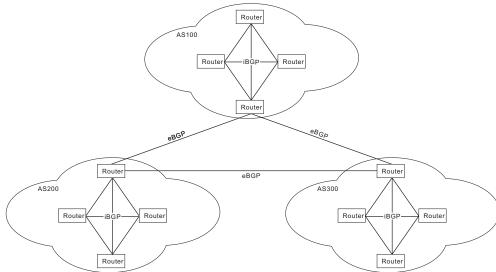


Figure 1: Connections for Internal and External BGP

External BGP – eBGP interconnects different ASs through border routers, or eBGP peers. These peering routers are commonly connected over a WAN link using a single physical path. Alternatively, multiple eBGP peer connections may be used to provide redundancy or load balancing. Distinct BGP sessions are used between redundancy peers to ensure that if one session fails, another will take over.

BGP uses the AS path attribute to record the ASs that must be followed to reach the prefix for a network aggregate. When a prefix is announced to an eBGP peer, the local AS number is prepended to the AS path. This prevents routing loops by rejecting any prefix announcements that include the local AS number in the AS path. These announcements are also used by eBGP in the best path selection process.

eBGP speakers, can communicate with other external peers or with iBGP peers. A BGP speaker can determine if it communicating with an external or internal peer by comparing the AS number sent in OPEN messages by a peer with that of its own internal value. If it matches, then this neighbor is an iBGP speaker, and if it does not, then it is an eBGP speaker. An eBGP speaker can advertise prefixes it has learned from another eBGP speaker to a neighboring iBGP speaker; and it can also advertise prefixes it has learned from an iBGP speaker to an eBGP speaker.

Internal BGP – In contrast to eBGP peers which have different AS numbers, iBGP peers are configured with the same AS number. All iBGP peers within the same AS should be connected to one another in a full-mesh connection (except when using route reflection). When a prefix is announced from one iBGP peer to another, the AS path is not changed. Since all iBGP peers are fully meshed, they will have the same information in their BGP table, unless routing policies have been modified for some of the peers.

When a iBGP peer receives a prefix announcement, it uses the best path selection algorithm to see if the received announcement is the best path for that prefix. If it is, the peer inserts this route into its routing table, and announces it to all of its peers, both iBGP and eBGP. If it is not the best available path, the peer keeps a copy of it in its routing table so that if path information for that prefix changes (such as if the

current best available path is withdrawn), it can be used to calculate a new best available path.

BGP cannot detect routes and provide reachability information. To ensure that each iBGP peer knows how to reach other, each peer must run some sort of Interior Gateway Protocol (such as static routes, direct routes, RIP or OSPF) which provides neighbor IP addresses. In order to avoid routing loops, an iBGP speaker cannot advertise prefixes it has learned from one iGBP peer to another neighboring iBGP

BGP Routing Basics Both RIP and OSPF attach a metric, or cost, to each path. These protocols rely on every router attaching the same meaning to each metric, allowing consistent calculation of routes. However, after routing policies are put in place, routers may value some metrics differently, invalidating the basic assumptions up which RIP and OSPF are based. This makes it unrealistic to run a distance-vector AS-level protocol

> BGP uses a path vector routing approach, which is roughly based on a distancevector approach, where the cost between two adjacent ASes is implicitly assumed to be a single hop. The shortest path from an AS to a remote AS is therefore the path with the shortest number or AS hops. Just note that each AS may be comprised of multiple routers or networks that a packet traverses as it crosses the associated route to the destination, so the AS hop count does not equal to the number of routers along that path.

Path Attributes

The key information passed along with the path vector in routing messages include the following attributes:

- ORIGIN This attribute indicates how the network of BGP routers first learned of a route, and is set by the first BGP router to introduce the routes to its peers. There are three methods for injected a prefix into an update message: IGP, EGP and Incomplete.
- AS_PATH This attribute lists the autonomous systems that make up the path to the routes' destination. Each entry contains a series of path segments. Each path segment begins with a 1 for SETS or a 2 for SEQUENCES, where a SET indicates that it is an aggregate prefix which was derived from multiple ASes.
- NEXT_HOP This attribute indicates the IP address of the router that should be used as the next hop to reach the router' destination. This address is normally that of the router sending the BGP message, but a BGP router may advertise a route on behalf of another router.
- MULTI EXIT DISC (MED) The multi-exit discriminator attribute lets an autonomous system set a preference for different routes when there are multiple external links to a neighboring AS. Selection is normally based on the exit point with the lowest metric.

- WEIGHT This attribute is used locally by a router to select a path when multiple paths are available for a prefix.
- ◆ LOCAL_PREF This local preference attribute is similar to that of the MED, but within an AS. It sets a metric which is used between BGP speakers within an AS. It can help in selecting an outgoing BGP when an AS has connectivity to multiple ASes or multiple BGP routes even with the same next hop AS.
- ◆ ATOMIC_AGGREGATE This attribute indicates that the routes were created by aggregating more specific routes. More specific routes may exist for some the these longer prefixes, but the router chose not to send them, so as to reduce the size for the AS path parameters.
- ◆ AGGRATOR This is an optional attribute that identifies the AS and router that originally aggregated the routes.
- COMMUNITY This attribute associates routing information with a community of users. These communities share a common property, and tagging routes with a community makes it easier for routers to identify that property and enforce appropriate routing policies.
- ORIGINATOR_ID This attribute is included when a route reflector reflects a route. Then if the reflector later receives a route with its own originator ID, a potential routing loop can be broken.
- ◆ CLUSTER_LIST This attribute is of a list of the clusters through which a route has been reflected. Every route reflector adds its own cluster ID to the list. If the reflector receives a route with its own cluster ID, a potential routing loop can be broken.
- MP_REACH_NLRI This attribute describes routes for network protocols other than IPv4. The attribute identifies the protocol with an address family identifier (AFI) and a subsequent address family identifier (SAFI). It contains the address of the next hop router for the destinations, as well as the link level (e.g., Ethernet) addresses for that next hop. It concludes with the destinations expressed as prefixes.
- ◆ MP_UNREACH_NLRI This attribute withdraws non-IPv4 routes. It includes the route's AFI, SAFI, and network address prefixes.
- EXTENDED-COMMUNITIES This attribute provides a mechanism for labeling various information carried in route advertisements. It provides an extended type field to ensure that communities can be assigned for a broad range of uses, without fear of overlap.

Path Selection

When there are multiple paths to the same prefix (with the same prefix length), the information included in route advertisement is used to select the best path to a destination following the rules shown below.

- 1. Choose the path with the highest WEIGHT. If the value of this attribute is the same for more than one candidate, go to the next step.
- **2.** Choose the path with the highest LOCAL-PREF. If the value of this attribute is the same for more than one candidate, go to the next step.
- **3.** Choose the path that was generated by the local router with the network or aggregate-address command. If the value of this criteria is the same for more than one candidate, go to the next step.
- **4.** Choose the path with the shortest AS_PATH. If the value of this attribute is the same for more than one candidate, go to the next step. Note that this attribute may be disabled in the selection process using the bgp bestpath as-path ignore command.
- **5.** Choose the path with the lowest ORIGIN (IGP < EGP < Incomplete). If the value of this criteria is the same for more than one candidate, go to the next step.
- **6.** Choose the path with the lowest MED. By default, the MED attribute is considered only when a prefix is received from neighbors in the same AS. If the value of this criteria is the same for more than one candidate, go to the next step.
- 7. Choose an eBGP path over an outer confederation, and an outer confederation over an iBGP path. If the value of this criteria is the same for more than one candidate, go to the next step.
- **8.** Choose the path with the lowest IGP metric to the next hop. If the value of this criteria is the same for more than one candidate, go to the next step.
- **9.** Choose the path originated by the BGP router with the lowest router ID.

Message Types

Four message types are used by BGP. The OPEN message is used by BGP peers to identify their capabilities, the UPDATE message is used to advertise/withdraw prefixes, the NOTIFICATION message is used to send errors or close the session, and the KEEPALIVE messages is used to keep the BGP session up. These message types are described below.

OPEN – BGP routers normally wait for BGP connections on TCP port 179. A
router that wants to establish an association will first open a TCP connection
leading to that port on the peer router. Once the connection has been set, each
side sends an OPEN message to negotiate the association's parameters based

on the capabilities advertised in these messages. Open messages include information about the BGP version number in use, the peer's AS number, the hold time, the BGP identifier (i.e., loopback address or the highest value of all the BGP speaker's interfaces), and optional parameter length.

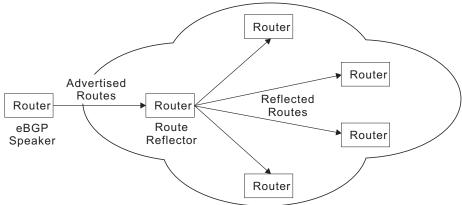
- UPDATE These messages are used to announce or withdraw IP prefixes, and include the following components: withdrawn route length, withdrawn routes, total path attributes length, path attributes, and network layer reachability information.
- NOTIFICATION These messages are used to indicate error conditions. The underlying TCP session is closed after a notification message is sent.
- KEEPALIVE These messages are sent at a set interval and are used to verify that the BGP session is active. The hold timer is reset upon receipt of a KEEPALIVE or UPDATE message. If the hold time is set to zero by both peers, a BGP session can be kept open without generating KEEPALIVE messages.

Route Aggregation and Dissemination

In the Internet, the number of destinations is larger than most routing protocols can manage. It is not possible for routers to track every possible destination in their routing tables. To overcome this problem BGP relies on route aggregation, whereby multiple destinations are combined in a single advertisement. Routers receiving this information, treat the combined destinations as a single destination, thus reducing the number of individual routes that must be remembered. This also reduces the network overhead required to transmit update packets and maintain routing tables.

In BGP, route aggregation combines the address blocks for networks from two or more ASes into a supernet, and transmits this information to a downstream AS. This supernetted address block is less specific, and only lists the AS number of the AS where the supernetting was done. The Atomic Aggregate attribute indicates that attributes for more specific paths are not included in the aggregated route, and the Aggregator attribute indicates the AS and router where the aggregation was done. The aggregator node will now serve as a proxy, using the more specific routes it still maintains in its own routing table.

After inbound routes have been aggregated, the BGP speaker can propagates this information based on export policies for individual neighbors or for defined router groups, using route maps or other more precise routing criteria.


Scalability

Internal BGP An iBGP speaker cannot advertise IP prefixes it has learned from one iBGP speaker to another neighboring iBGP speaker. iBGP therefore requires full-mesh connectivity among all iBGP speakers. For local networks containing a large number of speakers, this requirement may be difficult to meet. There are several commonly used approaches to resolving this problem, including route reflectors, confederations, and route servers.

Route Reflectors

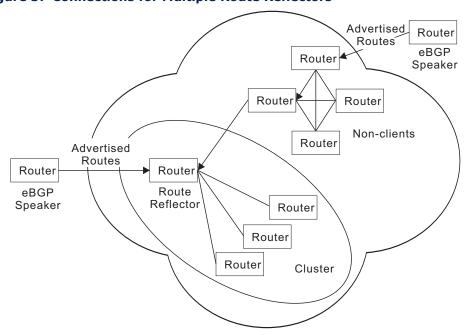

Route reflection designates one or more iBGP speakers as router concentrators or route reflectors, which are allowed to re-advertise routing information within the same autonomous system. It also clusters a subset of iBGP speakers with each route reflector (also known as route reflector clients), and adds several new attributes to help detect routing loops. Using the cluster hierarchy, connections are only required between the route reflector and its clients, overcoming the normal requirement for full-mesh connectivity among all iBGP speakers.

Figure 2: Connections for Single Route Reflector

Route reflector clients are not aware that they are connected to a route reflector, and function as though fully meshed within the autonomous system. For redundancy, a cluster many contain more than one route reflector. Each cluster is identified a Cluster-ID. When there is only one route reflector in a cluster, the Cluster-ID is the BGP identifier of the route reflector. If there is more than one route reflector in a cluster, a common identifier can be defined for use by all route reflectors in the cluster.

Figure 3: Connections for Multiple Route Reflectors

If there is only one route reflector in a cluster, that router would still have to process the same number of routing messages that would be required if it were in a fully meshed network. It is therefore preferable to use more than one route reflector in a cluster to reduce the overall number of iBGP sessions a single reflector has to handle.

If multiple route reflectors are configured in the same cluster, they must be fully meshed with each other. However, the route reflector clients only need to be connected to its designated route reflector. Once all iBGP routing sessions are established, routing advertisements must follow these rules:

- Announcements received by a route reflector from another reflector are passed to its clients.
- Announcements received by a route reflector from a reflector client are passed to other route reflectors in the cluster.
- ◆ Announcements received by a route reflector from an eBGP speaker are passed to all route reflectors in the cluster and to its own clients.

It can now be seen that routing information learned from an iBGP speaker can be passed to another iBGP speaker. This breaks the normal rules for a fully meshed iBGP autonomous system, and other steps are now required to avoid routing loops. These include the addition of the following new attributes:

- Originator-ID When a route reflector learns about a route from one of its clients, it adds this attribute to the announcement before reflecting it to other speakers. If a route reflector receives an announcement about a route with an Originator-ID that matches its own router ID, it should drop it.
- Cluster-List This is a list of the clusters through which a route announcement has passed. When a route reflector passes on an announcement, it must prepend the local Cluster-ID to this list. The Cluster-List thereby serves a similar function to the AS-Path attribute in detecting routing loops.

Configuration Guidelines

- Route reflection from this router is enabled by default. If it has been disabled, use the bgp client-to-client reflection command to restore route reflection via this router.
- **2.** If more than one route reflector is used, use the bgp cluster-id command to configure the cluster identifier.
- **3.** Use the neighbor route-reflector-client command configure a neighboring router as a client.

Confederations

Confederations simply divides an autonomous system into smaller groups. It splits up an AS into multiple sub-ASes, where full mesh connections are maintained only within each sub-As, and sub-ASes are connected by eBGP. The overall AS is known as a confederation, while the sub-ASes may also be referred to as member ASes. The entire confederation has a unique AS number, while the member ASes may have AS numbers obtained from public AS number space, or use AS number from private AS number space.

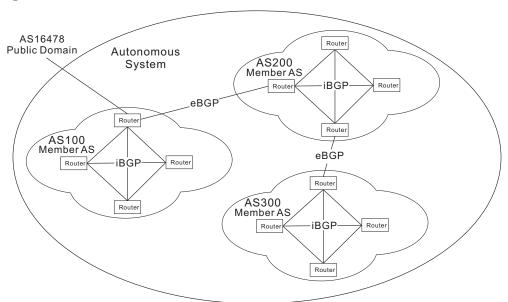


Figure 4: Connections for BGP Confederation

To prevent looping within the confederation, the AS-Confed-Set and AS-Confed-Sequence path attributes are added. These attributes function in the same manner as AS-Set and AS-Sequence. The following additional requirements are applied for route advertisements passed between member ASes:

- The Local-Pref for a route may be passed from one member AS to another member AS. This exception to normal practice is allowed within the confederation since this attribute is meant for use by the entire AS.
- ◆ The Next-Hop for a route set by the first BGP speaker in the confederation may be passed from one member AS to another member.
- When a route advertisement is passed from one member AS to another, the AS-Confed-Sequence must be inserted into the AS-Path along with the AS number of the member AS to help prevent looping.

Border routers that also peer with outside ASes have to modify routing information that leaves the confederation so that the internal structure of the confederation remains hidden to exterior peers, primarily because this information is of no use to another external AS. The information stripped from route advertisements and update messages sent outside of the confederation include AS-Confed-Sequence

and AS-Confed-Set. Neither are AS numbers of member ASes advertised to exterior peers.

Configuration Guidelines

- 1. Use the bgp confederation identifier command to configures the identifier for a confederation containing smaller multiple internal autonomous systems.
- **2.** Use the bgp confederation peer command to add an internal peer autonomous system to a confederation.

Route Servers

Route Servers are used to relay routes received from remote ASes to client routers, as well as to relay routes between client routers. Clients maintain BGP sessions only with the assigned route servers. Sessions with more than one server can be used to provide redundancy and load sharing. All routes received from a client router are propagated to other clients through the Route Server. Since all external routes and their attributes are relayed unmodified between client routers, they acquire the same routing information as they would via direct peering in a full mesh configuration.

Router Advertised Router Routes eBGP Router Router Speaker Route Server Router Advertised Routes Router Router eBGP Route Server Speaker Router Router Router

Figure 5: Connections for Route Server

Configuration Guidelines

Use the neighbor route-server-client command to configure this router as a route server and the specified neighbor as its client.

Dampening

Route Flap An update message is sent from a BGP speaker to a neighboring speaker whenever any change to a route occurs. A speaker announcing such a route is also responsible for any changes, including withdrawal, change in AS-Path or Next-Hop, to the same neighbor, irrespective of where the change was learned. In practice this may cause a BGP speaker to announce a new route, and then almost immediately withdraw or update the route a few seconds later, repeatedly. Since routing information is propagated to other downstream speakers, there is a ripple effect that creates a cascading storm of updates through the ASes. This causes instability in the routing tables, as well as the computational overhead required to compute the best path, and an increase in convergence time.

> Route damping provides a relief mechanism to minimize the effects of route flapping. It can reduce the propagation of updates for flapping routes without impacting the route convergence time for stable routes. When enabled, a route is assigned a penalty each time it flaps (i.e., announced and then quickly withdrawn). If the penalty exceeds 2000 (the suppress limit) the route is suppressed. After the route remains stable for a specified interval (half-life), the penalty is reduced by half. Subsequently, the penalty is reduced every 15 minutes. When the penalty falls below a specified value (reuse limit), the route is unsuppressed.

The penalty never exceeds the maximum penalty, which is computed from specified attributes as shown below:

Maximum penalty = reuse-limit * 2^(max-suppress-time/half-life)

When a route is being "damped," any updates or withdrawals for this route received from a peer are ignored. This limits the effects of route flapping to a single peering connection. Since most ASes are connected by high-speed links, it is not always necessary to use route dampening. However, when invoked, it may be necessary to fine tune the penalty attributes to ensure fair treatment to unstable routes.

Configuration Guidelines

- 1. Use the bgp dampening command to enable route dampening.
- 2. Use the bgp dampening command to adjust the penalty attributes of half-life, reuse-limit, suppress-limit, and max-suppress-time.
- 3. Use the clear ip bgp dampening command to clears route dampening information and unsuppresses any suppressed routes.

BGP Command List

Table 23: Border Gateway Protocol Commands – Version 4

Command	Function	Mode
General Configuration		
router bgp	Enables BGPv4 routing process and enters router configuration mode	GC
ip as-path access-list	Configures an autonomous system path access list	GC
ip community-list	Configures a community list	GC
ip extcommunity-list	Configures an extended community list	GC
ip prefix-list	Configures an address prefix list	GC
aggregate-address	Configures an aggregate address in the routing table	RC
bgp client-to-client reflection	Configures route reflection between clients via route reflector	RC
bgp cluster-id	Configures cluster identifier for multiple route reflectors in the same cluster	RC
bgp confederation identifier	Configures the identifier for a confederation containing smaller multiple internal autonomous systems	RC
bgp confederation peer	Adds an internal peer autonomous system to a confederation	RC
bgp dampening	Configures route dampening to reduce the propagation of unstable routes	RC
bgp enforce-first-as	Denies an update received from an external peer that does not list its own autonomous system number at the beginning of the AS path attribute	RC
bgp fast-external-failover	Resets sessions for any directly connected external peers if the link goes down	RC
bgp log-neighbor-changes	Enables logging of neighbor resets (that is, up or down status changes)	RC
bgp network import-check	Checks the existence of the next-hop and its accessibility to \ensuremath{IGP}	RC
bgp router-id	Sets the router ID for this device	RC
bgp scan-time	Sets the interval at which to validate next hop information for BGP routes	RC
network	Specifies a network to advertise	RC
redistribute	Redistribute routes from one routing domain to another	RC
timers bgp	Sets the Keep Alive time used for maintaining connectivity, and the Hold time to wait for Keep Alive messages before declaring a neighbor down	RC
clear ip bgp	Clears connections using hard or soft re-configuration	PE
clear ip bgp dampening	Clears route dampening information and unsuppresses any suppressed routes	PE

Table 23: Border Gateway Protocol Commands – Version 4 (Continued)

Allows comparison of the Multi Exit Discriminator (MED) for paths advertised from neighbors in different autonomous systems	RC
Ignores AS path length in the selection of a path	RC
Compare confederation AS path length in addition to external AS path length in the selection of a path	RC
Compare similar routes from external peers, and give preference to a route with the lowest router identifier	RC
Enables comparison of MED attribute for paths learned from confederation peers, and the treatment of a route when the MED is missing	RC
Sets the default local preference used for best path selection among local iBGP peers	RC
Enforces deterministic comparison of the MED attribute between all paths received from the same AS, ensuring that selection of the best path will always be the same, regardless of the order in which the paths are received by the local router	RC
Sets the administrative distance for a specified external BGP (eBGP) route	RC
Sets the administrative distance for BGP external, internal, and local routes	RC
Enables exchange of routing information with a neighboring router or peer group	RC
Configures the interval between sending update messages to a neighbor	RC
Configures the number of times the AS path for a received route can contain the same AS number	RC
Configures certain attributes to be kept unchanged for transparent transmission to the specified neighbor	RC
Configures dynamic negotiation of capabilities between neighboring routers	RC
Configures negotiation of outbound route filter capabilities with neighboring router	RC
Allows the local router to send a default route to a neighbor	RC
Configures the description of a neighbor or peer group	RC
Filters route updates to/from a neighbor or peer group	RC
Disables capability negotiation when creating connections	RC
Allows eBGP neighbors to exist in different segments, and configures the maximum hop count (TTL)	RC
Enforces the requirement for all neighbors to form multi- hop connections	RC
	paths advertised from neighbors in different autonomous systems gnores AS path length in the selection of a path Compare confederation AS path length in addition to external AS path length in the selection of a path Compare similar routes from external peers, and give preference to a route with the lowest router identifier enables comparison of MED attribute for paths learned from confederation peers, and the treatment of a route when the MED is missing Sets the default local preference used for best path selection among local iBGP peers Enforces deterministic comparison of the MED attribute between all paths received from the same AS, ensuring that selection of the best path will always be the same, regardless of the order in which the paths are received by the local router Sets the administrative distance for a specified external BGP (eBGP) route Sets the administrative distance for BGP external, internal, and local routes Enables exchange of routing information with a neighboring router or peer group Configures the interval between sending update messages to a neighbor Configures the number of times the AS path for a received route can contain the same AS number Configures certain attributes to be kept unchanged for transparent transmission to the specified neighbor Configures dynamic negotiation of capabilities between neighboring routers Configures negotiation of outbound route filter capabilities with neighboring router Allows the local router to send a default route to a neighbor Configures negotiation of outbound route filter capabilities with neighboring router Allows the local router to send a default route to a neighbor capabilities with neighboring router Allows the local router to send a default route to a neighbor capabilities with neighboring router Allows the maximum hop count (TTL) Enforces the requirement for all neighbors to form multi-

Table 23: Border Gateway Protocol Commands – Version 4 (Continued)

Command	Function	Mode
neighbor filter-list	Filters route updates sent to or received from a neighbor based on an AS path access-list	RC
neighbor interface	Specifies the interface to a neighbor	RC
neighbor maximum-prefix	Sets the maximum number or route prefixes that can be received from a neighbor	RC
neighbor next-hop-self	Configures the local router as the next hop for a neighbor	RC
neighbor override-capability	Overrides the result of capability negotiations, allowing a session to be formed with a peer that does not support capability negotiation	RC
neighbor password	Enables MD5 authentication and sets the key for a neighboring router	RC
neighbor passive	Passively forms a connection with the specified neighbor, not sending a TCP connection request, but waiting a request from the specified neighbor	RC
neighbor peer-group (Creating)	Configures a router peer group which can be easily configured with the same attributes	RC
neighbor peer-group (Group Members)	Assigns routers to a peer group	RC
neighbor port	Specifies the TCP port number of the partner through which communications are carried	RC
neighbor prefix-list	Configures prefix restrictions applied in inbound/ outbound route updates to/from specified neighbors	RC
neighbor remote-as	Configures a neighbor and its AS number, identifying the neighbor as a local AS member	RC
neighbor remove-private-as	Removes private autonomous system numbers from outbound routing updates to an external neighbor	RC
neighbor route-map	Specifies the route mapping policy for inbound/outbound routing updates for specified neighbors	RC
neighbor route-reflector-client	Configures this router as a route reflector and the specified neighbor as its client	RC
neighbor route-server-client	Configures this router as a route server and the specified neighbor as its client	RC
neighbor send-community	Configures the router to send community attributes to a neighbor in peering messages	RC
neighbor shutdown	Closes a neighbor connection without canceling the neighbor configuration	RC
neighbor soft- reconfiguration inbound	Configures the switch to store updates in the inbound message buffer, and perform soft re-configuration from this buffer for specified neighbors when required	RC
neighbor strict-capability- match	Forces strict capability matching when establishing connections	RC
neighbor timers	Sets the Keep Alive time and Hold time used for specified neighbors	RC
neighbor timers connect	Sets the time to wait before attempting to reconnect to a neighbor whose TCP connection has failed	RC
neighbor unsuppress-map	Allows specified suppressed routes to be advertised	RC

Table 23: Border Gateway Protocol Commands – Version 4 (Continued)

Command	Function	Mode
neighbor update-source	Specifies the interface to use for a connection, instead of using the nearest interface	RC
neighbor weight	Assigns a weight to a neighbor connection	RC
Display Information		
show ip bgp	Shows entries in the routing table	PE
show ip bgp attribute-info	Shows internal attribute information	PE
show ip bgp cidr-only	Shows routes which use classless inter-domain routing network masks	
show ip bgp community	Shows routes that belong to specified BGP communities	PE
show ip bgp community-info	Shows permitted community messages	PE
show ip bgp community-list	Shows the routes matching a community-list	PE
show ip bgp dampening	Shows dampened routes	PE
show ip bgp filter-list	Shows routes matching the specified filter list	PE
show ip bgp neighbors	Shows connection information for neighbor sessions	PE
show ip bgp paths	Shows all paths in the database	PE
show ip bgp prefix-list	Shows routes matching the specified prefix-list	PE
show ip bgp regexp	Shows routes matching the AS path regular expression	PE
show ip bgp route-map	Shows routes matching the specified route map	PE
show ip bgp scan	Shows BGP scan status	PE
show ip bgp summary	Shows summary information for all connections	PE
show ip community-list	Shows routes permitted by a community list	PE
show ip extcommunity-list	Shows routes permitted by an extended community list	PE
show ip prefix-list	Shows the specified prefix list	PE
show ip prefix-list detail	Shows detailed information for the specified prefix list	PE
show ip prefix-list summary	Shows summary information for the specified prefix list	PE

General Configuration

router bgp

This command enables the Border Gateway Protocol (BGPv4) routing process and enters router configuration mode. Use the **no** form to disable it.

Syntax

[no] router bgp as-number

as-number – Autonomous system number which identifies this router as a member of the specified domain, and tags routing messages passed to other BGP routers with this number. (Range: 1-4294967295)

Command Mode

Global Configuration

Default Setting

No routing process is defined.

Command Usage

- To enable BGP routing, you must use this command to establish a BGP routing process. After entering this command, the switch enters router configuration mode.
- AS numbers in the range 64512-65535 are normally used for private routing domains, and can be removed from the AS path attribute in outbound routing messages using the neighbor remove-private-as command. Note that AS number 23456 is reserved for the AS-Transitive attribute which is required when setting up a new BGP speaker.
- Use this command to specify all of the routers within an autonomous system used to exchange interior or exterior BGP routing messages. Repeat this process for any other autonomous system under your administrative control to create a distributed routing core for the exchange of routing information between autonomous systems.

Example

```
Console(config) #router bgp 100
Console(config-router)#
```

Related Commands

network (1084)

ip as-path access-list This command configures an autonomous system path access list. Use the **no** form with only the access list name to disable its use, or with all parameters to remove a path attribute from the access list.

Syntax

ip as-path access-list access-list-name {**deny** | **permit**} regular-expression **no ip as-path access-list** access-list-name [{**deny** | **permit**} regular-expression] access-list-name - Name of the access list. (Maximum length: 16 characters, no spaces or other special characters)

deny – Permits access for messages with matching path attribute.

permit – Denies access to messages with matching path attribute.

regular-expression – Autonomous system in the access list expressed as a regular expression¹⁶.

^{16.} Syntax complies with the IEEE POSIX Basic Regular Expressions (BRE) standard.

Command Mode

Global Configuration

Default Setting

No AS path access lists are defined.

Command Usage

- If the regular expression in an AS path list is matched, then the deny/permit condition is applied to the routing message.
- Use this command in conjunction with the neighbor filter-list command to filter route updates sent to or received from a neighbor, or with the match aspath route map command to implement a more comprehensive filter for policy-based routing.

Example

The regular expression in this example uses symbols which instruct the filter to match the character or null string at the beginning and end of an input string.

```
Console(config-router) #ip as-path access-list RD deny ^100$
Console(config-router)#
```

Related Commands

neighbor filter-list (1103) match as-path (1139)

ip community-list This command configures a community access list. Use the **no** form with only the access list name to disable its use, or with all parameters to remove a community attribute from the access list.

Syntax

[no] ip community-list

{1-99 | standard community-list-name {deny | permit} [AA:NN] [internet] [local-as] [no-advertise] [no-export]} | {100-500 | **expanded** *community-list-name* {**deny** | **permit**} *regular-expression*}

1-99 – Standard community list number that identifies one or more groups of communities.

standard *community-list-name* – Name of standard access list. A maximum of 16 communities can be configured in a standard community list (Maximum length: 32 characters, no spaces or other special characters)

deny – Denies access to messages with matching community attribute.

permit – Permits access for messages with matching community attribute.

AA:NN – Standard community-number to deny or permit. The 4-byte community number is composed of a 2-byte autonomous system number

and a 2-byte network number, separated by one colon. Each 2-byte number can range from 0 to 65535. One or more communities can be entered, separated by a space. Up to 16 community numbers are supported.

internet – Specifies the entire Internet. Routes with this community attribute are advertised to all internal and external peers.

local-as – Specifies the local autonomous system. Routes with this community attribute are advertised only to peers that are part of the local autonomous system or to peers within a sub-autonomous system of a confederation. These routes are not advertised to external peers or to other sub-autonomous systems within a confederation.

no-advertise – Routes with this community attribute are not advertised to any internal or external peer.

no-export – Routes with this community attribute are advertised only to peers in the same autonomous system or to other sub-autonomous systems within a confederation. These routes are not advertised to external peers.

100-500 – Expanded community list number that identifies one or more groups of communities.

expanded *community-list-name* – Name of expanded access list. (Maximum length: 32 characters, no spaces or other special characters)

regular-expression – Regular expression indicating the community list number or name¹⁶.

Command Mode

Global Configuration

Default Setting

No community lists are defined.

Command Usage

- Standard community lists are used to configure well-known communities or community numbers. Expanded community lists are used to filter communities using a regular expression.
- When multiple values are entered in the same community list, they form a logical AND condition. When multiple values are configured in separate community lists, the form a logical OR condition, where the first list that matches a condition is processed.
- If the criteria specified for a community list is matched, then the deny/permit condition is applied to the routing message.
- If a permit value is applied to a community list, the filter will implicitly deny other community values.

- By default, the internet community is set with a route if no other communities are defined.
- Use this command in conjunction with the neighbor send-community to filter route updates sent to or received from a neighbor, or with the match community route map command to implement a more comprehensive filter for policy-based routing.

Example

This example configures a named standard community list LN that permits routes with community value 100:10, denoting that they come from autonomous system 100 and network 10.

```
Console(config) #ip community-list standard LN permit 100:10
Console(config)#
```

Related Commands

neighbor send-community (1115) match community (1140)

ip extcommunity-list This command configures an extended community access list. Use the **no** form with only the access list name to disable its use, or with the relevant parameters to remove a community attribute from the access list.

Syntax

[no] ip extcommunity-list

{1-99 | standard community-list-name {deny | permit} [{**rt** | **soo**} extended-community-value]} | {100-500 | expanded community-list-name {deny | permit} *regular-expression*}

1-99 – Standard community list number that identifies one or more groups of communities.

standard *community-list-name* – Name of standard access list. A maximum of 16 extended communities can be configured in a standard community list. (Maximum length: 32 characters, no spaces or other special characters)

deny – Denies access to messages with matching extended community attribute.

permit – Permits access for messages with matching extended community attribute.

rt – The route target extended community attribute.

soo – The site of origin extended community attribute.

extended-community-value – The route target or site of origin in one of the following formats:

AAAA:NN or AA:NNNN – Community-number to deny or permit. The community number can either be formatted as a 4-byte autonomous system number and a 2-byte network number, or as a 2-byte autonomous system number and a 4-byte network number, separated by one colon. Each 2-byte number can range from 0 to 65535, and 4-byte numbers from 0 to 4294967295.

IP:NN – Community to deny or permit. The community number is composed of a 4-byte IP address (representing the autonomous system number) and a 2-byte network number, separated by one colon. The 2-byte network number can range from 0 to 65535.

One or more community numbers can be entered, separated by a space. Up to 3 community numbers are supported.

100-500 – Expanded community list number that identifies one or more groups of communities.

expanded *community-list-name* – Name of expanded access list. (Maximum length: 32 characters, no spaces or other special characters)

regular-expression – Regular expression indicating the community list number or name. Syntax complies with the IEEE POSIX Basic Regular Expressions (BRE) standard.

Command Mode

Global Configuration

Default Setting

No extended community lists are defined.

Command Usage

- Standard community lists are used to configure well-known communities or community numbers. Expanded community lists are used to filter communities using a regular expression.
- When multiple values are entered in the same community list, they form a logical AND condition. When multiple values are configured in separate community lists, the form a logical OR condition, where the first list that matches a condition is processed.
- If the criteria specified for a community list is matched, then the deny/permit condition is applied to the routing message.
- If a permit value is applied to a community list, the filter will implicitly deny other community values.
- ◆ The route target (RT) attribute is used to identify sites that may receive routes tagged with a specific route target. Using this attribute allows that route to be

placed in per-site forwarding tables used for routing traffic received from the corresponding sites.

- The site of origin (SOO) attribute is used to identify the site from which the provider edge (PE) router learned the route. All routes learned from a particular site are assigned the same site of origin attribute, no matter if a site is connected to a single PE router or multiple PE routers. Filtering based on this extended community attribute can prevent routing loops from occurring when a site is multi-homed.
- Use this command in conjunction with the neighbor filter-list to filter route updates sent to or received from a neighbor, or with the match extcommunity route map command to implement a more comprehensive filter for policybased routing.

Example

This example configures a named standard community list LR that permits routes with the route target 100:20, denoting that they destined for the autonomous system 100 and network 20.

```
Console(config) #ip extcommunity-list standard LP permit soo 100:20
Console(config)#
```

Related Commands

neighbor filter-list (1103) match extcommunity (1141)

ip prefix-list This command configures an IP address prefix list. Use the **no** form with only the prefix list name to disable its use, or with the relevant parameters to remove an attribute from the prefix list.

Syntax

```
[no] ip prefix-list prefix-list-name [seq sequence-number]
   {deny | permit} any
```

```
[no] ip prefix-list prefix-list-name [seq sequence-number]
   {deny | permit} {ip-address netmask | any}
   [ge min-prefix-length] [le max-prefix-length]
```

prefix-list-name – Name of prefix list. (Maximum length: 128 characters, no spaces or other special characters)

sequence-number - Applies a sequence number to the entry. If not specified, the entry is added to the bottom of the list, using a default numbering interval of 5. (Range: 1-429496725)

deny – Denies access to messages matching specified criteria.

permit – Permits access for messages matching specified criteria.

any – Any matching criteria.

ip-address – An IPv4 address expressed in dotted decimal notation.

netmask – Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

ge – The minimum prefix length to match.

le – The maximum prefix length to match.

Command Mode

Global Configuration

Default Setting

No prefix lists are defined.

Command Usage

- Prefix filtering can be performed on an IP address expressed as a classful network, a subnet, or a single host route.
- Prefix lists are checked starting from the lowest sequence number and continues through the list until a match is found. Once an entry is found that covers a network, the permit or deny statement is applied to that network, and the search process stops.
- ◆ At least one "permit" statement should be included when more than one entry is defined. Commonly used "Deny" statements can be included at the top of the list to quickly remove unsuitable routing messages. If a list includes all "Deny" statements, then an entry of "permit 0.0.0.0 255.255.255.255 ge 0 le 32" can be included at the bottom of the list to grant passage for all other routing messages.
- A prefix list can be applied to inbound or outbound updates for a specific peer by entering the neighbor prefix-list command, or with the match ip address prefix-list route map command to implement a more comprehensive filter for policy-based routing.

Example

This example denies access to routing messages for the specified address.

```
Console(config)#ip prefix-list LS deny 10.0.0.0 255.0.0.0 ge 14 le 22 Console(config)#
```

Related Commands

neighbor prefix-list (1110) match ip address (1141)

aggregate-address This command configures an aggregate address in the routing table. Use the no form to delete an aggregate address.

Syntax

[no] aggregate-address ip-address netmask [as-set] [summary-only]

ip-address - An IPv4 address expressed in dotted decimal notation.

netmask – Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

as-set – Generates autonomous system set information for the AS path attribute, indicating that a route originated in multiple autonomous systems.

summary-only – Sends the summary routes only, ignoring more specific routes.

Command Mode

Router Configuration

Default Setting

No aggregate routes are defined.

Command Usage

- Using this command without any keywords will create an aggregate entry in the routing table if any more specific routes are available in the specified range. The aggregate route does not include any individual route attributes (e.g., AS-Path or Community). It is advertised as coming from this autonomous system and has the atomic aggregate attribute set to indicate that some information may be missing.
- Using the **as-set** keyword creates an aggregate route where the advertised path is an AS-Set that consists of all elements contained in all of paths being summarized. AS-Set information can be used to avoid routing loops because it records where the route has been. If a router notes its own AS number in the AS-Set of the aggregate update, it will drop the aggregate to prevents loop. However, when aggregating tens or hundreds of routes, avoid advertising routing information in this manner, since this route may be frequently withdrawn and updated as AS path reachability information for the summarized routes changes.
- Using the **summary-only** keyword creates the aggregate route, while at the same time suppressing advertisements of more specific routes to all neighbors.

Example

```
Console(config-router) #aggregate-address 100.1.0.0 255.255.0.0 summary-only
Console(config-router) #aggregate-address 100.2.0.0 255.255.0.0 summary-only
Console(config-router) #aggregate-address 100.3.0.0 255.255.0.0 as-set
Console(config-router) #end
```

Chapter 50 | IP Routing Commands

Border Gateway Protocol (BGPv4)

```
Console#show ip bgp
BGP table version is 0, local router ID is 192.168.0.4
Status codes: s suppressed, d damped, h history, * valid, > best, i -
 internal,
             r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
                 Next Hop
                                     Metric LocPrf Weight Path
  Network
*>i192.168.0.0/24 0.0.0.0
```

bgp client-to-client This command restores route reflection via this router. Use the **no** form to disable **reflection** route reflection.

Syntax

[no] bgp client-to-client reflection

Command Mode

Router Configuration

Default Setting

Enabled

Command Usage

- Route reflection from this device is enabled by default, but is only functional if a client has been configured with the neighbor route-reflector-client command.
- Route reflection is not required if all of the routers in an AS are fully meshed as normally required by interior BGP. However, to make interior BGP more scalable, route reflection or confederations can be used. Route reflection uses one or more route reflectors to reflect routes between specified clients within a cluster. Clients within a reflector cluster therefore need not be fully meshed, and the exchange of routing information is thereby reduced since the clients need not communicate with any routers outside of the cluster.
- Routing information from an external BGP router is advertised to all cluster clients and non-client peers. Information from a non-client peer is advertised to all clients. And information from cluster members is reflected to all routing peers, both inside and outside of the cluster. using this model, the local AS can be divided into many clusters.
- Use the bgp cluster-id command to designate route reflectors within the same cluster so that route reflectors can recognize updates from other route reflectors in the same cluster.

Example

```
Console(config-router) #bgp client-to-client reflection
Console(config-router)#
```

Related Commands

neighbor route-reflector-client (1113) bgp cluster-id (1077)

bgp cluster-id This command configures the cluster identifier for multiple route reflectors in the same cluster. Use the **no** form to remove the cluster identifier.

Syntax

bgp cluster-id cluster-identifier

no bgp cluster-id

cluster-identifier – The cluster identifier of this router when acting as a route reflector. This identifier can be expressed in the form an IPv4 address or an integer in the range of 1-4294967295.

Command Mode

Router Configuration

Default Setting

The router identifier of a lone route reflector in a cluster.

Command Usage

- A cluster of clients will usually have a single route reflector (RR). In that case, the cluster can be identified by the BGP Identifier of the RR. However, this represents a single point of failure. This command is used to designate multiple route reflectors used within the same cluster so that they can recognize updates from other peer route reflectors and discard them to prevent loopbacks.
- All the route reflectors in the same cluster should be fully meshed and all of them configured with identical sets of client and non-client peers.
- A route reflector uses the non-transitive cluster-list attribute to avoid routing loops. A cluster-list is a sequence of cluster IDs the route has passed through. When a RR reflects a route from its clients to non-client peers, and vice versa, it appends this ID to the cluster list. Using this attribute, an RR can determine if routing information has looped back to the same cluster due to misconfiguration. If the local cluster ID is found in the cluster list, the advertisement is ignored.

Example

Console(config-router) #bgp cluster-id 192.168.0.0 Console(config-router)#

Related Commands

bgp client-to-client reflection (1076)

identifier

bgp confederation This command configures the identifier for a confederation containing smaller multiple internal autonomous systems, and declares this router as a member of the confederation. Use the **no** form to remove the confederation identifier.

Syntax

bgp confederation identifier as-number

no bgp confederation identifier

as-number – Autonomous system number which identifies this router as a member of the specified domain, and tags routing messages passed to other BGP routers with this number. (Range: 1-4294967295)

Command Mode

Router Configuration

Default Setting

No confederation identifier is configured.

Command Usage

- BGP confederations are used to reduce the requirement for fully meshed connections between iBGP peers in the same AS. It works by dividing up a large AS into several smaller ASes, where only the peers in the same smaller AS are fully meshed, thus reducing the number of required connections and routing traffic.
- Even though different local confederation peers may have external BGP (eBGP) sessions, they exchange routing information among themselves as if they were iBGP peers. Next hop, Multi Exit Discriminator (MED), and local preference information is preserved. By preserving this information, a single Interior Gateway Protocol (IGP) can be used among the local confederations. When viewed from the outside by external peers, the larger AS is still identified as a single entity or autonomous system.
- Use the bgp confederation peer command to specify the autonomous systems within a confederation.

Example

```
Console(config-router) #bgp confederation identifier 600
Console(config-router)#
```

Related Commands

bgp confederation peer (1079)

bgp confederation This command adds an internal peer autonomous system to a confederation. Use peer the **no** form to remove an autonomous system from a confederation.

Syntax

bgp confederation peer as-number

no bgp confederation identifier

as-number – Autonomous system number which identifies this router as a member of the specified domain, and tags routing messages passed to other BGP routers with this number. (Range: 1-4294967295)

Command Mode

Router Configuration

Default Setting

No confederation peer is configured.

Command Usage

- This command is used to add multiple ASes to a confederation. Each AS is fully meshed within itself, and the AS members are visible internally within the confederation.
- Use the bgp confederation identifier command to create a confederation.

Example

This example divides AS 600 into four smaller ASes 101-104, and assigns a neighboring router as a member of the sub-AS 101.

```
Console(config-router) #bgp confederation identifier 600
Console(config-router) #bgp confederation peer 101
Console(config-router) #bgp confederation peer 102
Console(config-router) #bgp confederation peer 103
Console(config-router) #bgp confederation peer 104
Console(config-router) #neighbor 192.168.0.9 remote-as 101
Console(config-router)#
```

Related Commands

bgp confederation identifier (1078)

bgp dampening This command configures route dampening to reduce the propagation of unstable routes. Use the **no** form to restore the default settings.

Syntax

bgp dampening [half-life [reuse-limit [suppress-limit max-suppress-time]]]

no dampening

half-life – The time after which a penalty is reduced. The penalty value is reduced to half of the previous value after the half-life time expires. (Range: 1-45 minutes)

reuse-limit – The point at which the penalty for a flapping route must fall before a route is unsuppressed. (Range: 1-2000)

suppress-limit – The point at which to start suppressing a route.

(Range: 1-2000)

max-suppress-time – The maximum time a route can be suppressed.

(Range: 1-255 minutes)

Command Mode

Router Configuration

Default Setting

half-life: 15 minutes reuse-limit: 750 suppress-limit: 2000

max-suppress-time: 60 minutes (4 x half-life)

Command Usage

- Route dampening is used to reduce the frequency of routing updates due to unstable routes. Dampened routes are not used in the BGP decision process nor installed in the routing table.
- Each time a route flaps, the router assigns the route a penalty of 1000. If BGP receives an attribute change, BGP increases the penalty by 500. Penalties are cumulative, and the penalty for the route is stored in the BGP routing table until it exceeds the suppress limit. At that point, the route state changes to damped.
- Note that route dampening only applies to external BGP routes.

Example

Console(config-router) #bgp dampening 20 1200 20000 220 Console(config-router)#

bgp enforce-first-as This command denies an update received from an external peer that does not list its own autonomous system number at the beginning of the AS path attribute. Use the **no** form to disable this feature.

Syntax

[no] bgp enforce-first-as

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

This command can be used to prevent a peer from misdirecting traffic by advertising a route as if sourced from another autonomous system.

Example

```
Console(config-router) #bgp enforce-first-as
Console(config-router)#
```

bgp fast-external This command resets sessions for any directly connected external peers if the link failover goes down. Use the **no** form to disable this feature.

Syntax

[no] bgp fast-external-failover

Command Mode

Router Configuration

Default Setting

Enabled

Command Usage

- This command immediately resets the connection for directly adjacent external peers if the interface goes down for any reason other than TCP timeout.
- If fast external failover is disabled, the routing process waits until the default hold timer expires to reset the session.

```
Console(config-router) #bgp fast-external-failover
Console(config-router)#
```

bgp log-neighbor- This command enables logging of neighbor resets (that is, up or down status **changes** changes). Use the **no** form to disable this feature.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

- This command helps detect network problems by indicating if a neighbor connection is flapping. A high number of neighbor resets might indicate unacceptable error rates or high packet loss in the network.
- Log messages for neighbor resets are recorded as level 6 messages in the system log file which can viewed using the show log ram command.

Example

```
Console(config-router) #bgp log-neighbor-changes
Console(config-router)#
```

bgp network This command checks for the existence of the next-hop and its accessibility to an **import-check** Interior Gateway Protocol. Use the no form to disable this feature.

Syntax

[no] bgp network import-check

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

By default, BGP will advertise a route regardless of the Interior Gateway Protocol (IGP) in use. This command forces the router to verify the existence of the next hop for an advertised route, and to ensure that the route is accessible to an IGP.

```
Console(config-router) #bgp network import-check
Console(config-router)#
```

bgp router-id This command sets the router ID for this device. Use the no form to remove this ID.

Syntax

bgp router-id router-id

no bgp router-id

router-id - Router ID formatted as an IPv4 address.

Command Mode

Router Configuration

Default Setting

The highest IP address configured for an interface.

Command Usage

- By default, the router ID is automatically set to the highest IP address configured for a Layer 3 interface. This command can be used manually set the router ID to a fixed value.
- The router ID must be unique for every router in the autonomous system. Using the default setting based on the highest interface address ensures that each router ID is unique.
- All neighbor sessions will be reset if the router ID is changed.

Example

```
Console(config-router) #bgp router-id 192.168.0.254
Console(config-router)#
```

bgp scan-time This command sets the interval at which to validate next hop information for BGP routes. Use the **no** form to restore the default setting.

Syntax

bgp scan-time scan-time

no bgp scan-time

scan-time – Next hop validation interval. (Range: 5-60 seconds)

Command Mode

Router Configuration

Default Setting

60 seconds

Command Usage

This command sets the interval at which to check the validity of the next hop for all routes in the routing information database. During the interval between scan cycles, IGP instability or other network problems may cause black holes or routing loops to form.

Example

```
Console(config-router) #bgp scan-time 30
Console(config-router)#
```

network This command specifies a network to advertise. Use the **no** form to stop advertising a network.

Syntax

network *ip-address* [*netmask*] [**route-map** *map-name* | [**backdoor**] pathlimit tt/]

no network *ip-address* [*netmask*]

ip-address – IP address of a to advertise.

netmask – Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

map-name – Name of the route map. The route map can be used to filter the networks to advertise. (Range: 1-80 characters)

backdoor – Specifies a backdoor route to a BGP border router that provides better information about the network.

pathlimit *ttl* – Maximum number of hops allowed in an AS path. (Range: 0-255)

Command Mode

Router Configuration

Default Setting

No networks are configured.

Command Usage

- Use this command to specify the networks to advertise to BGP neighbors. BGP networks can be learned from directly connected routes, dynamic routing, or static route sources.
- BGP only sends and receives updates on interfaces specified by this command. If a network is not specified, the interfaces in that network will not be advertised in any BGP updates.
- A backdoor network has an administrative distance of 200, making routes learned through interior gateway protocols (RIP, OSPF, iBGP) preferred. A

backdoor network is treated as a local network, except that it not advertised by the local router. A backdoor route should not be sourced at the local router, but should be one that has been learned from external neighbors. However, since these routes are treated as a local network, they are given priority over routes learned through eBGP, even if the distance of the external route is shorter.

Example

```
Console(config-router) #network 172.16.0.0 255.255.0.0
Console(config-router)#
```

redistribute This command redistributes routes from one routing domain to another. Use the **no** form to stop redistributing an previously configured entry.

Syntax

```
redistribute {connected | ospf | rip | static} [metric metric-value]
   [route-map map-name]
```

no redistribute {connected | ospf | rip | static}

[metric metric-value] [route-map map-name]

connected - Imports routes that are established automatically just by enabling IP on an interface.

ospf - External routes will be imported from the Open Shortest Path First (OSPF) protocol into this routing domain.

rip - External routes will be imported from the Routing Information Protocol (RIP) into this routing domain.

static - Static routes will be imported into this routing domain.

metric-value - Metric value assigned to all external routes for the specified protocol. (Range: 1-16)

map-name – Name of the route map. The route map can be used to filter the networks to advertise, and to modify their weight or other attributes. (Range: 1-80 characters)

Command Mode

Router Configuration

Default Setting

No redistribution is configured.

Command Usage

 Use this command to advertise routes that are learned by some other means, such as from another routing protocol or static routing entries. Since all internal routes are maintained by interior gateway protocols such as RIP and OSPF, careful filtering should be used to ensure that only routes that need to be advertised reach the Internet.

 A route metric must be used to resolve the problem of redistributing external routes with incompatible metrics.

Example

```
Console(config-router) #redistribute static metric 10
Console(config-router)#
```

timers bgp This command sets the Keep Alive time used for maintaining connectivity, and the Hold time to wait for Keep Alive or Update messages before declaring a neighbor down. Use the **no** form to restore the default settings.

Syntax

timers bgp *keepalive-time hold-time*

no timers bgp

keepalive-time – The frequency at which the local router sends keep-alive messages to its neighbors. (Range: 0-65535 seconds)

hold-time – The maximum interval after which a neighbor is declared dead if a keep-alive or update message has not been received. (Range: 0-65535 seconds)

Command Mode

Router Configuration

Default Setting

Keep Alive time: 60 seconds Hold time: 180 seconds

Command Usage

- Use this command to set global BGP timers used for monitoring connectivity to neighboring routers. These timers will be applied to all neighbors unless the neighbor timers command has been used to explicitly configure other timer settings for a neighbor.
- When the minimum acceptable hold-time is configured with this command, a remote peer session can be established only if the neighboring router is advertising a hold-time equal to, or greater than, that configured on this device.

```
Console(config-router) #timers bgp 60 200
Console(config-router)#
```

clear ip bgp This command clears connections using hard or soft re-configuration.

Syntax

clear ip bgp { * | as-number | external | peer-group group-name |
 neighbor-address} [in [prefix-list] | out | soft [in | out]]

* – All BGP peering sessions.

as-number – All peering sessions within this autonomous system number. (Range: 1-4294967295)

external - All eBGP peering sessions.

peer-group *group-name* – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

neighbor-address – IPv4 address of a neighbor.

in - Inbound sessions.

prefix-list – The outbound route filter (ORF) prefix list. This option triggers a new route refresh or soft re-configuration, which updates the ORF prefix list. This option is ignored unless ORF capabilities have been enabled using the neighbor capability orf prefix-list command or ORF capability information has been received from a sending peer. If ignored, a normal inbound soft reset is performed.

out - Outbound sessions.

soft – Uses soft re-configuration for the reset, which does not tear down the session.

Command Mode

Privileged Exec

Default Setting

None

Command Usage

- Use this command to initiate a hard reset or soft re-configuration. A hard reset clears and rebuilds specified peering sessions and routing tables. Soft re-configuration uses stored information to reconfigure and activate routing tables without clearing existing sessions. It uses stored update information to allow you to apply a new BGP policy without disrupting the network.
- ◆ To generate new inbound updates from stored information without resetting peer sessions, you must preconfigure the local router using the neighbor capability orf prefix-list command, which causes the router to store all received updates. Note that storing updates is memory intensive and should only be applied to critical links.

Outbound soft configuration requires no memory or preconfiguration. Outbound re-configuration can be used on the other side of a peering session to make initiate a new inbound policy on the local side.

- Use this command to clear peering sessions when changes are made to any BGP access lists, weights, or route-maps.
- Route refresh (RFC 2918) allows a router to reset inbound routing tables dynamically by exchanging route refresh requests with peers. Route refresh relies on the dynamic exchange of information with supporting peers. It is advertised through BGP capability negotiation, and all BGP routers must support this capability.

Example

This example assumes that soft re-configuration has been set on the neighboring router.

```
Console(config-router)#clear ip bgp 192.168.0.254 soft in
Console(config-router)#
```

clear ip bgp This command clears route dampening information and unsuppresses any dampening currently suppressed routes.

Syntax

clear ip bgp dampening [ip-address [netmask]]

ip-address – IP address of network or peer router.

netmask – Network mask that identifies the network address bits.

Command Mode

Privileged Exec

Default Setting

None

Example

If no keywords are entered as in this example, route dampening information is cleared for the entire routing table.

```
Console(config-router)#clear ip bgp dampening
Console(config-router)#
```

Route Metrics and Selection

bgp always- This command allows comparison of the Multi Exit Discriminator (MED) for paths compare-med advertised from neighbors in different autonomous systems. Use the **no** form to disable this feature.

Syntax

[no] bgp always-compare-med

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

- ◆ The MED is an optional non-transitive¹⁷ attribute used to discriminate among multiple exit points to a neighboring autonomous system. A path with a lower MED is preferred over a path with a higher MED.
- By default, during best-path selection, the MED is compared only among paths from the same autonomous system. This command allows the comparison of MEDs among different paths regardless of the autonomous system from which the paths are received.
- The bgp deterministic-med command can be used to enforce comparison of the MED value between all paths received from within the same autonomous system.

Example

This example assumes that a peer router is advertising the same route prefix through the two ASes (100 and 300) to the same AS (200), each of which carries a different MED.

```
Console(config-router) #bgp always-compare-med
Console(config-router)#
```

bgp bestpath as-path This command ignores the AS path length in the selection of a path. Use the no ignore form to disable this feature.

Syntax

[no] bgp bestpath as-path ignore

^{17.} If a router does not understand an optional non-transitive attribute, it will be removed.

Chapter 50 | IP Routing Commands

Border Gateway Protocol (BGPv4)

Command Mode

Router Configuration

Default Setting

Disabled

Example

Console(config-router) #bgp bestpath as-path ignore Console(config-router)#

compare-confedaspath

bgp bestpath This command compare confederation AS path length in addition to external AS path length in the selection of a path. Use the no form to disable this feature.

Syntax

[no] bgp bestpath compare-confed-aspath

Command Mode

Router Configuration

Default Setting

Disabled

Example

Console(config-router) #bgp bestpath compare-confed-aspath Console(config-router)#

bgp bestpath This command compares similar routes from external peers, and gives preference compare-routerid to a route with the lowest router identifier. Use the **no** form to restore the default setting.

Syntax

[no] bgp bestpath compare-routerid

Command Mode

Router Configuration

Default Setting

When making the best-path selection, the router does not compare identical routes received from different external peers.

Command Usage

Normally, the first route arriving from different external peers (with other conditions equal) will be chosen as the best route. By using this command, the route with lowest router ID will be selected.

Example

```
Console(config-router) #bgp bestpath compare-routerid
Console(config-router)#
```

bgp bestpath med This command enables comparison of the Multi Exit Discriminator (MED) attribute for paths learned from confederation peers, and the treatment of a route when the MED is missing. Use the **no** form to disable this feature.

Syntax

```
[no] bgp bestpath med {[confed] [missing-as-worst]}
```

confed – Compare MED in confederation path.

missing-as-worst – Consider as maximum MED value when missing.

Command Mode

Router Configuration

Default Setting

When making the best-path selection, the router does not consider the MED.

Command Usage

- The MED for paths learned from confederation peers is compared only if no external autonomous systems (AS) appear in the path. If an external AS is within the path, then the external MED is passed transparently through the confederation, and it is not compared.
- If the missing-as-worst option is disabled, the missing MED is assigned a value of 0, making a path missing the MED attribute the best path.

```
Console(config-router) #bgp bestpath med config missing-as-worst
Console(config-router)#
```

bgp default This command sets the default local preference used for best path selection among local-preference local iBGP peers. Use the **no** form to restore the default setting.

Syntax

bgp default local-preference preference

preference - Degree of preference iBGP peers give local routes during BGP best path selection. The higher the value, the more the route is to be preferred. (Range: 0-4294967295)

Command Mode

Router Configuration

Default Setting

100

Command Usage

Local preference is a discretionary attribute applied to a route during the BGP best path selection process. It is exchanged only between iBGP peers, and used to determine local policy.

Example

```
Console(config-router) #bgp default local-preference 100
Console(config-router)#
```

deterministic-med

bgp This command enforces deterministic comparison of the MED attribute between all paths received from the same AS, ensuring that selection of the best path will always be the same, regardless of the order in which the paths are received by the local router. Use the **no** form to disable this feature.

Syntax

[no] bgp deterministic-med

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

The MED is compared after BGP attributes weight, local preference, AS-path and origin have been compared and are equal. When deterministic comparison of the MED is enabled, all paths for the same route prefix (received from peers within the same AS) are grouped together and arranged according to their MED value. Based on this comparison, the best path is then chosen.

- The router immediately groups and sorts all local paths when this command is entered. For correct results, deterministic comparison of the MED must be configured in the same manner (enabled or disabled) on all routers in the local AS.
- ◆ If deterministic comparison of the MED is not enabled, route selection can be affected by the order in which routes are received.
- This command compares the MED when choosing routes advertised by different peers in the same AS. To compare the MED when choosing routes from neighbors in different ASs, use the bgp always-compare-med command.

Example

```
Console(config-router)#bgp deterministic-med
Console(config-router)#
```

distance This command sets the administrative distance for a specified external BGP (eBGP) routes. Use the **no** form to restore the default setting.

Syntax

distance distance ip-address netmask [access-list-name]

no distance ip-address netmask

distance – Administrative distance for an eBGP route. (Range: 1-255)

ip-address – IP address of a route entry.

netmask – Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

access-list-name – Name of standard or extended access list. (Maximum length: 16 characters, no spaces or other special characters)

Command Mode

Router Configuration

Default Setting

None

Command Usage

- ◆ The route distance indicates the trustworthiness of a router. The higher the distance the lower the trust rating. A distance of 255 means that the routing source cannot be trusted and should be ignored.
- This distance set by this command only applies to external BGP paths routes learned from a neighbor outside of the AS. Use the distance bgp command to configure the global setting for the distance of eBGP, iBGP, and local routes.

 If an access-list is specified, it will be applied to received routes. If the received routes are not matched in the access-list or the specified list does not exist, the original distance value will be used.

Example

```
Console(config-router) #distance 90 10.1.1.64 255.255.255.255
Console(config-router)#
```

Related Commands

distance bgp (1094)

distance bgp This command sets the administrative distance for external BGP, internal BGP, and local routes. Use the **no** form to restore the default settings.

Syntax

```
distance bgp ebgp-distance ibgp-distance local-distance
```

no distance bgp

```
ebgp-distance – Administrative distance for eBGP routes. (Range: 1-255)
```

ibgp-distance – Administrative distance for iBGP routes. (Range: 1-255)

local-distance – Administrative distance for local routes. (Range: 1-255)

Command Mode

Router Configuration

Default Setting

eBGP: 20 iBGP: 200 local: 200

Command Usage

- External routes are learned from an external autonomous system, and internal routes from a peer within the local autonomous system. Local routes are those configured with the network command as a back door for the router or for the networks being redistributed from another routing process.
- The route distance indicates the trustworthiness of a router. The higher the distance the lower the trust rating. A distance of 255 means that the routing source cannot be trusted and should be ignored.
- This command can be used to indicate that another protocol can provide a better route to a node than that learned via eBGP, or to indicate that some internal routes should be preferred by BGP.

• Changing the administrative distance of iBGP routes is not recommended. It may cause an accumulation of routing table inconsistencies which can break routing to many parts of the network.

Example

```
Console(config-router)#distance bgp 20 200 20
Console(config-router)#
```

Related Commands

distance (1093)

Neighbor Configuration

neighbor activate This command enables the exchange of routing information with a neighboring router or peer group. Use the **no** form to disable the exchange of routing information.

Syntax

[no] neighbor {ip-address | group-name} activate

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Enabled

Command Usage

- After a connection is opened with a neighboring router, this command is used to enable the exchange of information with the neighbor.
- The exchange of information is enabled by default for each routing session configured with the neighbor remote-as command.

```
Console(config-router) #neighbor 10.1.1.64 activate
Console(config-router)#
```

advertisementinterval

neighbor This command configures the interval between sending update messages to a neighbor. Use the **no** form to restore the default setting.

Syntax

neighbor ip-address advertisement-interval interval

no neighbor ip-address advertisement-interval

ip-address - IP address of a neighbor.

interval – The minimum interval between sending routing updates to the specified neighbor. (Range: 0-600 seconds)

Command Mode

Router Configuration

Default Setting

iBGP: 5 seconds eBGP: 30 seconds

Command Usage

This command can be used to reduce route flapping. However, the bgp dampening command can provide more precise control of route flapping.

Example

```
Console(config-router) #neighbor 10.1.1.64 advertisement-interval 20
Console(config-router)#
```

neighbor allowas-in This command configures the number of times the AS path for a received route can contain the same AS number. Use the **no** form to restore the default setting.

Syntax

neighbor {ip-address | group-name} **allowas-in** [count]

no neighbor {ip-address | group-name} allowas-in

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

count - Maximum number of times the same AS number can appear in the AS path of a received route. (Range: 1-10, or 3 if the count is not undefined)

Command Mode

Router Configuration

Default Setting

No repeats allowed

Command Usage

Under standard routing practices, BGP will not accept a route sent from a neighbor if the same AS number appears in the AS path more than once. This could indicate a routing loop, and the route message would therefore be dropped. However, for purposes of traffic engineering (such as degrading the preference for a certain path), this command can be used to configure the number of times the same AS is allowed re-appear in the AS path of a route received from a neighbor.

Example

```
Console(config-router) #neighbor 10.1.1.64 allowas-in 5
Console(config-router)#
```

neighbor This command configures certain route attributes to be kept unchanged for attribute-unchanged transparent transmission to the specified neighbor. Use the no form to disable this feature.

Syntax

```
[no] neighbor {ip-address | group-name} attribute-unchanged [as-path]
   [med] [next-hop]
```

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

as-path - AS path attribute

med - Mult-Exit Discriminator (MED) attribute

next-hop – Next hop attribute

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

If this command is entered without specifying any route attributes, then all three optional attributes are used.

```
Console(config-router) #neighbor 10.1.1.64 attribute-unchanged
Console(config-router)#
```

neighbor This command configures dynamic negotiation of capabilities between capability dynamic neighboring routers. Use the **no** form to disable this feature.

Syntax

[no] neighbor {ip-address | group-name} capability dynamic

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

- BGP normally requires a router to terminate a peering session if it receives an OPEN message with an unrecognized optional parameter. This command allows new capabilities to be introduced gracefully, without requiring a peering session to be terminated if a negotiated capability is unknown.
- With dynamic negotiation of capabilities is enabled, the capabilities by both sides are negotiated in OPEN messages, with the partner responding if a capability is supported or sending a NOTIFICATION if not.

Example

```
Console(config-router) #neighbor 10.1.1.64 capability dynamic
Console(config-router)#
```

neighbor capability This command configures the negotiation of outbound route filter (ORF) orf prefix-list capabilities with a neighboring router. Use the **no** form to disable negotiation.

Syntax

[no] neighbor {ip-address | group-name} orf prefix-list {both | receive | send}

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

both – Capability to send and receive the ORF to/from this neighbor.

receive – Capability to receive the ORF from this neighbor.

send - Capability to send the ORF to this neighbor.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

When this command is entered, the side configured with inbound prefix-list filter rules will transmit its own rules to the peer, and the peer will then use these rules as its own outbound rules, thereby avoiding sending routes which will be denied by its partner.

Example

```
Console(config-router) #neighbor 10.1.1.64 orf prefix-list both
Console(config-router)#
```

neighbor This command allows the local router to send a default route to a neighbor. Use the **default-originate no** form to disable this feature.

Syntax

neighbor {ip-address | group-name} **default-originate** [route-map map-name] no neighbor {ip-address | group-name} default-originate

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

map-name – Name of the route map. The route map can be used to filter the criteria used for sending the default route to a neighbor. (Range: 1-80 characters)

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

- This command is used to advertise the local router's default route (0.0.0.0) to a neighbor. This route can be used by the neighbor to reach the local router if no other routes are available.
- If several neighbors supply a default route to the same partner, the best one will be elected according to the standard path selection process.

◆ If a route map is specified, the default route 0.0.0.0 is advertised if the route map contains a match ip address clause and there is a route that matches an entry in the ip prefix-list.

Example

```
Console(config-router) #neighbor 10.1.1.64 default-originate
Console(config-router)#
```

neighbor description This command configures the description of a neighbor or peer group. Use the **no** form to remove a description.

Syntax

```
neighbor {ip-address | group-name} description description
no neighbor {ip-address | group-name} description
```

```
ip-address – IP address of a neighbor.
```

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

description – Descriptive string. (Range: 1-80 characters)

Command Mode

Router Configuration

Default Setting

No description specified

Example

```
Console(config-router) #neighbor 10.1.1.64 description bill's router
Console(config-router)#
```

neighbor This command filters route updates to/from a neighbor or peer group. Use the **no** distribute-list form to remove this list.

Syntax

```
neighbor {ip-address | group-name} distribute-list access-list-name {in | out}
no neighbor {ip-address | group-name} distribute-list {in | out}
```

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

access-list-name – Name of standard or extended access list. (Maximum length: 32 characters, no spaces or other special characters) in – Filters inbound routing messages.

out – Filters outbound routing messages.

Command Mode

Router Configuration

Default Setting

None

Command Usage

- If the specified access list for input or output mode does not exist, all input or output route updates will be filtered.
- ◆ The neighbor prefix-list and the neighbor distribute-list commands are mutually exclusive for a BGP peer. That is, only one of these commands may be applied in the inbound or outbound direction.

Example

```
Console(config-router) #neighbor 10.1.1.64 distribute-list RD in
Console(config-router)#
```

neighbor dont- This command disables capability negotiation when creating connections. Use the capability-negotiate no form to restore the default setting.

Syntax

[no] neighbor {ip-address | group-name} dont-capability-negotiate

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Capability negotiation is enabled

Command Usage

Earlier versions of BGPv4 require that when a BGP speaker receives an Open message with one or more unrecognized Optional Parameters, the speaker must terminate BGP peering. This command can be used when connecting to a partner known to use an older BGP version which does not support capabilities negotiation (RFC 2842), thereby allowing the peering session to continue.

Example

```
Console(config-router) #neighbor 10.1.1.64 dont-capability-negotiate
Console(config-router)#
```

neighbor This command allows eBGP neighbors to exist in different segments, and **ebgp-multihop** configures the maximum hop count (TTL). Use the **no** form to restore the default setting.

Syntax

```
neighbor {ip-address | group-name} ebgp-multihop [count]
no neighbor {ip-address | group-name} ebgp-multihop
   ip-address - IP address of a neighbor.
   group-name – A BGP peer group containing a list of neighboring routers
   configured with the neighbor peer-group command.
```

Command Mode

Router Configuration

Default Setting

eBGP neighbors must be located in the same segment.

count – Maximum hop count. (Range: 1-255)

Command Usage

- ◆ This command can be used to allow routers in different network segments to create a BGP neighbor relationship.
- If this command is entered without specifying a count, the hop limit is set at 255.
- ◆ To avoid creating loops through oscillating routes, a multi-hop session will not be established if the only route to a multi-hop peer is the default route.

```
Console(config-router) #neighbor 10.1.1.64 ebgp-multihop 2
Console(config-router)#
```

neighbor This command enforces the requirement for all neighbors to form multi-hop enforce-multihop connections. Use the **no** form to disable this requirement.

Syntax

[no] neighbor {ip-address | group-name} enforce-multihop

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Not enforced

Command Usage

By default, the multi-hop check is only performed on iBGP and eBGP non-direct routes. This command can be used to force the router to perform the multi-hop check on directly connected routes as well. In other words, the router will not perform the next-hop direct-connect check the specified neighbor.

Example

```
Console(config-router) #neighbor 10.1.1.64 enforce-multihop
Console(config-router)#
```

neighbor filter-list This command filters route updates sent to or received from a neighbor based on an AS path access-list. Use the **no** form to disable route filtering.

Syntax

neighbor {ip-address | group-name} **filter-list** access-list {**in** | **out**}

no neighbor {ip-address | group-name} filter-list {in | out}

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

access-list - Name of an AS-Path access list configured with the ip as-path access-list command.

in – Filter inbound routing updates.

out - Filter outbound routing updates.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

Use this command in conjunction with the ip as-path access-list command to filter route updates sent to or received from a neighbor.

Example

In this example, the AS path access list "ASPF" is first configured to deny access to any route passing through AS 100. It then enables route filtering by assigning this list to a peer.

```
Console(config) #ip as-path access-list ASPF deny 100
Console(config) #router bgp 100
Console(config-router)#redistribute static
Console(config-router) #neighbor 10.1.1.66 filter-list ASPF out
Console(config-router)#
```

neighbor interface This command specifies the interface to a neighbor. Use the **no** form to remove this configuration setting.

Syntax

```
neighbor ip-address interface vlan vlan-id
no neighbor ip-address interface
   ip-address - IP address of a neighbor.
   vlan-id - VLAN ID. (Range: 1-4094)
```

Command Mode

Router Configuration

Default Setting

None

```
Console(config-router) #neighbor 10.1.1.64 interface vlan 1
Console(config-router)#
```

neighbor This command sets the maximum number or route prefixes that can be received maximum-prefix from a neighbor. Use the **no** form to restore the default setting.

Syntax

neighbor {ip-address | group-name} **maximum-prefix** max-count [threshold [restart interval | warning]]

no neighbor {ip-address | group-name} maximum-prefix

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

max-count – The maximum number of route prefixes that will be accepted from a neighbor. (Range: 1-4294967295)

threshold – The percentage of the maximum number of allowed prefixes at which the router will initiate the specified response.

restart – Restarts BGP connection after the threshold is exceeded.

interval – Time to wait after a BGP connection has been terminated, before reestablishing the session. (Range: 1-65535 minutes)

warning - Sends a log message if the threshold is exceeded.

Command Mode

Router Configuration

Default Setting

No limit is set

Default Usage

- This command is used to control the maximum number of route prefixes that can be sent by a neighbor. It provides a method to reserve resources for other processes, or to prevent malicious attacks.
- If the threshold is specified, but neither the **restart** nor **warning** keywords are used), the connection will be closed until the records are cleared with the clear ip bgp command.

Example

In this example, the router warns when the number of route prefixes reaches 6, and the connection will be closed when the prefixes hit 13.

```
Console(config-router) #neighbor 10.1.1.64 maximum-prefix 12 50
Console(config-router)#
```

neighbor This command configures the local router as the next hop for a neighbor in all next-hop-self routing messages it sends. Use the **no** form to disable this feature.

Syntax

[no] neighbor {ip-address | group-name} next-hop-self

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

- iBGP routers only connected to other iBGP routers in same segment will not be able to talk with iBGP routers outside of the segment if they are not directly connected with each other. This command can be used in these kinds of networks (i.e., un-meshed or non-broadcast) where iBGP neighbors may not have direct access to all other neighbors on the same IP subnet.
- Even when a successful BGP relationship seems to have been established within the local AS, you may not able to see some routes in the routing table. iBGP routers only connected with other iBGP routers in same AS will not be able to talk with routers outside of the AS if they are not directly connected with each other. The **neighbor next-hop-self** command can be used to configure an iBGP router which is directly connected with an eBGP neighbor so that other iBGP routers in the same AS can talk with eBGP routers outside the AS.

Example

```
Console(config-router) #neighbor 10.1.1.64 next-hop-self
Console(config-router)#
```

override-capability

neighbor This command overrides the result of capability negotiations, allowing a session to be formed with a peer that does not support capability negotiation. Use the **no** form to disable this feature.

Syntax

[no] neighbor {ip-address | group-name} neighbor override-capability

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Example

```
Console(config-router) #neighbor 10.1.1.64 override-capability
Console(config-router)#
```

neighbor password This command enables message-digest (MD5) authentication for the specified neighbor and assigns a password (key) to be used. Use the **no** form to remove an existing key.

Syntax

neighbor {ip-address | group-name} password

no neighbor {ip-address | group-name}

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

password - Alphanumeric password used to generate a 128 bit message digest or "fingerprint." (Range: 1-16 characters)

Command Mode

Router Configuration

Default Setting

No authentication

Command Usage

- ♦ When MD5 authentication is configured on a TCP connection between two peers, neighbor authentication occurs whenever routing updates are exchanged. Authentication must be configured with the same password on both peers; otherwise, the connection between them will not be made.
- If you configure or change the password used for MD5 authentication between two peers, the local router will not tear down the existing session after you configure the password. It will attempt to maintain the peering session using the new password until the BGP hold timer expires. If the password is not entered or changed on the remote router before the hold timer expires, the session will time out.

Example

```
Console(config-router) #neighbor 10.1.1.64 password frost
Console(config-router)#
```

neighbor passive This command passively forms a connection with the specified neighbor, not sending a TCP connection request, but waiting a connection request from the specified neighbor. Use the **no** form to disable this feature.

Syntax

[no] neighbor {ip-address | group-name} passive

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

This command configures the local router so that it remains in Active state, waiting for an inbound connection request from a neighbor, and not initiating any outbound connections with the neighbor via an Open message.

Example

```
Console(config-router) #neighbor 10.1.1.64 passive
Console(config-router)#
```

neighbor peer-group This command configures a router peer group which can be easily configured with (Creating) the same attributes. Use the **no** form to remove a peer group.

Syntax

```
[no] neighbor group-name peer-group
   group-name – A BGP peer group. (Range: 1-256 characters)
```

Command Mode

Router Configuration

Default Setting

No peer groups are defined.

Command Usage

- Neighbors with the same BGP attributes can grouped into peer groups. This simplifies the application of various policies, such as filter lists. Other configuration settings can be applied to a peer-group using any of the neighbor commands. Any changes made to the peer group affect all members. Use this command to create a peer-group.
- To assign members to a peer group, use the neighbor *ip-address* peer-group *group-name* command.

Example

```
Console(config-router) #neighbor RD peer-group
Console(config-router)#
```

(Group Members) member.

neighbor peer-group This command assigns routers to a peer group. Use the **no** form to remove a group

Syntax

```
[no] neighbor ip-address peer-group group-name
   ip-address - IP address of a neighbor.
   group-name - A BGP peer group.
```

Command Mode

Router Configuration

Default Setting

No group members are defined.

Command Usage

To create a peer group, use the neighbor *group-name* peer-group command.

Example

```
Console(config-router) #neighbor 10.1.1.64 peer-group RD
Console(config-router)#
```

neighbor port This command specifies the TCP port number of the partner through which communications are carried. Use the **no** form to restore the default setting.

Syntax

```
neighbor ip-address port port-number
no neighbor ip-address port
   ip-address – IP address of a neighbor.
```

port-number – TCP port number to use for BGP communications. (Range: 0-65535)

Command Mode

Router Configuration

Default Setting

179

Example

```
Console(config-router) #neighbor 10.1.1.64 port 1023
Console(config-router)#
```

neighbor prefix-list This command configures prefix restrictions applied in inbound/outbound route updates to/from specified neighbors. Use the **no** form to remove the neighbor binding for a prefix list.

Syntax

neighbor {ip-address | group-name} **prefix-list** list-name {**in** | **out**} no neighbor {ip-address | group-name} prefix-list {in | out}

ip-address – IP address of a neighbor.

group-name - A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

list-name – Name of a prefix-list. The prefix list can be used to filter the networks to import or export. (Range: 1-80 characters)

in – Filter inbound routing updates.

out - Filter outbound routing updates.

Command Mode

Router Configuration

Default Setting

No prefix list restrictions are configured.

Command Usage

- First, configure a prefix list with the ip prefix-list command, and then use this command to specify the neighbors to which it applies, and whether it applies to inbound or outbound messages.
- Filtering routes based on a prefix list searches for entries matching the router specified by this command. If a match is found and the entry is configured to permit the route, the route will be imported or exported as defined by this command. An empty prefix list permits all prefixes. If a prefix does not match

any entries in a list, the route is denied. When multiple entries in the list match a prefix, the entry with the smallest sequence number is used.

The search starts at the top of the prefix list. Once an entry matches, the router stops searching. To reduce the load on system resources, the most commonly used entries should be placed at the top of the list.

Example

```
Console(config)#ip prefix-list RD permit 100.1.0.0 255.255.0.0 ge 17 le 18
Console(config) #router bgp 200
Console(config-router) #redistribute static
Console(config-router) #neighbor 10.1.1.66 prefix-list RD out
Console(config-router)#
```

neighbor remote-as This command configures a neighbor and its AS number, identifying the neighbor as an iBGP or eBGP peer. Use the **no** form to remove a neighbor.

Syntax

neighbor {ip-address | group-name} **remote-as** as-number **no neighbor** {ip-address | group-name} **remote-as**

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

as-number – Autonomous system number which identifies this router as a member of the specified domain, and tags routing messages passed to other BGP routers with this number. (Range: 1-4294967295)

Command Mode

Router Configuration

Default Setting

No neighbors are configured.

Command Usage

- BGP neighbors must be manually configured. A neighbor relationship can only be established if partners are configured on both sides a connection.
- If the neighbor's AS number is the same as that of the local router, the neighbor is an iBGP peer. If it is different, the neighbor is an eBGP peer.

```
Console(config-router) #neighbor 10.1.1.64 remote-as 100
Console(config-router)#
```

neighbor This command removes private autonomous system numbers from outbound remove-private-as routing updates to an external neighbor. Use the **no** form to disable this feature.

Syntax

neighbor {ip-address | group-name} **remove-private-as**

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

- This command only applies to eBGP neighbors. It is used to avoid passing an internal AS number to an external AS. Internal AS numbers range from 64512-65535, and should not be sent to the Internet since they are not valid external AS numbers.
- This configuration only takes effect when the AS Path attribute of a route contains only internal AS numbers. If the AS Path attribute for a route contains both internal and external AS numbers, the route will not be processed.
- This command may be used in BGP confederations provided that the private AS numbers appear after the confederation portion of the AS path.

Example

```
Console(config-router) #neighbor 10.1.1.64 remove-private-as
Console(config-router)#
```

neighbor route-map

This command specifies the route mapping policy for inbound/outbound routing updates for specified neighbors. Use the **no** form to remove this policy binding.

Syntax

```
neighbor {ip-address | group-name} route-map map-name {in | out}
no neighbor {ip-address | group-name} route-map {in | out}
   ip-address - IP address of a neighbor.
```

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

map-name – Name of the route map. The route map can be used to filter the networks to advertise or receive based on various attributes. (Range: 1-128 characters)

in – Filter inbound routing updates.

out - Filter outbound routing updates.

Command Mode

Router Configuration

Default Setting

No route maps are configured nor bound to any neighbor.

Command Usage

- First, use route-map command to create a route map, and the match and set commands to configure the route attributes to act upon. Then use this command to specify neighbors to which the route map is applied.
- If the specified route map does not exist, all input/output route updates will be filtered.

Example

```
Console(config-router) #neighbor 10.1.1.64 route-map RD in
Console(config-router)#
```

neighbor This command configures this router as a route reflector and the specified neighbor route-reflector-client as its client. Use the **no** form to disable route reflection for the specified neighbor.

Syntax

[no] neighbor {ip-address | group-name} route-reflector-client

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

 Route reflection from this device is enabled by default, but is only functional if a client has been configured with this command.

Under standard configuration rules, all BGP speakers within the same AS must be fully meshed. Route reflection can used to reduce the number of connections required between peers. Reflector clients exchange messages only with the route reflector, while the reflector handles message exchanges among each client and other iBGP, eBGP, and non-client routers. For more information on configuring route reflection, refer to the Command Usage section under the bgp client-to-client reflection command.

Example

```
Console(config-router) #neighbor 10.1.1.64 route-reflector-client
Console(config-router)#
```

neighbor This command configures this router as a route server and the specified neighbor route-server-client as its client. Use the **no** form to disable the route server for the specified neighbor.

Syntax

[no] neighbor {ip-address | group-name} route-server-client

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

None

Command Usage

- A route server is used as a replacement for full mesh eBGP routing in internet exchange points in a manner similar to the way route reflectors are used in iBGP. Instead of maintaining direct eBGP peering sessions with every other service provider, providers can acquire the same routing information through a single connection to a route server at the Internet exchange.
- Using a route server reduces the configuration complexity required for an eBGP full mesh, limits CPU and memory requirements for the exchange of peering messages, and avoids the need for negotiating a large number of individual peering agreements.

Example

In the following example, the router 10.1.1.64 (AS100) is configured as the route server for neighbors 10.1.1.66 (AS200) and 10.1.1.68 (AS300).

```
Console(config) #router bgp 100
Console(config-router) #neighbor 10.1.1.66 remote-as 200
Console(config-router) #neighbor 10.1.1.66 route-server-client
```

```
Console(config-router) #neighbor 10.1.1.68 remote-as 300
Console(config-router) #neighbor 10.1.1.68 route-server-client
Console(config-router)#
```

neighbor This command configures the router to send community attributes to a neighbor in **send-community** peering messages. Use the **no** form to stop sending this attribute to a neighbor.

Syntax

[no] neighbor {ip-address | group-name} send-community [both | extended | standard]

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

both – Sends both extended and standard community attributes.

extended – Sends extended community attributes.

standard – Standard community attributes.

Command Mode

Router Configuration

Default Setting

No community attributes are sent. If community type is not specified, then only standard community attributes are sent.

Command Usage

Community attributes are used to group destinations into a certain community, and apply routing decisions to the overall community.

Example

```
Console(config-router) #neighbor 10.1.1.66 send-community extended
Console(config-router)#
```

Related Commands

set community (1148)

neighbor shutdown This command closes a neighbor connection without canceling the neighbor configuration. Use the **no** form to restore the connection.

Syntax

[no] neighbor {ip-address | group-name} shutdown ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

None

Command Usage

- This command terminates any active sessions for the specified neighbor, and removes any associated routing information.
- Use the show ip bgp summary command display the neighbors which have been administratively shut down. Entries with in an Idle (Admin) state have been disabled by the neighbor shutdown command.

Example

```
Console(config-router) #neighbor 10.1.1.66 shutdown
Console(config-router)#
```

reconfiguration

neighbor soft- This command configures the switch to store updates in the inbound message buffer, and perform soft re-configuration from this buffer for specified neighbors inbound when required. Use the **no** form to disable this feature.

Syntax

[no] neighbor {ip-address | group-name} soft-reconfiguration inbound

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

 Use this command to employ soft reconfiguration for a neighbor. A hard reset clears and rebuilds specified peering sessions and routing tables. Soft reconfiguration uses stored information to reconfigure and activate routing tables without clearing existing sessions. It uses stored update information to allow you to restore a connection or to apply a new BGP policy without disrupting the network. Note that outbound soft reconfiguration does not require inbound soft reconfiguration to be enabled.

- The command is only available when route refresh capability is not enabled. Route refresh (RFC 2918) allows a router to reset inbound routing tables dynamically by exchanging route refresh requests with peers. Route refresh relies on the dynamic exchange of information with supporting peers. It is advertised through BGP capability negotiation, and all BGP routers must support this capability.
- To use soft reconfiguration, without preconfiguration, both BGP neighbors must support the soft route refresh capability advertised in open messages sent when a BGP session is established. To see if a BGP router supports this capability, use the show ip bgp neighbors command.

Example

```
Console(config-router) #neighbor 11.1.1.120 soft-reconfiguration inbound
Console(config-router)#
```

neighbor strict This command forces strict capability matching when establishing connections. **capability-match** Use the **no** form to disable this requirement.

Syntax

[no] neighbor {ip-address | group-name} strict-capability-match

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

Command Mode

Router Configuration

Default Setting

Disabled

Command Usage

This command specifies that a connection can only be established when the both sides have perfectly matching capabilities.

```
Console(config-router) #neighbor 10.1.1.66 strict-capability-match
Console(config-router)#
```

neighbor timers This command sets the Keep Alive time and Hold time used for specified neighbors. Use the **no** form to restore the default settings.

Syntax

[no] neighbor {ip-address | group-name} timers keepalive-time hold-time

ip-address - IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

keepalive-time – The frequency at which the local router sends keep-alive messages to its neighbors. (Range: 0-65535 seconds)

hold-time – The maximum interval after which a neighbor is declared dead if a keep-alive or update message has not been received. (Range: 0-65535 seconds)

Command Mode

Router Configuration

Default Setting

Keep Alive time: 60 seconds Hold time: 180 seconds

Command Usage

- This command sets the Keep Alive time used for maintaining connectivity, and the Hold time to wait for Keep Alive or Update messages before declaring a neighbor down.
- This command sets timers for monitoring connectivity to specific neighboring routers, which supercede those applied to all neighbors with the global timers bgp command.

Example

```
Console(config-router) #neighbor 10.1.1.66 timers 50 200
Console(config-router)#
```

neighbor timers This command sets the time to wait before attempting to reconnect to a neighbor **connect** whose TCP connection has failed. Use the **no** form to restore the default setting.

Syntax

[no] neighbor ip-address timers connect retry-interval

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

retry-interval – The amount of time the system waits for the transport protocol connection to complete. If this timer expires, the state remains in Connect state, the timer is reset, and the system tries to initiate a new transport connection. (Range: 0-65535 seconds)

Command Mode

Router Configuration

Default Setting

120 seconds

Command Usage

This command sets the time to wait before attempting to reconnect to a BGP neighbor after having failed to connect. During the idle time specified by the Connect Retry timer, the remote BGP peer can actively establish a BGP session with the local router.

Example

```
Console(config-router) #neighbor 10.1.1.66 timers connect 100
Console(config-router)#
```

unsuppress-map

neighbor This command allows routes suppressed by the aggregate-address (summary-only option) to be advertised to specified neighbors. Use the **no** form to remove this configuration entry.

Syntax

[no] neighbor {ip-address | group-name} unsuppress-map map-name

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

map-name – Name of the route map. The route map can be used to filter the networks to advertise. (Range: 1-80 characters)

Command Mode

Router Configuration

Default Setting

No exceptions

Command Usage

This command is used to leak routes suppressed by the aggregate-address command (with summary-only option) to specified neighbors. Other routes that meet the route map conditions, but have not been suppressed, will still be sent.

Example

```
Console(config-router) #neighbor 10.1.1.66 unsuppress-map rmp
Console(config-router)#
```

neighbor This command specifies the interface to use for a TCP connection, instead of using **update-source** the nearest interface. Use the **no** form to use the default interface.

Syntax

[no] neighbor {ip-address | group-name} update-source interface vlan vlan-id

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

vlan-id - VLAN ID. (Range: 1-4094)

Command Mode

Router Configuration

Default Setting

The nearest (best/closest) interface is used.

Command Usage

By default the nearest interface to the neighbor is used for BGP connections. This command can be used to specify any available interface for a TCP connection.

Example

```
Console(config-router) #neighbor 10.1.1.66 update-source interface vlan 1
Console(config-router)#
```

neighbor weight This command assigns a weight to routes sent from a neighbor. Use the **no** form to restore the default weight.

Syntax

neighbor {ip-address | group-name} **weight** weight

no neighbor {ip-address | group-name} weight

ip-address – IP address of a neighbor.

group-name – A BGP peer group containing a list of neighboring routers configured with the neighbor peer-group command.

weight – The weight to be assigned to routes received from this neighbor. (Range: 0-65535)

Command Mode

Router Configuration

Default Setting

Routes learned from a neighbor: 0

Static routes sourced by the local router: 32768

Command Usage

- Use this command to specify a weight for all the routes learned from a neighbor. The route with the highest weight gets preference over other routes to the same network.
- Weights assigned using the set weight command override those assigned by this command.

Example

```
Console(config-router) #neighbor 10.1.1.66 weight 500 Console(config-router) #
```

Display Information

show ip bgp This command shows entries in the routing table.

Syntax

show ip bgp *ip-address* [netmask [longer-prefixes]]

ip-address – IP address of a route entry.

netmask – Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

longer-prefixes – Specified route and all more specific routes.

Command Mode

Privileged Exec

```
Console#show ip bgp
BGP table version is 0, local router ID is 192.168.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i internal,
        r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
Network
*>12.0.0.0
               Next Hop
                                 Metric LocPrf Weight Path
               10.1.1.121
                                 0 32768 ?
0
                                               32768 ?
                                      0
                                               32768 ?
                                      0
                                               32768 i
Total number of prefixes 4
Console#
```

Table 24: show ip bgp - display description

Field	Description	
BGP table version	Internal version number of routing table, incremented per table change.	
local router ID	IP address of router.	
Status codes	Status of table entry includes these values: * s – Entry is suppressed. * d – Entry is dampened. * h – Entry history * – Entry is valid > – Best entry for that network * i – Entry learned via internal BGP (iBGP). * r – Entry is Routing Information Base (RIB) failure \$ S – Entry is stale. * R – Entry removed.	
Origin codes	 Origin of table entry includes these values: i – Entry originated from an Interior Gateway Protocol (IGP) and was advertised using a network router configuration command. e – Entry originated from an Exterior Gateway Protocol (EGP). ? – Origin of the path undetermined. This normally indicates a route which has been redistributed into BGP from an IGP. 	
Network	IP address of network entry.	
Next Hop	IP address of the next router used to reach destination network.	
Metric	Value of inter-autonomous system metric.	
LocPrf	Local preference value defined by the set local-preference route-map configuration command.	
Weight	Weight of the route determined by autonomous system filters.	
Path	Autonomous system paths used to reach the destination network.	
Total number of prefixes	Total number of unique route prefixes in the table.	

attribute-info

show ip bgp This command shows internal attribute hash information.

Syntax

show ip bgp attribute-info

Command Mode

Privileged Exec

Example

In the following example, Refent refers to the number of routes using the indicated next hop.

```
Console#show ip bgp attribute-info
Refcnt Nexthop
     1 0.0.0.0
     1 10.1.1.64
      3 10.1.1.64
      1 10.1.1.121
     2 10.1.1.200
Console#
```

show ip bgp cidr-only This command shows routes which use classless interdomain routing network masks.

Syntax

show ip bgp cidr-only

Command Mode

Privileged Exec

Example

This example shows routes that do not match the natural A, B, C or D network masks defined for the earliest IP networks.

```
Console#show ip bgp cidr-only
BGP table version is 0, local router ID is 192.168.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i internal,
           r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
                 Next Hop
                              Metric LocPrf Weight Path
  Network
*>3.3.3.0/24
                 10.10.10.10
                                                        0 11 i
*>6.6.6.0/24
                  0.0.0.0
                                                    32768 i
Console#
```

community

show ip bgp This command shows routes that belong to specified BGP communities.

Syntax

show ip bgp community [{[AA:NN] [internet] [local-as] [no-advertise] [no-export]} [exact-match]]

AA:NN – Standard community-number to match. The 4-byte community number is composed of a 2-byte autonomous system number and a 2-byte network number, separated by one colon. Each 2-byte number can range from 0 from 65535. One or more communities can be entered, separated by a space. Up to 16 community numbers are supported.

internet – Specifies the entire Internet. Routes with this community attribute are advertised to all internal and external peers.

local-as – Specifies the local autonomous system. Routes with this community attribute are advertised only to peers that are part of the local autonomous system or to peers within a sub-autonomous system of a confederation. These routes are not advertised to external peers or to other sub-autonomous systems within a confederation.

no-advertise – Routes with this community attribute are not advertised to any internal or external peer.

no-export – Routes with this community attribute are advertised only to peers in the same autonomous system or to other sub-autonomous systems within a confederation. These routes are not advertised to external peers.

exact-match – Displays only routes that match the specified communities exactly.

Command Mode

Privileged Exec

Example

show ip bgp community-info

This command shows community messages permitted by BGP.

Syntax

show ip bgp community-info

Command Mode

Privileged Exec

```
Console#show ip bgp community-info
Address Refcnt Community
[0x3312558](3) 100:50
Console#
```

Table 25: show ip bgp community-info - display description

Field	Description
Address	Internal address in memory where the entry is stored.
Refcnt	The number of routes which refer to this community.
Community	4-byte community number composed of a 2-byte autonomous system number and a 2-byte network number, separated by one colon

show ip bgp community-list

show ip bgp This command shows the routes matching a community-list.

Syntax

show ip bgp community-list {1-99 | 100-500 | community-list-name} [exact-match]

1-99 – Standard community list number that identifies one or more groups of communities.

100-500 – Expanded community list number that identifies one or more groups of communities.

community-list-name – Name of standard or expanded access list. (Maximum length: 32 characters, no spaces or other special characters)

exact-match – Displays only routes that match the specified communities exactly.

Command Mode

Privileged Exec

show ip bgp dampening

show ip bgp This command shows dampened routes.

Syntax

```
show ip bgp dampening {dampened-paths | flap-statistics | parameters}
```

dampened-paths - Routes suppressed due to dampening.

flap-statistics – Statistics for flapping route prefixes.

parameters – Route dampening parameters.

Command Mode

Privileged Exec

Example

In the following example, "From" indicates the peer that advertised this path, while "Reuse" is the time after which the path will be made available.

In this example, "Duration" indicates the time since the first flap occurred.

This example shows the dampening parameters configured on this router.

```
Console#show ip bgp dampening parameters

Dampening 15 750 2000 60

Reachability half-life time :15 min

Reuse penalty :750

Suppress penalty :2000

Max suppress time :60 min

Console#
```

Table 26: show ip bgp dampening parameters- display description

Field	Description
Reachability half- life time	The time after which a penalty is reduced. The penalty value is reduced to half of the previous value after the half-life time expires.
Reuse penalty	The point to which the penalty for a flapping route must fall before a route is unsuppressed.
Suppress penalty	The point at which to start suppressing a route.
Max suppress time	The maximum time a route can be suppressed.

show ip bgp filter-list This command shows routes matching the specified filter list.

Syntax

show ip bgp filter-list access-list-name

access-list-name – Name of a list of autonomous system paths as defined by the ip as-path access-list command. (Maximum length: 16 characters, no spaces or other special characters)

Command Mode

Privileged Exec

Example

```
Console#show ip bgp filter-list rd
BGP table version is 0, local router ID is 192.168.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i internal,
            r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
                Next Hop
                                  Metric LocPrf Weight Path
  Network
0 100 ?
                                       0
Total number of prefixes 1
Console#
```

neighbors

show ip bgp This command chows connection information for neighbor sessions.

Syntax

show ip bgp neighbors [ip-address [advertised-routes | received prefix-filter | received-routes | routes]]

ip-address - IP address of the neighbor.

advertised-routes – Shows the routes advertised to a neighbor.

received prefix-filter – Shows the prefix-list (outbound route filter) sent from a neighbor.

received-routes – Shows all routes, both accepted and rejected, which have been received from a neighbor. To display all received routes from a neighbor, first enable soft reconfiguration with the neighbor soft-reconfiguration inbound command.

routes – Displays all accepted routes learned from a neighbor.

Command Mode

Privileged Exec

```
Console#show ip bgp neighbors 192.168.0.3
BGP neighbor is 192.168.0.3, remote AS 200, local AS 100, external link
Member of peer-group for session parameters
 BGP version 4, remote router ID 192.168.0.3
 BGP state = Established, up for 00:00:58
 Last read 16:40:37, hold time is 180, keepalive interval is 60 seconds
 Neighbor capabilities:
   4 Byte AS: advertised and received
   Route refresh: advertised and received (old & new)
   Address family IPv4 Unicast: advertised and received
 Message statistics:
   Ing depth is 0
   Outg depth is 0
                                  Rcvd
                        Sent
   Opens:
                         1
                                      0
   Notifications:
                          Ω
                                      Ω
   Updates:
                         1
                                    1
   Keepalives:
                         2
   Route Refresh:
                         0
   Capability:
                         0
                          4
    Total:
                                     2
 Minimum time between advertisement runs is 30 seconds
 For address family: IPv4 Unicast
 Community attribute sent to this neighbor(both)
 Inbound path policy configured
 1 accepted prefixes
 Connections established 1; dropped 0
 Last reset never
Local host: 192.168.0.2, Local port: 179
Foreign host: 192.168.0.3, Foreign port: 3987
Nexthop:
Read thread: on Write thread: off
Console#
```

Table 27: show ip bgp - display description

Field	Description
BGP neighbor	IP address of neighbor.
remote AS	Autonomous system number of the neighbor.
local AS	Local autonomous system number.
external link	"external link" is displayed for external BGP neighbors. "internal link" is displayed for iBGP neighbors.
BGP version	BGP version used to communicate with remote router.

Table 27: show ip bgp - display description (Continued)

Field	Description
remote router ID	IP address of the neighbor.
BGP state	Stage of session negotiation.
Last read	Time since a message was last received from this neighbor.
hold time	Time to maintain the session with this neighbor without receiving a message.
keepalive interval	Interval at which keepalive messages are transmitted to this neighbor.
Neighbor capabilities	BGP capabilities advertised and received from this neighbor.
Message statistics	Statistics organized by message type.
Minimum time between advertisement runs	Time between transmission of advertisements.
For address family	Address family to which the following information refers.
Local host/port	IP address and TCP port of the local BGP speaker.
Foreign host/port	IP address and TCP port of the neighbor BGP speaker.
Nexthop	IP address of next system via which packets are forwarded to the destination network. $ \\$
Read thread	The read status for the socket connection with this neighbor.
Write thread	The write status for the socket connection with this neighbor.

show ip bgp paths This command shows all paths in the database.

Syntax

show ip bgp paths

Command Mode

Privileged Exec

Console#shov	v ip	bgp	path	ıs	
Address	Ref	Cnt	ASpa	ath	
0x331dad0:0		1			
0x331d850:93	3	1	600		
0x331d8d8:24	19	2	200	300	
Console#					

Table 28: show ip bgp paths - display description

Field	Description
Address	Internal address in memory where the path is stored.
Refcnt	The number of routes using this path.
ASpath	The autonomous system path for this route.

show ip bgp prefix-list This command shows routes matching the specified prefix-list.

Syntax

show ip bgp prefix-list list-name

list-name – Name of a prefix-list. The prefix list can be used to filter the networks to import or export as defined by the match ip address prefix-list command. (Range: 1-80 characters)

Command Mode

Privileged Exec

Example

```
Console#show ip bgp prefix-list rd
BGP table version is 0, local router ID is 192.168.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i internal,
            r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
                Next Hop
  Network
                              Metric LocPrf Weight Path
  100.1.1.0/24 10.1.1.66
                                                        0 200 300 ?
                   10.1.1.100
                                           0
                                                    32768 ?
Console#
```

show ip bgp regexp This command shows routes matching the AS path regular expression.

Syntax

show ip bgp regexp regular-expression

regular-expression – Regular expression indicating the path attributes to match. Syntax complies with the IEEE POSIX Basic Regular Expressions (BRE) standard.

Command Mode

Privileged Exec

Example

```
Console#show ip bgp regexp 100
BGP table version is 0, local router ID is 192.168.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i internal,
        r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
  Network
                Next Hop
                                    Metric LocPrf Weight Path
                                   0 0 500 100 600 ?
* 100.1.1.0/24 10.1.1.64
Console#
```

route-map

show ip bgp This command shows routes matching the specified route map.

Syntax

show ip bgp route-map map-name

map-name – Name of the route map as defined by the route-map command. The route map can be used to filter the networks to advertise. (Range: 1-80 characters)

Command Mode

Privileged Exec

Example

```
Console#show ip bgp route-map rd
BGP table version is 0, local router ID is 192.168.0.2
Status codes: s suppressed, d damped, h history, * valid, > best, i internal,
       r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
                Next Hop
                                    Metric LocPrf Weight Path
  Network
* 100.1.1.0/24 10.1.1.64
                                     0 0 500 100 600 ?
*>
                  10.1.1.68
                                         0
                                                      0 300 ?
Console#
```

show ip bgp scan This command shows BGP scan status.

Syntax

show ip bgp scan

Command Mode

Privileged Exec

Example

```
Console#show ip bgp scan
BGP scan is running
BGP scan interval is 60
Current BGP nexthop cache:
10.10.10.64 valid [IGP metric 0]
BGP connected route:
10.10.10.0/24
10.10.11.0/24
Console#
```

show ip bgp summary This command shows summary information for all connections.

Syntax

show ip bgp summary

Command Mode

Privileged Exec

Example

In the following example, "Up/Down" refers to the length of time the session has been in the Established state, or the current status if not in Established state.

```
Console#show ip bgp summary
BGP router identifier 192.168.0.2, local AS number 100
RIB entries 0
Peers 1
Peer groups 0
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
192.168.0.3 4 200 166 168 0 0 0 02:45:00
Total number of neighbors 1
Console#
```

show ip community-list

This command shows routes permitted by a community list.

Syntax

```
show ip community-list [1-99 | 100-500 | community-list-name]
```

1-99 – Standard community list number that identifies one or more groups of communities.

100-500 – Expanded community list number that identifies one or more groups of communities.

community-list-name - Name of standard or expanded access list. (Maximum length: 32 characters, no spaces or other special characters)

Command Mode

Privileged Exec

Example

```
Console#show ip community-list rd
Named Community standard list rd
permit 100:10
Console#
```

show ip extcommunity-list

show ip This command shows routes permitted by an extended community list.

Syntax

show ip extcommunity-list [1-99 | 100-500 | *community-list-name*]

1-99 – Standard community list number that identifies one or more groups of communities.

100-500 – Expanded community list number that identifies one or more groups of communities.

community-list-name – Name of standard or expanded access list. (Maximum length: 32 characters, no spaces or other special characters)

Command Mode

Privileged Exec

Example

```
Console#show ip extcommunity-list rd
Named extended community standard list rd
permit RT:192.168.0.0:10
Console#
```

show ip prefix-list This command shows the specified prefix list.

Syntax

show ip prefix-list [prefix-list-name [ip-address netmask [**first-match | longer**] | **seq** sequence-number]]

prefix-list-name – Name of prefix list. (Maximum length: 128 characters, no spaces or other special characters)

ip-address – An IPv4 address expressed in dotted decimal notation.

netmask – Network mask for the route. This mask identifies the network address bits used for the associated routing entries.

first-match - First matched prefix.

longer – All entries more specific than the specified network/mask.

sequence-number – The sequence number of an entry. (Range: 1-429496725)

Command Mode

Privileged Exec

Example

```
Console#show ip prefix-list rd
ip prefix-list rd: 1 entries
  seq 5 deny 10.0.0.0/8 ge 14 le 22
Console#
```

detail

show ip prefix-list This command shows detailed information for the specified prefix list.

Syntax

show ip prefix-list detail [prefix-list-name]

prefix-list-name - Name of prefix list. (Maximum length: 128 characters, no spaces or other special characters)

Command Mode

Privileged Exec

Example

```
Console#show ip prefix-list detail rd
ip prefix-list rd:
   count: 1, range entries: 0, sequences: 5 - 5
   seq 5 deny 10.0.0.0/8 ge 14 le 22 (hit count: 0, refcount: 0)
Console#
```

summary

show ip prefix-list This command shows summary information for the specified prefix list.

Syntax

show ip prefix-list summary [prefix-list-name]

prefix-list-name - Name of prefix list. (Maximum length: 128 characters, no spaces or other special characters)

Command Mode

Privileged Exec

Example

```
Console#show ip prefix-list summary rd
ip prefix-list rd:
   count: 1, range entries: 0, sequences: 5 - 5
Console#
```

Policy-based Routing for BGP

This section describes commands used to configure policy-based routing (PBR) maps for Border Gateway Protocol (BGP).

Policy-based routing is performed before regular routing. PBR inspects traffic on the interface where the policy is applied and then, based on the policy, makes some decision. First, the traffic is "matched" according to the policy. Second, for each match, there is something "set." What is set could be that the traffic matches must exit out a different interface, or the traffic could be given a higher priority, or it could choose to just drop that traffic.

Matching of the traffic is usually done with an ACL (access-control list) that is referenced by a route-map. In the route-map, if there is a "match" for the traffic defined in that ACL, then a "set" defines what the administrator wants to happen to that traffic (prioritize it, route it differently, drop it, or other actions). Policies can be based on IP address, port numbers, protocols, or size of packets.

If matching criteria is found and the specified action is to permit the packet, then it will be forwarded to the next hop based on policy-based routing. If the action is to deny the packet, normal unicast routing is used to determine the packet's next hop, instead of using policy-based routing. If no matching criteria are found in the route map, normal unicast routing is used to determine the packet's next hop. Although route redistribution is protocol-independent, some of the route-map match and set commands defined in this section are specific to BGP.

Like matches in the same route map subblock are filtered with "or" semantics. If any one match clause is matched in the entire route map subblock, this match is treated as a successful match. Dissimilar match clauses are filtered with "and" semantics. If the first set of conditions is not met, the second match clause is filtered. This process continues until a match occurs or there are no more match clauses.

A route map can have several sequences. A route that does not match at least one match command defined in a route-map will be ignored; that is, the route will not be advertised for outbound route maps nor accepted for inbound route maps.

Table 29: Policy-based Routing Configuration Commands

Command	Function	Mode
route-map	Enters route-map configuration mode, allowing route maps to be created or modified	GC
call	Jumps to another route map after match and set commands are executed	RM

Table 29: Policy-based Routing Configuration Commands (Continued)

Command	Function	Mode
continue	Goes to a route-map entry with a higher sequence number after a successful match occurs	RM
description	Creates a description of an entry in the route map	RM
match as-path	Sets an AS path access list to match	RM
match community	Sets a BGP community access list to match	RM
match extcommunity	Sets a BGP extended community access list to match	RM
match ip address	Specifies destination addresses to match in a standard access list, extended access list, or prefix list	RM
match ip next-hop	Specifies next hop addresses to match in a standard access list, extended access list, or prefix list	RM
match ip route-source	Specifies the source of routing messages to match in a standard access list, extended access list, or prefix list	RM
match metric	Sets the metric value to match in routing messages	RM
match origin	Sets the originating protocol to match in routing messages	RM
match pathlimit as	Sets the maximum AS path length for propagation of more specific prefixes to match in routing messages	RM
match peer	Sets the peer address to match in routing messages	RM
on-match	Sets the next entry to go to when this entry matches	RM
set aggregator as	Assigns an AS number and IP address to the aggregator attribute of a route	RM
set as-path	Modifies the AS path by prepending or excluding an AS number	RM
set atomic-aggregate	Indicates the loss of some information in the route aggregation process	RM
set comm-list delete	Removes communities from the community attribute of inbound or outbound routing messages	RM
set community	Sets the community attributes of routing messages	RM
set extcommunity	Sets the extended community attributes of routing messages	RM
set ip next-hop	Sets the next-hop for a routing message	RM
set local-preference	Sets the priority within the local AS for a routing message	RM
set metric	Sets the metric value of a route to external neighbors	RM
set origin	Sets the origin code for the routing protocol which generated this message	RM
set originator-id	Sets the IP address of the routing message's originator	RM
set pathlimit ttl	Sets the maximum AS path length for propagation of more specific prefixes in routing messages	RM
set weight	Sets the weight for routing messages	RM
show route-map	Shows the configuration setting for a route map	PE

route-map This command enters route-map configuration mode, allowing route maps to be created or modified. Use the **no** form to remove a route map.

Syntax

[no] route-map map-name {deny | permit} sequence-number

map-name – Name for the route map. (Range: 1-128 case-sensitive alphanumeric characters)

deny – Route-map denies set operations.

permit – Route-map permits set operations.

sequence-number – Sequence to insert to or delete from existing route-map entry. (Range: 1-65535)

Command Mode

Global Configuration

Default Setting

Disabled

Command Usage

- This command enters the route map configuration mode. In this mode, a new route map can be created, or an existing route map modified.
- The match commands specify the conditions under which policy routing occurs, and the set commands specify the routing actions to perform if the criteria enforced by the match commands are met.
- If the match criteria are met for a route map, and the permit keyword specified, the packet is policy routed based on defined set commands.
- If the match criteria are not met, and the permit keyword specified, the next route map with the same map-name is tested. If a route passes none of the match criteria for the set of route maps sharing the same name, it is not policy routed by that set.
- If the match criteria are met for the route map and the deny keyword specified, the packet is not policy routed, and no further route maps sharing the same map-name are examined. If the packet is not policy routed, the normal forwarding process is used.
- Processing for exceptions include the following results:
 - For a deny route-map, if it does not have a match clause, any routing message is matched, and therefore all routes are denied.
 - For a deny route-map which includes a match clause for an access-list, if the access-list does not exist, no routing message will be matched, and therefore all routes are skipped.

Policy-based Routing for BGP

- For a permit route-map, if it does not have a match clause, any routing message is matched, and therefore all routes are permitted.
- For a permit route-map which includes a match clause for an access-list, if the access-list does not exist, no routing messages are matched, and therefore all routes are skipped.

Example

```
Console(config) #route-map r1 permit 1
Console(config-route-map) #match as-path 60
Console(config-route-map) #set weight 30
Console(config-route-map) #
```

call This command jumps to another route map after match and set commands are executed. Use the **no** form to remove an entry from a route map.

Syntax

call map-name

no call

map-name – Name for the route map. (Range: 1-128 case-sensitive alphanumeric characters)

Command Mode

Route Map

Command Usage

Only one call clause is permitted per route map. The call clause executed only after all match and set commands are executed.

Example

```
Console(config) #route-map r1 permit 1
Console(config-route-map) #match as-path 60
Console(config-route-map) #set weight 30
Console(config-route-map) #call FD
Console(config-route-map) #
```

continue This command goes to a route-map entry with a higher sequence number after a successful match occurs. Use the **no** form to remove this entry from a route map.

Syntax

continue [sequence-number]

no continue

sequence-number – Sequence number at which to continue processing. (Range: 1-65535)

Command Mode

Route Map

Command Usage

If no match statements precede the call entry, the call is automatically executed. If no sequence number is specified by the call entry, the next entry is executed.

Example

```
Console(config) #route-map RD permit 1
Console(config-route-map) #match as-path 60
Console(config-route-map) #set weight 30
Console(config-route-map) #continue 3
Console(config-route-map)#
```

description This command creates a description of an entry in the route map. Use the **no** form to remove the description.

Syntax

description text

no description

text – Comment describing this route-map rule. (Maximum length: 128 characters, no spaces or other special characters)

Command Mode

Route Map

Example

```
Console(config) #route-map RD permit 1
Console(config-route-map) #description AS-Path rule
Console(config-route-map) #match as-path 60
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

match as-path This command sets a BGP autonomous system path access list to match. Use the no form to remove this entry from a route map.

Syntax

[no] match as-path access-list-name

access-list-name – Name of the access list. (Maximum length: 16 characters, no spaces or other special characters)

Command Mode

Route Map

Command Usage

The weights assigned by the match as-path and set weight route-map commands command override the weight assigned using the BGP neighbor weight command.

Example

```
Console(config) #route-map RD permit 1
Console(config-route-map) #match as-path 60
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

Related Commands

ip as-path access-list (1068)

match community This command sets a BGP community access list to match. Use the **no** form to remove this entry from a route map.

Syntax

```
match community {1-99 | 100-500 | community-list-name} [exact-match]
no match community
```

1-99 – Standard community list number that identifies one or more groups of communities.

100-500 – Expanded community list number that identifies one or more groups of communities.

community-list-name – Name of standard or expanded community list. (Maximum length: 32 characters, no spaces or other special characters)

exact-match – Must exactly match the specified community list. All and only those communities specified must be present.

Command Mode

Route Map

Command Usage

This command matches the community attributes of the BGP routing message following the rules specified with the ip community-list command.

```
Console(config) #route-map RD permit 2
Console(config-route-map) #match community 60
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

match extcommunity This command sets a BGP extended community access list to match. Use the no form to remove this entry from a route map.

Syntax

```
match extcommunity {1-99 | 100-500} [exact-match]
no match extcommunity
```

1-99 – Standard community list number that identifies one or more groups of communities.

100-500 – Expanded community list number that identifies one or more groups of communities.

Command Mode

Route Map

Command Usage

This command matches the extended community attributes of the BGP routing message following the rules specified with the ip extcommunity-list command.

Example

```
Console(config) #route-map RD permit 3
Console(config-route-map) #match extcommunity 160
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

match ip address This command specifies the destination addresses to be matched in a standard access list, an extended access list, or a prefix list. Use the **no** form to remove this entry from a route map.

Syntax

```
match ip address {access-list-name | prefix-list prefix-list-name}
no match ip address
```

access-list-name - Name of standard or extended access list. (Maximum length: 32 characters, no spaces or other special characters) prefix-list-name - Name of a specific prefix list.

Command Mode

Route Map

```
Console(config) #route-map RD permit 4
Console(config-route-map) #match ip address rd-addresses
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

Policy-based Routing for BGP

Related Commands

ip prefix-list (1073) Access Control Lists (385)

match ip next-hop This command specifies the next-hop addresses to be matched in a standard access list, an extended access list, or a prefix list. Use the **no** form to remove this entry from a route map.

Syntax

```
match ip next-hop {access-list-name | prefix-list prefix-list-name}
no match ip next-hop
```

```
access-list-name - Name of standard or extended access list.
(Maximum length: 32 characters, no spaces or other special characters)
prefix-list-name – Name of a specific prefix list.
```

Command Mode

Route Map

Command Usage

When inbound update messages are received from a neighbor, next-hop information contained in Network Layer Reachability Information (NLRI) entries is checked against the specified access-list or prefix-list before any routes are learned.

Example

```
Console(config) #route-map RD permit 5
Console(config-route-map) #match ip next-hop rd-next-hops
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

match ip route-source This command specifies the source of routing messages advertised by routers and access servers to be matched in a standard access list, an extended access list, or a prefix list. Use the **no** form to remove this entry from a route map.

Syntax

```
match ip route-source {access-list-name | prefix-list prefix-list-name}
no match ip route-source [access-list-name | prefix-list]
   access-list-name - Name of standard or extended access list.
   (Maximum length: 32 characters, no spaces or other special characters)
   prefix-list-name - Name of a specific prefix list.
```

Command Mode

Route Map

Command Usage

Note that there may be situations in which the next hop and source router address of the route are not the same.

Example

```
Console(config) #route-map RD permit 6
Console(config-route-map) #match ip route-source rd-sources
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

match metric This command sets the metric value to match in routing messages. Use the **no** form to remove this entry from a route map.

Syntax

match metric metric-value

no match metric

metric-value – The metric value in the routing messages. (Range: 0-4294967295)

Command Mode

Route Map

Example

```
Console(config) #route-map RD permit 7
Console(config-route-map) #match metric 60
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

match origin This command sets the originating protocol to match in routing messages. Use the **no** form to remove this entry from a route map.

Syntax

```
match origin {egp | igp | incomplete}
no match origin
```

egp – Routes learned from exterior gateway protocols.

igp – Routes learned from internal gateway protocols.

incomplete – Routes of uncertain origin.

Command Mode

Route Map

Example

```
Console(config) #route-map RD permit 8
Console(config-route-map) #match origin igp
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

match pathlimit as This command sets the maximum AS path length allowed for propagation of more specific prefixes to match in routing messages. Use the **no** form to remove this entry from a route map.

Syntax

```
match pathlimit as as-limit
no match pathlimit as
```

as-limit – Maximum AS path length. (Range: 1-4294967295)

Command Mode

Route Map

Command Usage

To perform inter-domain traffic engineering, a multi-homed site can advertise its prefix to all of its neighbors via an aggregate address, and also advertise more specific prefixes to a subset of its neighbors. The longest match lookup algorithm then causes traffic for the more specific prefixes to be forwarded to the subset of neighbors with the more specific prefix.

These longer prefixes may be advertised in addition to an aggregate, even when the aggregate advertisement is sufficient for basic reachability. This type of inter-domain traffic engineering is a widely used phenomenon that is contributing to growth in the size of the global routing table.

Traffic engineering via longer prefixes is only effective when the longer prefixes have a different next hop from the less specific prefix. Thus, past the point where the next hops become identical, the longer prefixes provide no value whatsoever. This command can be used to limit the radius of propagation of more specific prefixes by adding a count of the ASes that may be traversed by the more specific prefix.

Private AS numbers [RFC1930] and confederation AS members [RFC3065] found in the AS_PATH are not counted. AS numbers found within an AS_SET are not counted and an entire AS SET is counted as a single AS. Each instance of an AS number that appears multiple times in an AS_PATH is counted.

If the AS_PATHLIMIT attribute is attached to a prefix by a private AS, then when the prefix is advertised outside of the parent AS, the AS number contained in the AS_PATHLIMIT attribute should be replaced by the AS number of the parent AS.

Similarly, if the AS_PATHLIMIT attribute is attached to a prefix by a member of a confederation, then when the prefix is advertised outside of the confederation

boundary, then the AS number of the confederation member inside of the AS_PATHLIMIT attribute should be replaced by the confederation's AS number.

Example

```
Console(config) #route-map RD permit 8
Console(config-route-map) #match pathlimit as 5
Console(config-route-map) #on match goto 20
Console(config-route-map)#
```

match peer This command sets the peer address to match in routing messages. Use the no form to remove this entry from a route map.

Syntax

```
match peer {peer-address | local}
no match peer [peer-address | local]
   peer-address - IP address of neighboring router sending routing messages.
   local – Static or redistributed routes.
```

Command Mode

Route Map

Example

```
Console(config) #route-map RD permit 9
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set weight 30
Console(config-route-map)#
```

on-match This command sets the next entry to go to when this entry matches. Use the **no** form to remove this entry from a route map.

Syntax

```
on-match peer {goto sequence-number | next}
no on-match peer {goto | next}
   goto - On match, go to specified entry.
   sequence-number – Route-map entry. (Range: 1-65535)
   next – Go to next entry.
```

Command Mode

Route Map

Command Usage

Use this command when no set action is for a match clause.

Policy-based Routing for BGP

Example

```
Console(config) #route-map RD permit 8
Console(config-route-map) #match pathlimit as 5
Console(config-route-map) #on match goto 20
Console(config-route-map)#
```

set aggregator as This command assigns an AS number and IP address to the aggregator attribute of a route. Use the **no** form to remove this entry from a route map.

Syntax

```
set aggregator as as-number ip-address
no set aggregator as [as-number ip-address]
   as-number – Autonomous system number. (Range: 1-4294967295)
   ip-address - IP address of aggregator.
```

Command Mode

Route Map

Command Usage

Aggregate routes advertised to a neighbor contain an aggregator attribute. This attribute contains an AS number and IP address. The AS number is the creator's AS number (or confed ID in a confederation) and an IP address which is the creator's router-id. The set aggregator as command can be used to overwrite the aggregator attribute in routes created locally with the aggregate-address command, or in routes learned from a neighbor which already carry an aggregator attribute, or to add a new aggregator attribute to a route which has no aggregator attribute.

Example

```
Console(config) #route-map RD permit 8
Console(config-route-map) #match pathlimit as 5
Console(config-route-map) #set aggregator 1 192.168.0.0
Console(config-route-map)#
```

set as-path This command modifies the AS path by prepending or excluding an AS number. Use the **no** form to remove this entry from a route map.

Syntax

```
set as-path {exclude | prepend} as-number...
no set as-path {exclude | prepend}
```

exclude – Removes one or more autonomous system numbers from the AS path of the route that is matched.

prepend – Appends one or more autonomous system numbers to the AS path of the route that is matched.

as-number – Autonomous system number. (Range: 1-4294967295)

Command Mode

Route Map

Command Usage

Note that best path selection may be influenced with this command by varying the length of the autonomous system path.

Example

```
Console(config) #route-map RD permit 8
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set as-path prepend 2
Console(config-route-map)#
```

set atomic-aggregate This command indicates the loss of some information in the route aggregation process. Use the **no** form to remove this entry from a route map.

Syntax

[no] set atomic-aggregate

Command Mode

Route Map

Command Usage

The purpose of the atomic-aggregate attribute is to alert BGP speakers along the path that some information have been lost due to the route aggregation process and that the aggregate path might not be the best path to the destination. This attribute should be set when the BGP speaker advertises ONLY the less-specific prefix and suppresses more specific ones.

```
Console(config) #route-map RD permit 9
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set atomic-aggregate
Console(config-route-map)#
```

Policy-based Routing for BGP

set comm-list delete This command removes communities from the community attribute of inbound or outbound routing messages. Use the **no** form to remove this entry from a route map.

Syntax

```
[no] set comm-list {1-99 | 100-500 | community-list-name} [delete]
```

1-99 – Standard community list number that identifies one or more groups of communities.

100-500 – Expanded community list number that identifies one or more groups of communities.

community-list-name – Name of standard or expanded community list. (Maximum length: 32 characters, no spaces or other special characters)

Command Mode

Route Map

Command Usage

When using the ip community-list command to configure a community access list, each entry of a standard community list should list only one community. Otherwise, the set comm-list delete command will not succeed. For example, in order to be able to delete communities 100 and 200, you must create two separate entries with the ip community-list command.

Example

```
Console(config) #route-map RD permit 10
Console(config-route-map) #match peer 192.168.0.77
Console(config-route-map) #set comm-list 10:01 delete
Console(config-route-map) #exit
Console(config) #route-map RD permit 11
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set comm-list 20:01 delete
Console(config-route-map)#
```

set community This command sets the community attributes of routing messages. Use the **no** form to remove this entry from a route map.

Syntax

```
set community
   [AA:NN...]
```

```
[additive {[AA:NN...] [internet] [local-as] [no-advertise] [no-export]}
[internet [[AA:NN...] [local-as] [no-advertise] [no-export]]
[local-as [[AA:NN...] [no-advertise] [no-export]]
[no-advertise [AA:NN...] [no-export]]
[no-export [AA:NN...]]
[none]
```

no set community

AA:NN – Standard community-number. The 4-byte community number is composed of a 2-byte autonomous system number and a 2-byte network number, separated by one colon. Each 2-byte number can range from 0 from 65535. One or more communities can be entered, separated by a space. Up to 16 community numbers are supported.

additive – Adds community attributes to already existing community attributes.

internet – Specifies the entire Internet. Routes with this community attribute are advertised to all internal and external peers.

local-as – Specifies the local autonomous system. Routes with this community attribute are advertised only to peers that are part of the local autonomous system or to peers within a sub-autonomous system of a confederation. These routes are not advertised to external peers or to other sub-autonomous systems within a confederation.

no-advertise – Routes with this community attribute are not advertised to any internal or external peer.

no-export – Routes with this community attribute are advertised only to peers in the same autonomous system or to other sub-autonomous systems within a confederation. These routes are not advertised to external peers.

none – Delete the community attributes from the prefix of this route.

Command Mode

Route Map

Example

```
Console(config) #route-map RD permit 11

Console(config-route-map) #match peer 192.168.0.99

Console(config-route-map) #set community 10:01

Console(config-route-map) #exit

Console(config) #route-map RD permit 12

Console(config-route-map) #match peer 192.168.0.99

Console(config-route-map) #set community 20:01

Console(config-route-map) #
```

Related Commands

set comm-list delete (1148)

set extcommunity This command sets the extended community attributes of routing messages. Use the **no** form to remove this entry from a route map.

Syntax

set extcommunity {**rt** extended-community-value | **soo** extended-community-value}

no set extcommunity [rt | soo]

rt – The route target extended community attribute.

soo – The site of origin extended community attribute.

extended-community-value – The route target or site of origin in one of the following formats:

AAAA:NN or AA:NNNN – Community-number to deny or permit. The community number can either be formatted as a 4-byte autonomous system number and a 2-byte network number, or as a 2-byte autonomous system number and a 4-byte network number, separated by one colon. Each 2-byte number can range from 0 to 65535, and 4byte numbers from 0 to 4294967295.

IP:NN – Community to deny or permit. The community number is composed of a 4-byte IP address (representing the autonomous system number) and a 2-byte network number, separated by one colon. The 2byte network number can range from 0 to 65535.

One or more community numbers can be entered, separated by a space. Up to 3 community numbers are supported.

Command Mode

Route Map

Command Usage

- Using the rt keyword to specify new route targets replaces existing route targets.
- The route target (RT) attribute is used to identify sites that may receive routes tagged with a specific route target. Using this attribute allows that route to be placed in per-site forwarding tables used for routing traffic received from the corresponding sites.
- The site of origin (SOO) attribute is used to identify the site from which the provider edge (PE) router learned the route. All routes learned from a particular site are assigned the same site of origin attribute, no matter if a site is connected to a single PE router or multiple PE routers. Filtering based on this extended community attribute can prevent routing loops from occurring when a site is multi-homed.

Example

```
Console(config) #route-map RD permit 13
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set extcommunity 100:0 192.168.1.1:1
Console(config-route-map)#
```

set ip next-hop This command sets the next-hop for a routing message. Use the **no** form to remove this entry from a route map.

Syntax

```
set ip next-hop {ip-address | peer-address}
no set ip next-hop [ip-address]
```

ip-address – An IPv4 address of the next hop, expressed in dotted decimal notation.

peer-address – Sets the next hop as the BGP peering address.

Command Mode

Route Map

Command Usage

- The IP address specified as the next hop need not be an adjacent router.
- ♦ When this command is used with the **peer-address** keyword in an inbound route map received from a BGP peer, the next hop of the received matching routes are set to be the neighbor peer address, overriding any other next hops.
- When this command is used with the peer-address keyword in an outbound route map for a BGP peer, the next hop of the advertised matching routes will be set to be the peering address of the local router, thus disabling next hop calculation. This command therefore has finer granularity than the neighbor next-hop-self command, because it can set the next hop for some routes, but not others. While the neighbor next-hop-self command sets the next hop for all routes sent to the specified neighbor(s).

```
Console(config) #route-map RD permit 14
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set ip next-hop 192.168.0.254
Console(config-route-map)#
```

Policy-based Routing for BGP

set local-preference This command sets the priority within the local AS for a routing message. Use the **no** form to remove this entry from a route map.

Syntax

set local-preference preference

no set local-preference

preference - Degree of preference iBGP peers give local routes during BGP best path selection. The higher the value, the more the route is to be preferred. (Range: 1-4294967295)

Command Mode

Route Map

Command Usage

- The preference is sent only to routers in the local autonomous system. To specify the metric for inter-autonomous systems, use the set metric command.
- ◆ A route with a higher local priority level when compared with other routes to the same destination will be preferred over other routes.

Example

```
Console(config) #route-map RD permit 15
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map)#set local-preference 2
Console(config-route-map)#
```

set metric This command sets the metric value of a route to external neighbors. Use the **no** form to restore the default value.

Syntax

```
set metric [+ | -]metric-value
```

no set metric

metric-value – Metric value assigned to all external routes for the specified protocol. (Range: 0-4294967295)

Default Setting

The dynamically learned metric value.

Command Mode

Route Map

Command Usage

Lower metric values indicate a higher priority.

- This command can modify the current metric for a route using the "+" or "-" keywords.
- The metric applies to external routers in the inter-autonomous system. To specify the metric for the local AS, use the set local-preference command.
- ◆ This path metric is normally only compared with neighbors in the local AS. To extend the comparison to paths advertised from neighbors in different autonomous systems, use the bgp always-compare-med command.

Example

```
Console(config) #route-map RD permit 16
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set metric +1
Console(config-route-map) #
```

set origin This command sets the BGP origin code for the routing protocol which generated this message. Use the **no** form to remove this entry from a route map.

Syntax

```
    set origin {egp | igp | incomplete}
    no set origin
    egp - Exterior gateway protocols.
    igp - Interior gateway protocols.
    incomplete - Route origin unknown.
```

Default Setting

As indicated in main IP routing table

Command Mode

Route Map

Command Usage

EGP is an inter-domain routing protocol which has been superceded by BGP. IGP indicates any intra-domain routing protocol such as RIP or OSPF.

Example

```
Console(config) #route-map RD permit 16
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set origin egp
Console(config-route-map)#
```

Policy-based Routing for BGP

set originator-id This command sets the IP address of the routing message's originator. Use the no form to remove this entry from a route map.

Syntax

set originator-id ip-address

no set originator-id

ip-address - An IPv4 address of the route source, expressed in dotted decimal notation.

Command Mode

Route Map

Command Usage

This attribute is commonly used for loop prevention by rejecting updates that contain the receiving router's own router-ID in the originator-ID attribute.

Example

```
Console(config) #route-map RD permit 17
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set originator-id 192.168.0.254
Console(config-route-map)#
```

set pathlimit ttl This command sets the maximum AS path length for propagation of more specific prefixes in routing messages. Use the **no** form to remove this entry from a route map.

Syntax

set pathlimit ttl ttl-value

no set pathlimit ttl

ttl-value – Maximum number of router hops allowed in an AS path. (Range: 1-255)

Command Mode

Route Map

Command Usage

Due to the dynamic changes in connections for network paths, it is not advisable to restrict the number of router hops for any path. However, if the connections to the destination network are relatively stable, the hop count can be restricted to force traffic to follow an alternate path. This method may be used to avoid less heavily congested paths or to route traffic through a preferred provider.

Example

```
Console(config) #route-map RD permit 18
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set pathlimit ttl 255
Console(config-route-map)#
```

set weight This command sets the weight for routing messages. Use the **no** form to remove this entry from a route map.

Syntax

set weight weight

no set weight

weight – The weight assigned to this route. (Range: 0-4294967295)

Command Mode

Route Map

Command Usage

- Weights are used to determine the best path available to the local switch. The route with the highest weight gets preference over other routes to the same network.
- Weights assigned using this command override those assigned by the neighbor weight command.

Example

```
Console(config) #route-map RD permit 19
Console(config-route-map) #match peer 192.168.0.99
Console(config-route-map) #set weight 255
Console(config-route-map)#
```

show route-map This command shows the configuration setting for a route map.

Syntax

show route-map [map-name]

map-name – Name for the route map. (Range: 1-128 case-sensitive alphanumeric characters)

Command Mode

Privileged Exec

Policy-based Routing for BGP

Example

```
Console#show route-map RD
route-map RD, permit, sequence 1
Match clauses:
   peer 102.168.0.99
Set clauses:
   comm-list 100 delete
Call clause:
Action:
   Exit routemap
Console#
```


Multicast Routing Commands

Multicast routers can use various kinds of multicast routing protocols to deliver IP multicast packets across different subnetworks. This router supports Protocol Independent Multicasting (PIM). (Note that IGMP will be enabled for any interface that is using multicast routing.)

Table 30: Multicast Routing Commands

Command Group	Function
General Multicast Routing	Enables IP multicast routing globally; also displays the IP multicast routing table created from static and dynamic routing information
Static Multicast Routing	Configures static multicast router ports
PIM Multicast Routing	Configures global and interface settings for PIM-DM and PIM-SM

General Multicast Routing

This section describes commands used to configure multicast routing globally on the switch.

Table 31: General Multicast Routing Commands

Command	Function	Mode
IPv4 Commands		
ip multicast-routing	Enables IPv4 multicast routing	GC
show ip mroute	Shows the IPv4 multicast routing table	PE
IPv6 Commands		
ipv6 multicast-routing	Enables IPv6 multicast routing	GC
show ipv6 mroute	Shows the IPv6 multicast routing table	PE

IPv4 Commands

ip multicast-routing This command enables IPv4 multicast routing. Use the no form to disable IP multicast routing.

Syntax

[no] ip multicast-routing

General Multicast Routing

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- This command is used to enable IPv4 multicast routing globally for the router. A specific multicast routing protocol also needs to be enabled on the interfaces that will support multicast routing using the router pim command, and then specify the interfaces that will support multicast routing using the ip pim dense-mode or ip pim sparse-mode commands.
- To use multicast routing, IGMP proxy can not enabled on any interface of the device (see ip igmp proxy on page 763).

Example

```
Console(config) #ip multicast-routing
Console(config)#
```

show ip mroute This command displays the IPv4 multicast routing table.

Syntax

show ip mroute [group-address source] [**summary**]

group-address - An IPv4 multicast group address with subscribers directly attached or downstream from this router.

source - The IPv4 subnetwork at the root of the multicast delivery tree. This subnetwork contains a known multicast source.

summary - Displays summary information for each entry in the IP multicast routing table.

Command Mode

Privileged Exec

Command Usage

This command displays information for multicast routing. If no optional parameters are selected, detailed information for each entry in the multicast address table is displayed. If you select a multicast group and source pair, detailed information is displayed only for the specified entry. If the summary option is selected, an abbreviated list of information for each entry is displayed on a single line.

Example

This example shows detailed multicast information for a specified group/source pair

```
Console#show ip mroute 224.0.255.3 192.111.46.8

IP Multicast Forwarding is enabled.

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, s - SSM Channel, C - Connected, P - Pruned,
        F - Register flag, R - RPT-bit set, T - SPT-bit set, J - Join SPT
Interface state: F - Forwarding, P - Pruned, L - Local

(192.168.2.1, 224.0.17.17), uptime 00:00:05

Owner: PIM-DM, Flags: D
Incoming Interface: VLAN2, RPF neighbor: 192.168.2.1

Outgoing Interface List:
VLAN1(F)

Console#
```

Table 32: show ip mroute - display description

Field	Description
Flags	The flags associated with this entry:
	 D (Dense) - PIM Dense mode in use.
	 S (Sparse) - PIM Sparse mode in use.
	 s (SSM) - A multicast group with the range of IP addresses used for PIM-SSM.
	 C (Connected) - A member of the multicast group is present on this interface.
	 P (Pruned) - This route has been terminated.
	• F (Register flag) - This device is registering for a multicast source.
	 R (RP-bit set) - The (S,G) entry is pointing to the Rendezvous Point (RP), which normally indicates a pruned state along the shared tree for a particular source.
	 T (SPT-bit set) - Multicast packets have been received from a source on the shortest path tree.
	 J (Join SPT) - The rate of traffic arriving over the shared tree has exceeded the SPT-threshold for this group. If the SPT flag is set for (*,G) entries, the next (S,G) packet received will cause the router to join the shortest path tree. If the SPT flag is set for (S,G), the router immediately joins the shortest path tree.
Interface state	The multicast state for the displayed interface.
group address	IP multicast group address for a requested service.
source	Subnetwork containing the IP multicast source.
uptime	The time elapsed since this entry was created.
Owner	The associated multicast protocol (PIM).

Table 32: show ip mroute - display description (Continued)

Field	Description	
Incoming Interface	Interface leading to the upstream neighbor. PIM creates a multicast routing tree based on the unicast routing table. If the related unicast routing table does not exist, PIM will still create a multicast routing entry, but displays "Null" for the upstream interface to indicate that the unicast routing table is not valid. This field may also display "Register" to indicate that a pseudo interface is being used to send or receive PIM-SM register packets.	
RPF neighbor	$\label{lem:prop:prop:stream} IP\ address\ of\ the\ multicast\ router\ immediately\ upstream\ for\ this\ group.$	
Outgoing interface list and flags	The interface(s) on which multicast subscribers have been recorded. The flags associated with each interface indicate:	
	• F (Register flag) - This device is registering for a multicast source.	
	 P (Pruned) - This route has been terminated. 	
	 L (Local) - Downstream interface has received IGMP report message from host in this subnet. 	

This example lists all entries in the multicast table in summary form:

```
Console#show ip mroute summary
IP Multicast Forwarding is enabled
IP Multicast Routing Table (Summary)
Flags: F - Forwarding, P - Pruned
Group Source Source Mask Interface Owner Flags
   224.0.17.17 192.168.2.1 255.255.255.255 VLAN2 PIM-DM F
Total Entry is 1
Console#
```

IPv6 Commands

ipv6 multicast-routing This command enables IPv6 multicast routing. Use the no form to disable IP multicast routing.

Syntax

[no] iv6p multicast-routing

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

♦ This command is used to enable IPv6 multicast routing globally for the router. A multicast routing protocol also needs to be enabled on the interfaces that

will support multicast routing using the router pim6 command, and then specify the interfaces that will support multicast routing using the ipv6 pim command.

◆ To use multicast routing, MLD proxy can not enabled on any interface of the device (see ipv6 mld proxy on page 774).

Example

```
Console(config)#ipv6 multicast-routing
Console(config)#
```

show ipv6 mroute This command displays the IPv6 multicast routing table.

Syntax

show ipv6 mroute [group-address source] [**summary**]

group-address - An IPv6 multicast group address with subscribers directly attached or downstream from this router.

source - The IPv6 subnetwork at the root of the multicast delivery tree. This subnetwork contains a known multicast source.

summary - Displays summary information for each entry in the IP multicast routing table.

Command Mode

Privileged Exec

Command Usage

This command displays information for multicast routing. If no optional parameters are selected, detailed information for each entry in the multicast address table is displayed. If you select a multicast group and source pair, detailed information is displayed only for the specified entry. If the **summary** option is selected, an abbreviated list of information for each entry is displayed on a single line.

Example

This example shows detailed multicast information for a specified group/source pair

```
Console#show ipv6 mroute FF02::0101 FE80::0202

IP Multicast Forwarding is enabled.

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, s - SSM Channel, C - Connected, P - Pruned,
F - Register flag, R - RPT-bit set, T - SPT-bit set, J - Join SPT
Interface state: F - Forwarding, P - Pruned, L - Local

(FF02::0101, FE80::0202), uptime 00:00:05
Owner: PIM-DM, Flags: D
```

Incoming Interface: VLAN2, RPF neighbor: FE80::0303
Outgoing Interface List:
VLAN1(F)
Console#

Table 33: show ip mroute - display description

Field	Description
Flags	The flags associated with this entry:
	D (Dense) - PIM Dense mode in use.
	 S (Sparse) - PIM Sparse mode in use.
	 s (SSM) - A multicast group with the range of IP addresses used for PIM-SSM.
	 C (Connected) - A member of the multicast group is present on this interface.
	 P (Pruned) - This route has been terminated.
	• F (Register flag) - This device is registering for a multicast source.
	 R (RP-bit set) - The (S,G) entry is pointing to the Rendezvous Point (RP), which normally indicates a pruned state along the shared tree for a particular source.
	 T (SPT-bit set) - Multicast packets have been received from a source on the shortest path tree.
	 J (Join SPT) - The rate of traffic arriving over the shared tree has exceeded the SPT-threshold for this group. If the SPT flag is set for (*,G) entries, the next (S,G) packet received will cause the router to join the shortest path tree. If the SPT flag is set for (S,G), the router immediately joins the shortest path tree.
Interface state	The multicast state for the displayed interface.
group address	IP multicast group address for a requested service.
source	Subnetwork containing the IP multicast source.
Uptime	The time elapsed since this entry was created.
Owner	The associated multicast protocol (PIM).
Incoming Interface	Interface leading to the upstream neighbor. PIM creates a multicast routing tree based on the unicast routing table. If the related unicast routing table does not exist, PIM will still create a multicast routing entry, but displays "Null" for the upstream interface to indicate that the unicast routing table is not valid. This field may also display "Register" to indicate that a pseudo interface is being used to send or receive PIM-SM register packets.
RPF neighbor	$IP\ address\ of\ the\ multicast\ router\ immediately\ upstream\ for\ this\ group.$
Outgoing interface list and flags	The interface(s) on which multicast subscribers have been recorded. The flags associated with each interface indicate:
	• F (Register flag) - This device is registering for a multicast source.
	 P (Pruned) - This route has been terminated.
	 L (Local) - Downstream interface has received IGMP report message from host in this subnet.

This example lists all entries in the multicast table in summary form:

```
Console#show ipv6 mroute summary
IP Multicast Forwarding is disabled
IP Multicast Routing Table (Summary)
Flags: F - Forwarding, P - Pruned, D - PIM-DM, S - PIM-SM, V - DVMRP,
       M - MLD
                            Source
                                                         Interface Flag
                  FF02::0101
                                               FE80::0101 VLAN 4096 DF
Total Entry is 1
Console#
```

Static Multicast Routing

This section describes commands used to configure static multicast routes on the switch.

Table 34: Static Multicast Routing Commands

Command	Function	Mode
ip igmp snooping vlan mrouter	Adds a multicast router port	GC
show ip igmp snooping mrouter	Shows multicast router ports	PE

ip igmp snooping vlan This command statically configures a multicast router port. Use the **no** form to mrouter remove the configuration.

Syntax

```
ip igmp snooping vlan vlan-id mrouter interface
no ip igmp snooping vlan vlan-id mrouter interface
   vlan-id - VLAN ID (Range: 1-4094)
   interface
       ethernet unit/port
           unit - Unit identifier. (Range: 1-8)
           port - Port number. (Range: 1-28/52)
       port-channel channel-id (Range: 1-16)
```

Default Setting

No static multicast router ports are configured.

Static Multicast Routing

Command Mode

Global Configuration

Command Usage

Depending on your network connections, IGMP snooping may not always be able to locate the IGMP querier. Therefore, if the IGMP querier is a known multicast router/switch connected over the network to an interface (port or trunk) on your router, you can manually configure that interface to join all the current multicast groups.

Example

The following shows how to configure port 11 as a multicast router port within VLAN 1:

```
Console(config) #ip igmp snooping vlan 1 mrouter ethernet 1/11
Console(config)#
```

show ip igmp This command displays information on statically configured and dynamically **snooping mrouter** learned multicast router ports.

Syntax

show ip igmp snooping mrouter [vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Displays multicast router ports for all configured VLANs.

Command Mode

Privileged Exec

Command Usage

Multicast router port types displayed include Static or Dynamic.

Example

The following shows that port 11 in VLAN 1 is attached to a multicast router:

```
Console#show ip igmp snooping mrouter vlan 1
VLAN M'cast Router Ports Type
____ _____
            Eth 1/11 Static
  1
  2
             Eth 1/12 Dynamic
Console#
```

This section describes the PIM commands used for IPv4 and IPv6. Note that PIM can run on an IPv4 network and PIM6 on an IPv6 network simultaneously. Also note that Internet Group Management Protocol (IGMP) is used for IPv4 networks and Multicast Listener Discovery (MLD) for IPv6 networks.

Table 35: IPv4 and IPv6 PIM Commands

Command Group	Function
IPv4 PIM Commands	Configures multicast routing for IPv4 PIM.
IPv6 PIM Commands	Co figures multicast routing for IPv6 PIM.

IPv4 PIM Commands This section describes commands used to configure IPv4 PIM-DM and PIM-SM dynamic multicast routing on the switch.

Table 36: PIM-DM and PIM-SM Multicast Routing Commands

Command	Function	Mode
Shared Mode Commands		
router pim	Enables IPv4 PIM globally for the router	GC
ip pim	Enables PIM-DM or PIM-SM on the specified interface	IC
ip pim hello-holdtime	Sets the time to wait for hello messages from a neighboring PIM router before declaring it dead	IC
ip pim hello-interval	Sets the interval between sending PIM hello messages	IC
ip pim join-prune-holdtime	Configures the hold time for the prune state	IC
ip pim lan-prune-delay	Informs downstream routers of the delay before it prunes a flow after receiving a prune request	IC
ip pim override-interval	Specifies the time it takes a downstream router to respond to a lan-prune-delay message	IC
ip pim propagation-delay	Configures the propagation delay required for a LAN prune delay message to reach downstream routers	IC
ip pim trigger-hello-delay	Configures the trigger hello delay	IC
show ip pim interface	Displays information about interfaces configured for PIM	NE, PE
show ip pim neighbor	Displays information about PIM neighbors	NE, PE
PIM-DM Commands		
ip pim graft-retry-interval	Configures the time to wait for a Graft acknowledgement before resending a Graft message	IC
ip pim max-graft-retries	Configures the maximum number of times to resend a Graft message if it has not been acknowledged	IC
ip pim state-refresh origination-interval	Sets the interval between PIM-DM state refresh control messages	IC

Table 36: PIM-DM and PIM-SM Multicast Routing Commands (Continued)

Command	Function	Mode
PIM-SM Commands		
ip pim bsr-candidate	Configures the switch as a Bootstrap Router (BSR) candidate	GC
ip pim register-rate-limit	Configures the rate at which register messages are sent by the Designated Router (DR)	GC
ip pim register-source	Configure the IP source address of a register message to an address other than the outgoing interface address of the designated router (DR) leading toward the rendezvous point (RP)	GC
ip pim rp-address	Sets a static address for the rendezvous point	GC
ip pim rp-candidate	Configures the switch rendezvous point (RP) candidate	GC
ip pim spt-threshold	Prevents the last-hop PIM router from switching to Shortest Path Source Tree (SPT) mode	GC
ip pim dr-priority	Sets the priority value for a DR candidate	IC
ip pim join-prune-interval	Sets the join/prune timer	IC
clear ip pim bsr rp-set	Clears RP entries learned through the BSR	PE
show ip pim bsr-router	Displays information about the BSR	PE
show ip pim rp mapping	Displays active RPs and associated multicast routing entries	PE
show ip pim rp-hash	Displays the RP used for the specified multicast group	PE

PIM Shared Mode Commands

router pim This command enables IPv4 Protocol-Independent Multicast routing globally on the router. Use the **no** form to disable PIM multicast routing.

Syntax

[no] router pim

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- ◆ This command enables PIM-DM and PIM-SM globally for the router. You also need to enable PIM-DM or PIM-SM for each interface that will support multicast routing using the ip pim dense-mode or ip pim sparse mode command, and make any changes necessary to the multicast protocol parameters.
- ◆ To use multicast routing, IGMP proxy cannot be enabled on any interface of the device (see the ip igmp proxy command).

Example

```
Console(config) #router pim
Console(config) #exit
Console#show ip pim interface
PIM is enabled.
VLAN 1 is up.
                            : Dense Mode
: 192.168.0.2
 PIM Mode
IP Address
 PIM Mode
Hello Interval
Hello HoldTime : 5 sec
Join/Prune Holdtime : 210 sec
Triggered Hello Delay : 5 sec
Join/Prune Delay : Disabled
Triggered Holdtime : 500 ms
Triggered Hello Delay : 500 ms
 Propagation Delay : Override Interval :
                                          2500 ms
 Graft Retry Interval :
                                           3 sec
 Max Graft Retries :
                                               3
 State Refresh Ori Int : 60 sec
Console#
```

ip pim This command enables PIM-DM or PIM-SM on the specified interface. Use the **no** form to disable PIM-DM or PIM-SM on this interface.

Syntax

```
[no] ip pim {dense-mode | sparse-mode}
dense-mode - Enables PIM Dense Mode.
sparse-mode - Enables PIM Sparse Mode.
```

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- To fully enable PIM, you need to enable multicast routing globally for the router with the ip multicast-routing command, enable PIM globally for the router with the router pim command, and also enable PIM-DM or PIM-SM for each interface that will participate in multicast routing with this command.
- ◆ If you enable PIM on an interface, you should also enable IGMP on that interface. PIM mode selection determines how the switch populates the multicast routing table, and how it forwards packets received from directly connected LAN interfaces. Dense mode interfaces are always added to the multicast routing table. Sparse mode interfaces are added only when periodic join messages are received from downstream routers, or a group member is directly connected to the interface.

- Dense-mode interfaces are subject to multicast flooding by default, and are only removed from the multicast routing table when the router determines that there are no group members or downstream routers, or when a prune message is received from a downstream router.
- Sparse-mode interfaces forward multicast traffic only if a join message is received from a downstream router or if group members are directly connected to the interface. When routers want to receive a multicast flow, they periodically send join messages to the Rendezvous Point (RP), and are subsequently added to the shared path for the specified flow back up to the RP. If routers want to join the source path up through the Shortest Path Source Tree (SPT), they periodically send join messages toward the source. They also send prune messages toward the RP to prune the shared path if they have already connected to the source through the SPT, or if there are no longer any group members connected to the interface.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ip pim dense-mode
Console(config-if)#end
Console#show ip pim interface
PIM is enabled.
VLAN 1 is up.
                         :
 PIM Mode
                                Dense Mode
IP Address
                                 192.168.0.2
IP Address
Hello Interval :
Hello HoldTime :
Triggered Hello Delay :
Join/Prune Holdtime :
                                     30 sec
                                     105 sec
                                  5 sec
210 sec
Disabled
                                     5 sec
Lan Prune Delay : Propagation Delay : Override Interval :
                         :
                                    500 ms
                                   2500 ms
 Graft Retry Interval :
                                    3 sec
 Max Graft Retries
                         :
                                       3
 State Refresh Ori Int :
                                     60 sec
Console#
```

ip pim hello-holdtime This command configures the interval to wait for hello messages from a neighboring PIM router before declaring it dead. Use the **no** form to restore the default value.

Syntax

```
ip pim hello-holdtime seconds
no ip pim hello-interval
```

seconds - The hold time for PIM hello messages. (Range: 1-65535)

Default Setting

105 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The **ip pim hello-holdtime** should be greater than the value of **ip pim hello**interval.

Example

```
Console(config-if) #ip pim hello-holdtime 210
Console(config-if)#
```

ip pim hello-interval This command configures the frequency at which PIM hello messages are transmitted. Use the **no** form to restore the default value.

Syntax

ip pim hello-interval seconds

no pim hello-interval

seconds - Interval between sending PIM hello messages. (Range: 1-65535)

Default Setting

30 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

Hello messages are sent to neighboring PIM routers from which this device has received probes, and are used to verify whether or not these neighbors are still active members of the multicast tree.

Example

```
Console(config-if) #ip pim hello-interval 60
Console(config-if)#
```

ip pim This command configures the hold time for the prune state. Use the **no** form to join-prune-holdtime restore the default value.

Syntax

ip pim join-prune-holdtime seconds no ip pim join-prune-holdtime

seconds - The hold time for the prune state. (Range: 0-65535)

Default Setting

210 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The multicast interface that first receives a multicast stream from a particular source forwards this traffic to all other PIM interfaces on the router. If there are no requesting groups on that interface, the leaf node sends a prune message upstream and enters a prune state for this multicast stream. The prune state is maintained until the join-prune-holdtime timer expires or a graft message is received for the forwarding entry.

Example

```
Console(config-if)#ip pim join-prune-holdtime 60
Console(config-if)#
```

ip pim lan-prune-delay

ip pim This command causes this device to inform downstream routers of how long it will wait before pruning a flow after receiving a prune request. Use the **no** form to disable this feature.

Syntax

[no] ip pim lan-prune-delay

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- When other downstream routers on the same VLAN are notified that this upstream router has received a prune request, they must send a Join to override the prune before the prune delay expires if they want to continue receiving the flow. The message generated by this command effectively prompts any downstream neighbors with hosts receiving the flow to reply with a Join message. If no join messages are received after the prune delay expires, this router will prune the flow.
- Prune delay is the sum of the effective propagation-delay and effective override-interval, where effective propagation-delay is the largest propagation-delay from those advertised by each neighbor (including this switch), and effective override-interval is the largest override-interval from those advertised by each neighbor (including this switch).

Example

```
Console(config-if) #ip pim lan-prune-delay
Console(config-if)#
```

Related Commands

ip pim override-interval (1171) ip pim propagation-delay (1172)

ip pim This command configures the override interval, or the time it takes a downstream override-interval router to respond to a lan-prune-delay message. Use the **no** form to restore the default setting.

Syntax

ip pim override-interval milliseconds

no ip pim override-interval

milliseconds - The time required for a downstream router to respond to a lan-prune-delay message by sending back a Join message if it wants to continue receiving the flow referenced in the message. (Range: 500-6000 milliseconds)

Default Setting

2500 milliseconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The override interval configured by this command and the propagation delay configured by the ip pim propagation-delay command are used to calculate the LAN prune delay. If a downstream router has group members which want to continue receiving the flow referenced in a LAN prune delay message, then the override interval represents the time required for the downstream router to process the message and then respond by sending a Join message back to the upstream router to ensure that the flow is not terminated.

Example

```
Console(config-if) #ip pim override-interval 3500
Console(config-if)#
```

Related Commands

ip pim propagation-delay (1172) ip pim lan-prune-delay (1170)

ip pim propagation-delay

ip pim This command configures the propagation delay required for a LAN prune delay message to reach downstream routers. Use the **no** form to restore the default setting.

ip pim propagation-delay milliseconds

no ip pim propagation-delay

milliseconds - The time required for a lan-prune-delay message to reach downstream routers attached to the same VLAN interface. (Range: 100-5000 milliseconds)

Default Setting

500 milliseconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The override interval configured by the ip pim override-interval command and the propagation delay configured by this command are used to calculate the LAN prune delay. If a downstream router has group members which want to continue receiving the flow referenced in a LAN prune delay message, then the propagation delay represents the time required for the lan-prune-delay message to be propagated down from the upstream router to all downstream routers attached to the same VLAN interface.

Example

```
Console(config-if)#ip pim propagation-delay 600
Console(config-if)#
```

Related Commands

ip pim override-interval (1171) ip pim lan-prune-delay (1170)

ip pim trigger-hello-delay

ip pim This command configures the maximum time before transmitting a triggered PIM b-delay Hello message after the router is rebooted or PIM is enabled on an interface. Use the **no** form to restore the default value.

Syntax

ip pim trigger-hello-delay seconds

no ip pim trigger-hello-delay

seconds - The maximum time before sending a triggered PIM Hello message. (Range: 0-5 seconds)

Default Setting

5 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- When a router first starts or PIM is enabled on an interface, the hello delay is set to random value between 0 and the trigger-hello-delay. This prevents synchronization of Hello messages on multi-access links if multiple routers are powered on simultaneously.
- ◆ Also, if a Hello message is received from a new neighbor, the receiving router will send its own Hello message after a random delay between 0 and the trigger-hello-delay.

Example

```
Console(config-if) #ip pim trigger-hello-delay 3
Console(config-if)#
```

show ip pim interface This command displays information about interfaces configured for PIM.

Syntax

show ip pim interface [vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command displays the PIM settings for the specified interface as described in the preceding pages. It also shows the address of the designated PIM router and the number of neighboring PIM routers.

Example

```
Console#show ip pim interface vlan 1
PIM is enabled.
VLAN 1 is up.
 IP Address
 PIM Mode
 PIM Mode :
IP Address :
Hello Interval :
Hello HoldTime :
                                       :
                                                  Dense Mode
                                            Dense Mode
192.168.0.2
                                                30 sec
Hello HoldTime : 105 Sec
Triggered Hello Delay : 5 sec
Join/Prune Holdtime : 210 sec
Lan Prune Delay : Disabled
Propagation Delay : 500 ms
Override Interval : 2500 ms
Graft Retry Interval : 3 sec
May Graft Retries : 3
 State Refresh Ori Int : 60 sec
Console#
```

show ip pim neighbor This command displays information about PIM neighbors.

Syntax

show ip pim neighbor [interface vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Displays information for all known PIM neighbors.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show ip pim neighbor
Neighbor Address VLAN Interface Uptime (sec.) Expiration Time (sec) DR
192.168.0.3/32 1
                    00:00:21
                             00:01:30
Console#
```

Table 37: show ip pim neighbor - display description

Field	Description
Neighbor Address	IP address of the next-hop router.
VLAN Interface	Interface number that is attached to this neighbor.
Uptime	The duration this entry has been active.
Expiration Time	The time before this entry will be removed.
DR	The designated PIM-SM router. If multicast hosts are directly connected to the LAN, then only one of these routers is elected as the DR, and acts on behalf of these hosts, sending periodic Join/Prune messages toward a group-specific RP for each group.

PIM-DM Commands

ip pim This command configures the time to wait for a Graft acknowledgement before graft-retry-interval resending a Graft. Use the no form to restore the default value.

Syntax

ip pim graft-retry-interval seconds no ip pim graft-retry-interval

seconds - The time before resending a Graft. (Range: 1-10 seconds)

Default Setting

3 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

A graft message is sent by a router to cancel a prune state. When a router receives a graft message, it must respond with an graft acknowledgement message. If this acknowledgement message is lost, the router that sent the graft message will resend it a number of times (as defined by the ip pim max-graft-retries command).

Example

```
Console(config-if) #ip pim graft-retry-interval 9
Console(config-if)#
```

ip pim This command configures the maximum number of times to resend a Graft max-graft-retries message if it has not been acknowledged. Use the **no** form to restore the default value.

Syntax

ip pim max-graft-retries retries

no ip pim max-graft-retries

retries - The maximum number of times to resend a Graft. (Range: 1-10)

Default Setting

Command Mode

Interface Configuration (VLAN)

Example

```
Console(config-if) #ip pim max-graft-retries 5
Console(config-if)#
```

ip pim state-refresh This command sets the interval between sending PIM-DM state refresh control origination-interval messages. Use the **no** form to restore the default value.

Syntax

ip pim state-refresh origination-interval seconds

no ip pim max-graft-retries

seconds - The interval between sending PIM-DM state refresh control messages. (Range: 1-100 seconds)

Default Setting

60 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- The pruned state times out approximately every three minutes and the entire PIM-DM network is reflooded with multicast packets and prune messages. The state refresh feature keeps the pruned state from timing out by periodically forwarding a control message down the distribution tree, refreshing the prune state on the outgoing interfaces of each router in the tree. This also enables PIM routers to recognize topology changes (sources joining or leaving a multicast group) before the default three-minute state timeout expires.
- This command is only effectively for interfaces of first hop, PIM-DM routers that are directly connected to the sources of multicast groups.

Example

```
Console(config-if) #ip pim state-refresh origination-interval 30
Console(config-if)#
```

PIM-SM Commands

ip pim bsr-candidate This command configures the switch as a Bootstrap Router (BSR) candidate. Use the **no** form to restore the default value.

Syntax

ip pim bsr-candidate interface vlan *vlan-id* [**hash** *hash-mask-length*] [priority priority]

no ip pim bsr-candidate

vlan-id - VLAN ID (Range: 1-4094)

hash-mask-length - Hash mask length (in bits) used for RP selection (see ip pim rp-candidate and ip pim rp-address). The portion of the hash specified by the mask length is ANDed with the group address. Therefore, when the hash function is executed on any BSR, all groups with the same seed hash will be mapped to the same RP. If the mask length is less than 32, then only the first portion of the hash is used, and a single RP will be defined for multiple groups. (Range: 0-32 bits)

priority - Priority used by the candidate bootstrap router in the election process. The BSR candidate with the largest priority is preferred. If the priority values are the same, the candidate with the larger IP address is elected to be the BSR. Setting the priority to zero means that this router is not eligible to server as the BSR. At least one router in the PIM-SM domain must be set to a value greater than zero. (Range: 0-255)

Default Setting

Hash Mask Length: 10

Priority: 0

Command Mode

Global Configuration

Command Usage

- When the ip pim bsr-candidate command is entered, the router starts sending bootstrap messages to all of its PIM-SM neighbors. The IP address of the designated VLAN is sent as the candidate's BSR address. Each neighbor receiving the bootstrap message compares the BSR address with the address from previous messages. If the current address is the same or a higher address, it accepts the bootstrap message and forwards it. Otherwise, it drops the message.
- ◆ This router will continue to be the BSR until it receives a bootstrap message from another candidate with a higher priority (or a higher IP address if the priorities are the same).
- ◆ To improve failover recovery, it is advisable to select at least two core routers in diverse locations, each to serve as both a candidate BSR and candidate RP. It is also preferable to set up one of these routers as both the primary BSR and RP.

Example

The following example configures the router to start sending bootstrap messages out of the interface for VLAN 1 to all of its PIM-SM neighbors.

```
Console(config) #ip pim bsr-candidate interface vlan 1 hash 20 priority 200
Console(config) #exit
Console#show ip pim bsr-router
PIMv2 Bootstrap information
BSR Address : 192.168.0.2/32
Uptime : 00:00:08
BSR Priority : 200
Hash Mask Length : 20
Expire : 00:00:57
Role : Candidate BSR
State : Elected BSR
Console#
```

ip pim This command configures the rate at which register messages are sent by the register-rate-limit Designated Router (DR) for each (source, group) entry. Use the no form to restore the default value.

Syntax

ip pim register-rate-limit rate

no ip pim register-rate-limit

rate - The maximum number of register packets per second. (Range: 1-65535: Default: 0, which means no limit)

Default Setting

Command Mode

Global Configuration

Command Usage

This command can be used to relieve the load on the Designated Router (DR) and RP. However, because register messages exceeding the limit are dropped, some receivers may experience data packet loss within the first few seconds in which register messages are sent from bursty sources.

Example

This example sets the register rate limit to 500 pps.

```
Console(config) #ip pim register-rate-limit 500
Console(config)#
```

ip pim register-source This command configures the IP source address of a register message to an address other than the outgoing interface address of the designated router (DR) that leads back toward the rendezvous point (RP). Use the **no** form to restore the default setting.

Syntax

ip pim register-source interface vlan vlan-id no ip pim register-source

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

The IP address of the DR's outgoing interface that leads back to the RP

Command Mode

Global Configuration

Command Usage

When the source address of a register message is filtered by intermediate network devices, or is not a uniquely routed address to which the RP can send packets, the replies sent from the RP to the source address will fail to reach the DR, resulting in PIM-SM protocol failures. This command can be used to overcome this type of problem by manually configuring the source address of register messages to an interface that leads back to the RP.

Example

This example sets the register rate limit to 500 pps.

```
Console(config) #ip pim register-source interface vlan 1
Console(config)#
```

ip pim rp-address This command sets a static address for the Rendezvous Point (RP) for a particular multicast group. Use the **no** form to remove an RP address or an RP address for a specific group.

Syntax

[no] ip pim rp-address rp-address [group-prefix group-address mask]

rp-address - Static IP address of the router that will be an RP for the specified multicast group(s).

group-address - An IP multicast group address. If a group address is not specified, the RP is used for all multicast groups.

mask - Subnet mask that is used for the group address.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- The router specified by this command will act as an RP for all multicast groups in the local PIM-SM domain if no groups are specified. A static RP can either be configured for the whole multicast group range 224.0.0.0/4, or for specific group ranges.
- Using this command to configure multiple static RPs with the same RP address is not allowed. If an IP address is specified that was previously used for an RP, then the older entry is replaced.
- Multiple RPs can be defined for different groups or group ranges. If a group is matched by more than one entry, the router will use the RP associated with the

longer group prefix length. If the prefix lengths are the same, then the static RP with the highest IP address is chosen.

- Static definitions for RP addresses may be used together with RP addresses dynamically learned through the bootstrap router (BSR). If an RP address learned by the BSR and one statically configured using this command are both available for a group range, the RP address learned by the BSR is chosen over the one statically configured with this command.
- All routers within the same PIM-SM domain must be configured with the same RP(s). Selecting an RP through the dynamic election process is therefore preferable for most situations. Using the dynamic RP election process also allows a backup RP to automatically take over if the active RP router becomes unavailable.
- ◆ If the **no** form of this command is used without specifying a multicast group, the default 224.0.0.0 (with the mask 240.0.0.0) is removed. In other words, all multicast groups are removed.

Example

In the following example, the first PIM-SM command just specifies the RP address 192.168.1.1 to indicate that it will be used to service all multicast groups. The second PIM-SM command includes the multicast groups to be serviced by the RP.

```
Console(config) #ip pim rp-address 192.168.1.1
Console(config) #ip pim rp-address 192.168.2.1 group-prefix 224.9.0.0
 255.255.0.0
Console(config)#end
Console#show ip pim rp mapping
PIM Group-to-RP Mappings
           : 224.0.0.0/4
RP address
              : 192.168.1.1/32
Info source
              : static
              : 00:00:33
Uptime
               : Never
Expire
               : 224.9.0.0/16
Groups
RP address
               : 192.168.2.1/32
Info source
               : static
               : 00:00:21
Uptime
Expire
               : Never
Console#
```

ip pim rp-candidate This command configures the router to advertise itself as a Rendezvous Point (RP) candidate to the bootstrap router (BSR). Use the **no** form to remove this router as an RP candidate.

Syntax

ip pim rp-candidate interface vlan vlan-id [group-prefix group-address mask] [interval seconds] [priority value]

no ip pim rp-candidate interface vlan vlan-id

vlan-id - VLAN ID (Range: 1-4094)

group-address - An IP multicast group address. If a group address is not specified, the RP is advertised for all multicast groups.

mask - Subnet mask that is used for the group address.

seconds - The interval at which this device advertises itself as an RP candidate. (Range: 60-16383 seconds)

value - Priority used by the candidate RP in the election process. The RP candidate with the largest priority is preferred. If the priority values are the same, the candidate with the larger IP address is elected to be the RP. Setting the priority to zero means that this router is not eligible to server as the RP. (Range: 0-255)

Default Setting

Address: 224.0.0.0/4, or the entire IPv4 multicast group family

Interval: 60 seconds

Priority: 0

Command Mode

Global Configuration

Command Usage

- When the ip pim rp-candidate command is entered, the router periodically sends PIMv2 messages to the BSR advertising itself as a candidate RP for the specified group addresses. The IP address of the designated VLAN is sent as the candidate's RP address. The BSR places information about all of the candidate RPs in subsequent bootstrap messages. The BSR uses the RP-election hash algorithm to select an active RP for each group range. The election process is performed by the BSR only for its own use. Each PIM-SM router that receives the list of RP candidates from the BSR also elects an active RP for each group range using the same election process.
- The election process for each group is based on the following criteria:
 - Find all RPs with the most specific group range.
 - Select those with the highest priority (lowest priority value).
 - Compute a hash value based on the group address, RP address, priority, and hash mask included in the bootstrap messages.

- If there is a tie, use the candidate RP with the highest IP address.
- This distributed election process provides faster convergence and minimal disruption when an RP fails. It also serves to provide load balancing by distributing groups across multiple RPs. Moreover, when an RP fails, the responsible RPs are re-elected on each router, and the groups automatically distributed to the remaining RPs.
- To improve failover recovery, it is advisable to select at least two core routers in diverse locations, each to serve as both a candidate BSR and candidate RP. It is also preferable to set up one of these routers as both the primary BSR and RP.

Example

The following example configures the router to start advertising itself to the BSR as a candidate RP for the indicated multicast groups.

```
Console(config) #ip pim rp-candidate interface vlan 1 group-prefix 224.0.0.0
  255.0.0.0
Console(config)#end
Console#show ip pim rp mapping
PIM Group-to-RP Mappings
Groups
                  : 224.0.0.0/8
Groups : 224.0.0.0/8

RP address : 192.168.0.2/32

Info source : 192.168.0.2/32, via bootstrap, priority: 0
Uptime
                 : 00:00:51
                 : 00:01:39
Expire
Console#
```

ip pim spt-threshold This command prevents the last-hop PIM router from switching to Shortest Path Source Tree (SPT) mode. Use the **no** form to allow the router to switch over to SPT mode.

Syntax

ip pim spt-threshold infinity [group-prefix group-address mask] no ip pim spt-threshold infinity

group-address - An IP multicast group address. If a group address is not specified, the command applies to all multicast groups.

mask - Subnet mask that is used for the group address.

Default Setting

The last-hop PIM router joins the shortest path tree immediately after the first packet arrives from a new source.

Command Mode

Global Configuration

Command Usage

- The default path for packets from a multicast source to a receiver is through the RP. However, the path through the RP is not always the shortest path. Therefore, the router uses the RP to forward only the first packet from a new multicast group to its receivers. Afterwards, it calculates the shortest path tree (SPT) directly between the receiver and source, and then uses the SPT to send all subsequent packets from the source to the receiver instead of using the shared tree. Note that when the SPT threshold is not set by this command, the PIM leaf router will join the shortest path tree immediately after receiving the first packet from a new source.
- This command forces the router to use the shared tree for all multicast groups, or just for the specified multicast groups.
- Only one entry is allowed for this command.

Example

This example prevents the switch from using the SPT for multicast groups 224.1.0.0~224.1.255.255.

```
Console(config-if) #ip pim sparse-mode
Console(config-if)#exit
Console(config) #ip multicast-routing
Console(config) #router pim
Console(config) #ip pim spt-threshold infinity group-prefix 224.1.0.0
 0.0.255.255
Console#
```

ip pim dr-priority This command sets the priority value for a Designated Router (DR) candidate. Use the **no** form to restore the default setting.

Syntax

ip pim dr-priority priority-value

no ip pim dr-priority

priority-value - Priority advertised by a router when bidding to become the DR. (Range: 0-4294967294)

Default Setting

1

Command Mode

Interface Configuration (VLAN)

Command Usage

 More than one PIM-SM router may be connected to an Ethernet or other shared-media LAN. If multicast hosts are directly connected to the LAN, then only one of these routers is elected as the DR, and acts on behalf of these hosts,

sending periodic Join/Prune messages toward a group-specific RP for each group. A single DR is elected per interface (LAN or otherwise) using a simple election process.

- The router with the highest priority configured on an interface is elected as the DR. If more than one router attached to this interface uses the same priority, then the router with the highest IP address is elected to serve as the DR.
- If a router does not advertise a priority in its hello messages, it is assumed to have the highest priority and is elected as the DR. If more than one router is not advertising its priority, then the router with the highest IP address is elected to serve as the DR.

Example

This example sets the priority used in the bidding process for the DR.

```
Console(config) #interface vlan 1
Console(config-if) #ip pim dr-priority 20
Console(config-if)#end
Console#show ip pim interface
PIM is enabled.
VLAN 1 is up.
PIM Mode : Sparse Mode IP Address : 192.168.0.2 Hello Interval : 30 sec Hello HoldTime : 105 sec
 Triggered Hello Delay :
Join/Prune Holdtime :
                                           5 sec
210 sec
Disabled
500 ms
2500 ms
 Lan Prune Delay :
Propagation Delay :
Override Interval :
DR Priority :
                                                20
 Join/Prune Interval :
                                               60 sec
Console#
```

join-prune-interval setting.

ip pim This command sets the join/prune timer. Use the **no** form to restore the default

Syntax

ip pim join-prune-interval seconds

no ip pim join-prune-interval

seconds - The interval at which join/prune messages are sent. (Range: 1-65535 seconds)

Default Setting

60 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- By default, the switch sends join/prune messages every 210 seconds to inform other PIM-SM routers about clients who want to join or leave a multicast group.
- Use the same join/prune message interval on all the PIM-SM routers in the same PIM-SM domain, otherwise the routing protocol's performance will be adversely affected.
- The multicast interface that first receives a multicast stream from a particular source forwards this traffic only to those interfaces on the router that have requested to join this group. When there are no longer any requesting groups on that interface, the leaf node sends a prune message upstream and enters a prune state for this multicast stream. The protocol maintains both the current join state and the pending Reverse Path Tree (RPT) prune state for this (source, group) pair until the join/prune-interval timer expires.

Example

This example sets the priority used in the bidding process for the DR.

```
Console(config) #interface vlan 1
Console(config-if) #ip pim join-prune-interval 210
Console#show ip pim interface
PIM is enabled.
VLAN 1 is up.
                      : Sparse Mode
: 192.168.0.2
PIM Mode
rım Mode
IP Address
                       : 30 sec
Hello Interval
Hello HoldTime
                                     105 sec
                                      5 sec
Join/Prune Holdtime :
Lan Prune Delay :
Propagation Delay :
Override Interval :
DR Priority :
 Triggered Hello Delay :
                                   210 sec
                                 Disabled
                                    500 ms
                                 2500 ms
                                    20
 Join/Prune Interval :
                                     80 sec
Console#
```

clear ip pim bsr rp-set This command clears multicast group to RP mapping entries learned through the PIMv2 bootstrap router (BSR).

Command Mode

Privileged Exec

Command Usage

- This command can be used to update entries in the static multicast forwarding table immediately after making configuration changes to the RP.
- Use the show ip pim rp mapping command to display active RPs that are cached with associated multicast routing entries.

Example

This example clears the RP map.

```
Console#clear ip pim bsr rp-set
Console#show ip pim rp mapping
PIM Group-to-RP Mappings
Console#
```

show ip pim bsr-router This command displays information about the bootstrap router (BSR).

Command Mode

Privileged Exec

Command Usage

This command displays information about the elected BSR.

Example

This example displays information about the BSR.

```
Console#show ip pim bsr-router
PIMv2 Bootstrap information
BSR Address : 192.168.0.2/32
Uptime : 01:01:23
BSR Priority : 200
Hash Mask Length: 20
Expire : 00:00:42
               : Candidate BSR
Role
State
                : Elected BSR
Console#
```

Table 38: show ip pim bsr-router - display description

Field	Description
BSR Address	IP address of interface configured as the BSR.
Uptime	The time this BSR has been up and running.
BSR Priority	Priority assigned to this interface for use in the BSR election process.
Hash Mask Length	The number of significant bits used in the multicast group comparison mask. This mask determines the multicast group for which this router can be a BSR.
Expire	The time before this entry will be removed.
Role	Candidate BSR or Non-candidate BSR.

Table 38: show ip pim bsr-router - display description (Continued)

Field	Description
State	Operation state of BSR includes:
	 No information – No information stored for this device.
	 Accept Any – The router does not know of an active BSR, and will accept the first bootstrap message it sees as giving the new BSR's identity and the RP-set.
	 Accept Preferred – The router knows the identity of the current BSR, and is using the RP-set provided by that BSR. Only bootstrap messages from that BSR or from a C-BSR with higher weight than the current BSR will be accepted.
	 Candidate BSR – Bidding in election process.
	 Pending-BSR – The router is a candidate to be the BSR for the RP- set. Currently, no other router is the preferred BSR, but this router is not yet the elected BSR.
	 Elected BSR – elected to serve as BSR

show ip pim rp mapping

show ip pim This command displays active RPs and associated multicast routing entries.

Command Mode

Privileged Exec

Example

This example displays the RP map.

```
Console#show ip pim rp mapping
PIM Group-to-RP Mappings
Groups : 224.0.0.0/8
RP address : 192.168.0.2/32
Info source : 192.168.0.2/32, via bootstrap, priority: 0
Uptime : 00:31:09
Expire : 00:02:21
Console#
```

Table 39: show ip pim rp mapping - display description

Field	Description	
Groups	The multicast group address, mask length managed by the RP.	
RP address	IP address of the RP used for the listed multicast group	
Info source	RP that advertised the mapping, how the RP was selected (Static or Bootstrap), and the priority used in the bidding process	
Uptime	The time this RP has been up and running	
Expire	The time before this entry will be removed	

show ip pim rp-hash This command displays the RP used for the specified multicast group, and the RP that advertised the mapping.

Syntax

show ip pim rp-hash group-address

group-address - An IP multicast group address.

Command Mode

Privileged Exec

Example

This example displays the RP used for the specified group.

```
Console#show ip pim rp-hash 224.0.1.3
             : 192.168.0.2/32
RP address
Info source
                  : 192.168.0.2/32, via (null)
Console#
```

Table 40: show ip pim rp-hash - display description

Field	Description
RP address	IP address of the RP used for the specified multicast group
Info source	RP that advertised the mapping, and how the RP was selected

IPv6 PIM Commands This section describes commands used to configure IPv6 PIM dynamic multicast routing on the switch.

Table 41: PIM-DM and PIM-SM Multicast Routing Commands

Command	Function	Mode
Shared Mode Commands		
router pim6	Enables IPv6 PIM globally for the router	GC
ipv6 pim	Enables PIM-DM or PIM-SM on the specified interface	IC
ipv6 pim hello-holdtime	Sets the time to wait for hello messages from a neighboring PIM router before declaring it dead	IC
ipv6 pim hello-interval	Sets the interval between sending PIM hello messages	IC
ipv6 pim join-prune-holdtime	Configures the hold time for the prune state	IC
ipv6 pim lan-prune-delay	Informs downstream routers of the delay before it prunes a flow after receiving a prune request	IC
ipv6 pim override-interval	Specifies the time it takes a downstream router to respond to a lan-prune-delay message	IC
ipv6 pim propagation-delay	Configures the propagation delay required for a LAN prune delay message to reach downstream routers	IC

Table 41: PIM-DM and PIM-SM Multicast Routing Commands (Continued)

Command	Function	Mode
ipv6 pim trigger-hello-delay	Configures the trigger hello delay	IC
show ipv6 pim interface	Displays information about interfaces configured for PIM	NE, PE
show ipv6 pim neighbor	Displays information about PIM neighbors	NE, PE
PIM-DM Commands		
ipv6 pim graft-retry-interval	Configures the time to wait for a Graft acknowledgement before resending a Graft message	IC
ipv6 pim max-graft-retries	Configures the maximum number of times to resend a Graft message if it has not been acknowledged	IC
ipv6 pim state-refresh origination-interval	Sets the interval between PIM-DM state refresh control messages	IC
PIM-SM Commands		
ipv6 pim bsr-candidate	Configures the switch as a Bootstrap Router (BSR) candidate	GC
ipv6 pim register-rate-limit	Configures the rate at which register messages are sent by the Designated Router (DR)	GC
ipv6 pim register-source	Configure the IP source address of a register message to an address other than the outgoing interface address of the designated router (DR) leading toward the rendezvous point (RP)	GC
ipv6 pim rp-address	Sets a static address for the rendezvous point	GC
ipv6 pim rp-candidate	Configures the switch rendezvous point (RP) candidate	GC
ipv6 pim spt-threshold	Prevents the last-hop PIM router from switching to Shortest Path Source Tree (SPT) mode	GC
ipv6 pim dr-priority	Sets the priority value for a DR candidate	IC
ipv6 pim join-prune-interval	Sets the join/prune timer	IC
clear ipv6 pim bsr rp-set	Clears RP entries learned through the BSR	PE
show ipv6 pim bsr-router	Displays information about the BSR	PE
show ipv6 pim rp mapping	Displays active RPs and associated multicast routing entries	PE
show ipv6 pim rp-hash	Displays the RP used for the specified multicast group	PE

PIM6 Shared Mode Commands

router pim6 This command enables IPv6 Protocol-Independent Multicast routing globally on the router. Use the **no** form to disable PIM multicast routing.

Syntax [no] router pim6

Default SettingDisabled

Command Mode

Global Configuration

Command Usage

- This command enables PIM-DM and PIM-SM for IPv6 globally for the router. You also need to enable PIM-DM and PIM-SM for each interface that will support multicast routing using the ipv6 pim command, and make any changes necessary to the multicast protocol parameters.
- ◆ To use PIMv6, IPv6 multicast routing must be enabled on the switch using the ipv6 multicast-routing command.
- To use IPv6 multicast routing, MLD proxy cannot be enabled on any interface of the device (see the ipv6 mld proxy command).

Example

```
Console(config) #router pim6
Console(config)#
```

ipv6 pim This command enables IPv6 PIM-DM or PIM-SM on the specified interface. Use the **no** form to disable IPv6 PIM-DM or PIM-SM on this interface.

Syntax

```
[no] ipv6 pim {dense-mode | sparse-mode}
   dense-mode - Enables PIM Dense Mode.
   sparse-mode - Enables PIM Sparse Mode.
```

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- To fully enable PIM, you need to enable multicast routing globally for the router with the ipv6 multicast-routing command, enable PIM globally for the router with the router pim6 command, and also enable PIM-DM or PIM-SM for each interface that will participate in multicast routing with this command.
- If you enable PIM on an interface, you should also enable MLD (see "MLD (Layer 3)" on page 765) on that interface. PIM mode selection determines how the switch populates the multicast routing table, and how it forwards packets received from directly connected LAN interfaces. Dense mode interfaces are always added to the multicast routing table. Sparse mode interfaces are added only when periodic join messages are received from downstream routers, or a group member is directly connected to the interface.

- Dense-mode interfaces are subject to multicast flooding by default, and are only removed from the multicast routing table when the router determines that there are no group members or downstream routers, or when a prune message is received from a downstream router.
- Sparse-mode interfaces forward multicast traffic only if a join message is received from a downstream router or if group members are directly connected to the interface. When routers want to receive a multicast flow, they periodically send join messages to the Rendezvous Point (RP), and are subsequently added to the shared path for the specified flow back up to the RP. If routers want to join the source path up through the Shortest Path Source Tree (SPT), they periodically send join messages toward the source. They also send prune messages toward the RP to prune the shared path if they have already connected to the source through the SPT, or if there are no longer any group members connected to the interface.

Example

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 pim dense-mode
Console(config-if)#end
Console#show ipv6 pim interface
PIM is enabled.
VLAN 1 is up.
                      : Dense Mode
PTM Mode
                      : None
IPv6 Address
Hello Interval : 30 sec
Hello HoldTime : 105 sec
Triggered Hello Delay : 5 sec
Join/Prune Holdtime
                       : 210 sec
Lan Prune Delay
                      : Disabled
Propagation Delay
                      : 500 ms
Override Interval
                      : 2500 ms
Graft Retry Interval : 3 sec
Max Graft Retries
                       : 3
 State Refresh Ori Int : 60 sec
Console#
```

hello-holdtime

ipv6 pim This command configures the interval to wait for hello messages from a neighboring PIM router before declaring it dead. Use the **no** form to restore the default value.

Syntax

ipv6 pim hello-holdtime seconds no ipv6 pim hello-interval

seconds - The hold time for PIM hello messages. (Range: 1-65535)

Default Setting

105 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The **ip pim hello-holdtime** should be greater than the value of ipv6 pim hello-interval.

Example

```
Console(config-if) #ipv6 pim hello-holdtime 210
Console(config-if)#
```

ipv6 pim hello-interval This command configures the frequency at which PIM hello messages are transmitted. Use the **no** form to restore the default value.

Syntax

ipv6 pim hello-interval seconds

no pimv6 hello-interval

seconds - Interval between sending PIM hello messages. (Range: 1-65535)

Default Setting

30 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

Hello messages are sent to neighboring PIM routers from which this device has received probes, and are used to verify whether or not these neighbors are still active members of the multicast tree.

Example

```
Console(config-if) #ipv6 pim hello-interval 60
Console(config-if)#
```

ipv6 pim This command configures the hold time for the prune state. Use the **no** form to join-prune-holdtime restore the default value.

Syntax

ipv6 pim join-prune-holdtime seconds no ipv6 pim join-prune-holdtime

seconds - The hold time for the prune state. (Range: 0-65535)

Default Setting

210 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The multicast interface that first receives a multicast stream from a particular source forwards this traffic to all other PIM interfaces on the router. If there are no requesting groups on that interface, the leaf node sends a prune message upstream and enters a prune state for this multicast stream. The prune state is maintained until the join-prune-holdtime timer expires or a graft message is received for the forwarding entry.

Example

```
Console(config-if) #ipv6 pim join-prune-holdtime 60
Console(config-if)#
```

ipv6 pim This command causes this device to inform downstream routers of how long it will lan-prune-delay wait before pruning a flow after receiving a prune request. Use the no form to disable this feature.

Syntax

[no] ipv6 pim lan-prune-delay

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

- When other downstream routers on the same VLAN are notified that this upstream router has received a prune request, they must send a Join to override the prune before the prune delay expires if they want to continue receiving the flow. The message generated by this command effectively prompts any downstream neighbors with hosts receiving the flow to reply with a Join message. If no join messages are received after the prune delay expires, this router will prune the flow.
- Prune delay is the sum of the effective propagation-delay and effective override-interval, where effective propagation-delay is the largest propagation-delay from those advertised by each neighbor (including this switch), and effective override-interval is the largest override-interval from those advertised by each neighbor (including this switch).

Example

```
Console(config-if) #ipv6 pim lan-prune-delay
Console(config-if)#
```

Related Commands

ipv6 pim override-interval (1194) ipv6 pim propagation-delay (1195)

ipv6 pim This command configures the override interval, or the time it takes a downstream override-interval router to respond to a lan-prune-delay message. Use the **no** form to restore the default setting.

Syntax

ipv6 pim override-interval milliseconds

no ipv6 pim override-interval

milliseconds - The time required for a downstream router to respond to a lan-prune-delay message by sending back a Join message if it wants to continue receiving the flow referenced in the message. (Range: 500-6000 milliseconds)

Default Setting

2500 milliseconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The override interval configured by this command and the propagation delay configured by the ipv6 pim propagation-delay command are used to calculate the LAN prune delay. If a downstream router has group members which want to continue receiving the flow referenced in a LAN prune delay message, then the override interval represents the time required for the downstream router to process the message and then respond by sending a Join message back to the upstream router to ensure that the flow is not terminated.

Example

```
Console(config-if)#ipv6 pim override-interval 3500
Console(config-if)#
```

Related Commands

ipv6 pim propagation-delay (1195) ipv6 pim lan-prune-delay (1193)

propagation-delay

ipv6 pim This command configures the propagation delay required for a LAN prune delay message to reach downstream routers. Use the **no** form to restore the default setting.

ipv6 pim propagation-delay milliseconds

no ipv6 pim propagation-delay

milliseconds - The time required for a lan-prune-delay message to reach downstream routers attached to the same VLAN interface. (Range: 100-5000 milliseconds)

Default Setting

500 milliseconds

Command Mode

Interface Configuration (VLAN)

Command Usage

The override interval configured by the ipv6 pim override-interval command and the propagation delay configured by this command are used to calculate the LAN prune delay. If a downstream router has group members which want to continue receiving the flow referenced in a LAN prune delay message, then the propagation delay represents the time required for the lan-prune-delay message to be propagated down from the upstream router to all downstream routers attached to the same VLAN interface.

Example

```
Console(config-if) #ipv6 pim propagation-delay 600
Console(config-if)#
```

Related Commands

ipv6 pim override-interval (1194) ipv6 pim lan-prune-delay (1193)

trigger-hello-delay

ipv6 pim This command configures the maximum time before transmitting a triggered PIM Hello message after the router is rebooted or PIM is enabled on an interface. Use the **no** form to restore the default value.

Syntax

ipv6 pim trigger-hello-delay seconds

no ipv6 pim trigger-hello-delay

seconds - The maximum time before sending a triggered PIM Hello message. (Range: 0-5)

Default Setting

5 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- When a router first starts or PIM is enabled on an interface, the hello delay is set to random value between 0 and the trigger-hello-delay. This prevents synchronization of Hello messages on multi-access links if multiple routers are powered on simultaneously.
- Also, if a Hello message is received from a new neighbor, the receiving router will send its own Hello message after a random delay between 0 and the trigger-hello-delay.

Example

```
Console(config-if)#ipv6 pim trigger-hello-delay 3
Console(config-if)#
```

show ipv6 pim interface

show ipv6 pim This command displays information about interfaces configured for PIM.

Syntax

show ipv6 pim [interface vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command displays the PIM settings for the specified interface as described in the preceding pages. It also shows the address of the designated PIM router and the number of neighboring PIM routers.

Example

```
Console#show ipv6 pim interface vlan 1
PIM is enabled.
VLAN 1 is up.
PIM Mode : Dense Mode
IPv6 Address : fe80::7272:cfff:fe8c:2fef%1
Hello Interval : 30 sec
Hello HoldTime : 105 sec
Triggered Hello Delay : 5 sec
Join/Prune Holdtime : 210 sec
Lan Prune Delay : Disabled
Propagation Delay : 500 ms
Override Interval : 2500 ms
Graft Retry Interval : 3 sec
Max Graft Retries : 3
State Refresh Ori Int : 60 sec

Console#
```

neighbor

show ipv6 pim This command displays information about PIM neighbors.

Syntax

show ipv6 pim neighbor [interface vlan vlan-id]

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

Displays information for all known PIM neighbors.

Command Mode

Normal Exec, Privileged Exec

Example

Console#show ipv6 pim neighbor Neighbor Address	VLAN	Interface	Uptime	Expire	DR
FF80::0101 FF80::0202	VLAN VLAN		00:01:23 1d 11h	00:01:23 Never	YES
Console#					

Table 42: show ipv6 pim neighbor - display description

Field	Description
Neighbor Address	IP address of the next-hop router.
VLAN Interface	Interface number that is attached to this neighbor.
Uptime	The duration this entry has been active.
Expiration Time	The time before this entry will be removed.
DR	The designated PIM6-SM router. If multicast hosts are directly connected to the LAN, then only one of these routers is elected as the DR, and acts on behalf of these hosts, sending periodic Join/Prune messages toward a group-specific RP for each group.

PIM6-DM Commands

ipv6 pim This command configures the time to wait for a Graft acknowledgement before **graft-retry-interval** resending a Graft. Use the **no** form to restore the default value.

Syntax

ipv6 pim graft-retry-interval seconds no ipv6 pim graft-retry-interval

seconds - The time before resending a Graft. (Range: 1-10 seconds)

Default Setting

3 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

A graft message is sent by a router to cancel a prune state. When a router receives a graft message, it must respond with an graft acknowledgement message. If this acknowledgement message is lost, the router that sent the graft message will resend it a number of times (as defined by the ipv6 pim max-graft-retries command).

Example

```
Console(config-if) #ipv6 pim graft-retry-interval 9
Console(config-if)#
```

Related Commands

ipv6 pim override-interval (1194) ipv6 pim propagation-delay (1195)

ipv6 pim This command configures the maximum number of times to resend a Graft max-graft-retries message if it has not been acknowledged. Use the **no** form to restore the default value.

Syntax

```
ipv6 pim max-graft-retries retries
no ipv6 pim max-graft-retries
```

retries - The maximum number of times to resend a Graft. (Range: 1-10)

Default Setting

3

Command Mode

Interface Configuration (VLAN)

Example

```
Console(config-if)#ipv6 pim max-graft-retries 5
Console(config-if)#
```

ipv6 pim state-refresh This command sets the interval between sending PIM-DM state refresh control origination-interval messages. Use the **no** form to restore the default value.

Syntax

ipv6 pim state-refresh origination-interval seconds no ipv6 pim max-graft-retries

seconds - The interval between sending PIM-DM state refresh control messages. (Range: 1-100 seconds)

Default Setting

60 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

- The pruned state times out approximately every three minutes and the entire PIM-DM network is reflooded with multicast packets and prune messages. The state refresh feature keeps the pruned state from timing out by periodically forwarding a control message down the distribution tree, refreshing the prune state on the outgoing interfaces of each router in the tree. This also enables PIM routers to recognize topology changes (sources joining or leaving a multicast group) before the default three-minute state timeout expires.
- ◆ This command is only effectively for interfaces of first hop, PIM-DM routers that are directly connected to sources of multicast groups.

Example

Console(config-if) #ipv6 pim state-refresh origination-interval 30 Console(config-if)#

PIM6-SM Commands

ipv6 pim This command configures the switch as a Bootstrap Router (BSR) candidate. Use the **bsr-candidate no** form to restore the default value.

Syntax

ipv6 pim bsr-candidate interface vlan vlan-id [hash hash-mask-length] [**priority** priority]

no ipv6 pim bsr-candidate

vlan-id - VLAN ID (Range: 1-4094)

hash-mask-length - Hash mask length (in bits) used for RP selection (see ipv6 pim rp-candidate and ipv6 pim rp-address). The portion of the hash specified by the mask length is ANDed with the group address. Therefore, when the hash function is executed on any BSR, all groups with the same seed hash will be mapped to the same RP. If the mask length is less than 32, then only the first portion of the hash is used, and a single RP will be defined for multiple groups. (Range: 0-32 bits)

priority - Priority used by the candidate bootstrap router in the election process. The BSR candidate with the largest priority is preferred. If the priority values are the same, the candidate with the larger IP address is elected to be the BSR. Setting the priority to zero means that this router is not eligible to server as the BSR. At least one router in the PIM6-SM domain must be set to a value greater than zero. (Range: 0-255)

Default Setting

Hash Mask Length: 10

Priority: 0

Command Mode

Global Configuration

Command Usage

- ◆ When the **ipv6 pim bsr-candidate** command is entered, the router starts sending bootstrap messages to all of its PIM6-SM neighbors. The IP address of the designated VLAN is sent as the candidate's BSR address. Each neighbor receiving the bootstrap message compares the BSR address with the address from previous messages. If the current address is the same or a higher address, it accepts the bootstrap message and forwards it. Otherwise, it drops the message.
- This router will continue to be the BSR until it receives a bootstrap message from another candidate with a higher priority (or a higher IP address if the priorities are the same).
- To improve failover recovery, it is advisable to select at least two core routers in diverse locations, each to serve as both a candidate BSR and candidate RP. It is also preferable to set up one of these routers as both the primary BSR and RP.

Example

The following example configures the router to start sending bootstrap messages out of the interface for VLAN 1 to all of its PIM-SM neighbors.

```
Console(config) #ipv6 pim bsr-candidate interface vlan 1 hash 20 priority 200
Console(config)#exit
Console#show ipv6 pim bsr-router
PIMv2 Bootstrap information
BSR Address : 2001:DB8:2222:7272::72
Uptime : 00:00:08
BSR Priority : 200
Hash Mask Length: 20
Expire : 00:00:57
Role
              : Candidate BSR
State
              : Elected BSR
Console#
```

ipv6 pim This command configures the rate at which register messages are sent by the register-rate-limit Designated Router (DR) for each (source, group) entry. Use the no form to restore the default value.

Syntax

```
ipv6 pim register-rate-limit rate
no ipv6 pim register-rate-limit
```

rate - The maximum number of register packets per second. (Range: 1-65535: Default: 0, which means no limit)

Default Setting

0

Command Mode

Global Configuration

Command Usage

This command can be used to relieve the load on the Designated Router (DR) and RP. However, because register messages exceeding the limit are dropped, some receivers may experience data packet loss within the first few seconds in which register messages are sent from bursty sources.

Example

This example sets the register rate limit to 500 pps.

```
Console(config) #ipv6 pim register-rate-limit 500
Console(config)#
```

ipv6 pim This command configures the IP source address of a register message to an address register-source other than the outgoing interface address of the designated router (DR) that leads back toward the rendezvous point (RP). Use the **no** form to restore the default setting.

Syntax

ipv6 pim register-source interface vlan vlan-id no ipv6 pim register-source

vlan-id - VLAN ID (Range: 1-4094)

Default Setting

The IP address of the DR's outgoing interface that leads back to the RP

Command Mode

Global Configuration

Command Usage

When the source address of a register message is filtered by intermediate network devices, or is not a uniquely routed address to which the RP can send packets, the replies sent from the RP to the source address will fail to reach the DR, resulting in PIM6-SM protocol failures. This command can be used to overcome this type of problem by manually configuring the source address of register messages to an interface that leads back to the RP.

Example

This example sets the register source address to the interface address for VLAN 1.

```
Console(config) #ipv6 pim register-source interface vlan 1
Console(config)#
```

ipv6 pim rp-address This command sets a static address for the Rendezvous Point (RP) for a particular multicast group. Use the **no** form to remove an RP address or an RP address for a specific group.

Syntax

[no] ipv6 pim rp-address rp-address [group-prefix group-prefix]

rp-address - Static IPv6 address of the router that will be an RP for the specified multicast group(s).

group-prefix - An IPv6 network prefix for a multicast group. If a group prefix is not specified, the RP is used for all multicast groups.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- The router specified by this command will act as an RP for all multicast groups in the local PIM6-SM domain if no groups are specified. A static RP can either be configured for the whole multicast group range FF00::/8, or for specific group ranges.
- Using this command to configure multiple static RPs with the same RP address is not allowed. If an IP address is specified that was previously used for an RP, then the older entry is replaced. (
- Multiple RPs can be defined for different groups or group ranges. If a group is matched by more than one entry, the router will use the RP associated with the longer group prefix length. If the prefix lengths are the same, then the static RP with the highest IP address is chosen.
- ◆ Static definitions for RP addresses may be used together with RP addresses dynamically learned through the bootstrap router (BSR). If an RP address learned by the BSR and one statically configured using this command are both available for a group range, the RP address learned by the BSR is chosen over the one statically configured with this command.
- All routers within the same PIM6-SM domain must be configured with the same RP(s). Selecting an RP through the dynamic election process is therefore preferable for most situations. Using the dynamic RP election process also allows a backup RP to automatically take over if the active RP router becomes unavailable.
- If the **no** form of this command is used without specifying a multicast group, all multicast groups are removed.

Example

In the following example, the first PIM-SM command just specifies the RP address 192.168.1.1 to indicate that it will be used to service all multicast groups. The second PIM-SM command includes the multicast groups to be serviced by the RP.

```
Console(config) #ipv6 pim rp-address 2001:DB8:2222:7272::72
Console(config) #ipv6 pim rp-address 2001:DB8:2222:7272::72 group-prefix
 FFAA::0101/8
Console(config)#end
Console#show ipv6 pim rp mapping
PIM Group-to-RP Mappings
Groups
            : FF00::/8
              : 2001:DB8:2222:7272::72/128
RP address
Info source
              : static
Uptime
               : 00:03:10
Expire
                : Never
Console#
```

ipv6 pim rp-candidate This command configures the router to advertise itself as a Rendezvous Point (RP) candidate to the bootstrap router (BSR). Use the **no** form to remove this router as an RP candidate.

Syntax

ipv6 pim rp-candidate interface vlan vlan-id [group-prefix group-prefix] [interval seconds] [priority value]

no ipv6 pim rp-candidate interface vlan vlan-id

vlan-id - VLAN ID (Range: 1-4094)

group-prefix - An IPv6 network prefix for a multicast group. If a group prefix is not specified, the RP is advertised for all multicast groups.

seconds - The interval at which this device advertises itself as an RP candidate. (Range: 60-16383 seconds)

value - Priority used by the candidate RP in the election process. The RP candidate with the largest priority is preferred. If the priority values are the same, the candidate with the larger IP address is elected to be the RP. Setting the priority to zero means that this router is not eligible to server as the RP. (Range: 0-255)

Default Setting

Interval: 60 seconds

Priority: 0

Command Mode

Global Configuration

Command Usage

- When the ipv6 pim rp-candidate command is entered, the router periodically sends PIMv2 messages to the BSR advertising itself as a candidate RP for the specified group addresses. The IP address of the designated VLAN is sent as the candidate's RP address. The BSR places information about all of the candidate RPs in subsequent bootstrap messages. The BSR uses the RP-election hash algorithm to select an active RP for each group range. The el6ection process is performed by the BSR only for its own use. Each PIM-SM router that receives the list of RP candidates from the BSR also elects an active RP for each group range using the same election process.
- The election process for each group is based on the following criteria:
 - Find all RPs with the most specific group range.
 - Select those with the highest priority (lowest priority value).
 - Compute a hash value based on the group address, RP address, priority, and hash mask included in the bootstrap messages.
 - If there is a tie, use the candidate RP with the highest IP address.

- This distributed election process provides faster convergence and minimal disruption when an RP fails. It also serves to provide load balancing by distributing groups across multiple RPs. Moreover, when an RP fails, the responsible RPs are re-elected on each router, and the groups automatically distributed to the remaining RPs.
- To improve failover recovery, it is advisable to select at least two core routers in diverse locations, each to serve as both a candidate BSR and candidate RP. It is also preferable to set up one of these routers as both the primary BSR and RP.

Example

The following example configures the router to start advertising itself to the BSR as a candidate RP for the indicated multicast groups.

```
Console(config) #ipv6 pim rp-candidate interface vlan 1 group-prefix
 FFAA::0101/8
Console(config)#end
Console#show ipv6 pim rp mapping
PIM Group-to-RP Mappings
              : FF00::/8
Groups
RP address
               : 2001:DB8:2222:7272::72/128
Info source : 2001:DB8:2222:7272::72/128, via bootstrap, priority: 0
Uptime
              : 00:02:35
Expire
              : 00:01:55
Console#
```

spt-threshold

ipv6 pim This command prevents the last-hop PIM router from switching to Shortest Path Source Tree (SPT) mode. Use the **no** form to allow the router to switch over to SPT mode.

Syntax

ipv6 pim spt-threshold infinity [group-prefix group-prefix] no ipv6 pim spt-threshold infinity

group-prefix - An IPv6 network prefix for a multicast group. If a group address is not specified, the command applies to all multicast groups. (Range: FFXX:X:X:X:X/<8-128>)

Default Setting

The last-hop PIM6 router joins the shortest path tree immediately after the first packet arrives from a new source.

Command Mode

Global Configuration

Command Usage

The default path for packets from a multicast source to a receiver is through the RP. However, the path through the RP is not always the shortest path. Therefore, the router uses the RP to forward only the first packet from a new multicast

group to its receivers. Afterwards, it calculates the shortest path tree (SPT) directly between the receiver and source, and then uses the SPT to send all subsequent packets from the source to the receiver instead of using the shared tree. Note that when the SPT threshold is not set by this command, the PIM leaf router will join the shortest path tree immediately after receiving the first packet from a new source.

- This command forces the router to use the shared tree for all multicast groups, or just for the specified multicast groups.
- Only one entry is allowed for this command.

Example

This example prevents the switch from using the SPT for multicast groups FF01:1::0101/64.

```
Console(config) #interface vlan 1
Console(config-if)#ipv6 pim sparse-mode
Console(config-if)#exit
Console(config)#ipv6 multicast-routing
Console(config) #router pim6
Console(config) #ipv6 pim spt-threshold infinity group-prefix FF01:1::0101/64
Console#
```

ipv6 pim dr-priority This command sets the priority value for a Designated Router (DR) candidate. Use the **no** form to restore the default setting.

Syntax

ipv6 pim dr-priority priority-value

no ipv6 pim dr-priority

priority-value - Priority advertised by a router when bidding to become the DR. (Range: 0-4294967294)

Default Setting

Command Mode

Interface Configuration (VLAN)

Command Usage

More than one PIM-SM router may be connected to an Ethernet or other shared-media LAN. If multicast hosts are directly connected to the LAN, then only one of these routers is elected as the DR, and acts on behalf of these hosts, sending periodic Join/Prune messages toward a group-specific RP for each group. A single DR is elected per interface (LAN or otherwise) using a simple election process.

- The router with the highest priority configured on an interface is elected as the DR. If more than one router attached to this interface uses the same priority, then the router with the highest IP address is elected to serve as the DR.
- If a router does not advertise a priority in its hello messages, it is assumed to have the highest priority and is elected as the DR. If more than one router is not advertising its priority, then the router with the highest IP address is elected to serve as the DR.

Example

This example sets the priority used in the bidding process for the DR.

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 pim dr-priority 20
Console(config-if)#end
Console#show ipv6 pim interface
PIM is enabled.
VLAN 1 is up.
PIM Mode
                        : Sparse Mode
IPv6 Address
                       : FE80::200:E8FF:FE93:82A0
Hello Interval : 30 sec
Hello HoldTime : 105 sec
Triggered Hello Delay : 5 sec
Join/Prune Holdtime : 210 sec
Lan Prune Delay : Disabled
Propagation Delay : 500 ms
Override Interval : 2500 ms
 DR Priority
                        : 20
Join/Prune Interval : 60 sec
Console#
```

join-prune-interval setting.

ipv6 pim This command sets the join/prune timer. Use the **no** form to restore the default

Syntax

```
ipv6 pim join-prune-interval seconds
no ipv6 pim join-prune-interval
```

seconds - The interval at which join/prune messages are sent. (Range: 1-65535 seconds)

Default Setting

60 seconds

Command Mode

Interface Configuration (VLAN)

Command Usage

◆ By default, the switch sends join/prune messages every 210 seconds to inform other PIM-SM routers about clients who want to join or leave a multicast group.

- Use the same join/prune message interval on all the PIM-SM routers in the same PIM-SM domain, otherwise the routing protocol's performance will be adversely affected.
- The multicast interface that first receives a multicast stream from a particular source forwards this traffic only to those interfaces on the router that have requested to join this group. When there are no longer any requesting groups on that interface, the leaf node sends a prune message upstream and enters a prune state for this multicast stream. The protocol maintains both the current join state and the pending Reverse Path Tree (RPT) prune state for this (source, group) pair until the join/prune-interval timer expires.

Example

This example sets the priority used in the bidding process for the DR.

```
Console(config)#interface vlan 1
Console(config-if) #ipv6 pim join-prune-interval 220
Console#show ipv6 pim interface
PIM is enabled.
VLAN 1 is up.
                    : Sparse Mode
: FE80::200:E8FF:FE93:82A0
PIM Mode
IPv6 Address
Hello Interval : 30 sec
Hello HoldTime : 105 sec
                       : 105 sec
Hello HoldTime
Triggered Hello Delay : 5 sec
Join/Prune Holdtime : 210 sec
Lan Prune Delay : Disabled
Lan Prune Delay
Propagation Delay : 500 ms
Override Interval : 2500 ms
 DR Priority
                       : 1
Join/Prune Interval : 220 sec
Console#
```

clear ipv6 pim This command clears multicast group to RP mapping entries learned through the **bsr rp-set** PIMv2 bootstrap router (BSR).

Command Mode

Privileged Exec

Command Usage

- This command can be used to update entries in the static multicast forwarding table immediately after making configuration changes to the RP.
- ◆ Use the show ipv6 pim rp mapping command to display active RPs that are cached with associated multicast routing entries.

Example

This example clears the RP map.

```
Console#clear ipv6 pim bsr rp-set
Console#show ipv6 pim rp mapping
PIM Group-to-RP Mappings
Console#
```

show ipv6 pim bsr-router

show ipv6 pim This command displays information about the bootstrap router (BSR).

Command Mode

Privileged Exec

Command Usage

This command displays information about the elected BSR.

Example

This example displays information about the BSR.

```
Console#show ipv6 pim bsr-router
PIMv2 Bootstrap information
BSR address : 2001:DB8:2222:7272::72/128
Uptime : 00:00:04
BSR Priority : 200
Hash mask length : 20
Expire : 00:02:06
Role : Candidate BSR
State : Elected BSR
Console#
```

Table 43: show ip pim bsr-router - display description

Field	Description	
BSR Address	IP address of interface configured as the BSR.	
Uptime	The time this BSR has been up and running.	
BSR Priority	Priority assigned to this interface for use in the BSR election process.	
Hash Mask Length	The number of significant bits used in the multicast group comparison mask. This mask determines the multicast group for which this router can be a BSR.	
Expire	The time before this entry will be removed.	

Table 43: show ip pim bsr-router - display description

Field	escription	
Role	Candidate BSR or Non-candidate BSR.	
State	Operation state of BSR includes:	
	 No information – No information stored for this device. 	
	 Accept Any – The router does not know of an active BSR, and will accept the first bootstrap message it sees as giving the new BSR's identity and the RP-set. 	
	 Accept Preferred – The router knows the identity of the current BSR, and is using the RP-set provided by that BSR. Only bootstrap messages from that BSR or from a C-BSR with higher weight than the current BSR will be accepted. 	
	 Candidate BSR – Bidding in election process. 	
	 Pending-BSR – The router is a candidate to be the BSR for the RP- set. Currently, no other router is the preferred BSR, but this router is not yet the elected BSR. 	
	 Elected BSR – elected to serve as BSR 	

rp mapping

show ipv6 pim This command displays active RPs and associated multicast routing entries.

Command Mode

Privileged Exec

Example

This example displays the RP map.

Console#show ipv6 pim rp mapping

PIM Group-to-RP Mappings

Groups : FF00::/8
RP address : 2001:DB8:2222:7272::72/128
Info source : static
Uptime : 00:23:21
Expire : Never Expire : Never

Console#

Table 44: show ip pim rp mapping - display description

Field	Description	
Groups	The multicast group address, mask length managed by the RP.	
RP address	IP address of the RP used for the listed multicast group	
Info source	RP that advertised the mapping, how the RP was selected (Static or Bootstrap), and the priority used in the bidding process	
Uptime	The time this RP has been up and running	
Expire	The time before this entry will be removed	

show ipv6 pim rp-hash This command displays the RP used for the specified multicast group, and the RP that advertised the mapping.

Syntax

show ipv6 pim rp-hash group-address

group-address - An IP multicast group address.

Command Mode

Privileged Exec

Example

This example displays the RP used for the specified group.

```
Console#show ipv6 pim rp-hash FF00::
           : 2001:DB8:2222:7272::72/128
RP address
Info source
                  : 2001:1::0101, via bootstrap
Console#
```

Table 45: show ip pim rp-hash - display description

Field	Description	
RP address	IP address of the RP used for the specified multicast group	
Info source	RP that advertised the mapping, and how the RP was selected	

Chapter 51 | Multicast Routing Commands PIM Multicast Routing

Section III

Appendices

This section provides additional information and includes these items:

- ◆ "Troubleshooting" on page 1215
- ◆ "License Information" on page 1217

Troubleshooting

Problems Accessing the Management Interface

Table 46: Troubleshooting Chart

Symptom	Action
Cannot connect using	Be sure the switch is powered up.
Telnet, or SNMP software	 Check network cabling between the management station and the switch. Make sure the ends are properly connected and there is no damage to the cable. Test the cable if necessary.
	 Check that you have a valid network connection to the switch and that the port you are using has not been disabled.
	 Be sure you have configured the VLAN interface through which the management station is connected with a valid IP address, subnet mask and default gateway.
	 Be sure the management station has an IP address in the same subnet as the switch's IP interface to which it is connected.
	 If you are trying to connect to the switch via the IP address for a tagged VLAN group, your management station, and the ports connecting intermediate switches in the network, must be configured with the appropriate tag.
	 If you cannot connect using Telnet, you may have exceeded the maximum number of concurrent Telnet/SSH sessions permitted. Try connecting again at a later time.
Cannot connect using Secure Shell	• If you cannot connect using SSH, you may have exceeded the maximum number of concurrent Telnet/SSH sessions permitted. Try connecting again at a later time.
	 Be sure the control parameters for the SSH server are properly configured on the switch, and that the SSH client software is properly configured on the management station.
	 Be sure you have generated both an RSA and DSA public key on the switch, exported this key to the SSH client, and enabled SSH service. Try using another SSH client or check for updates to your SSH client application.
	• Be sure you have set up an account on the switch for each SSH user, including user name, authentication level, and password.
	 Be sure you have imported the client's public key to the switch (if public key authentication is used).
Cannot access the on- board configuration program via a serial port connection	• Be sure you have set the terminal emulator program to VT100 compatible, 8 data bits, 1 stop bit, no parity, and the baud rate set to 115200 bps.
	 Verify that you are using the RJ-45 to DB-9 null-modem serial cable supplied with the switch. If you use any other cable, be sure that it conforms to the pin-out connections provided in the Installation Guide.
Forgot or lost the password	Contact your local distributor.

Using System Logs

If a fault does occur, refer to the Installation Guide to ensure that the problem you encountered is actually caused by the switch. If the problem appears to be caused by the switch, follow these steps:

- 1. Enable logging.
- 2. Set the error messages reported to include all categories.
- **3.** Enable SNMP.
- 4. Enable SNMP traps.
- **5.** Designate the SNMP host that is to receive the error messages.
- **6.** Repeat the sequence of commands or other actions that lead up to the error.
- **7.** Make a list of the commands or circumstances that led to the fault. Also make a list of any error messages displayed.
- **8.** Set up your terminal emulation software so that it can capture all console output to a file. Then enter the "show tech-support" command to record all system settings in this file.
- **9.** Contact your distributor's service engineer, and send a detailed description of the problem, along with the file used to record your system settings.

For example:

```
Console(config) #logging on
Console(config) #logging history flash 7
Console(config) #snmp-server host 192.168.1.23
:
```


License Information

This product includes copyrighted third-party software subject to the terms of the GNU General Public License (GPL), GNU Lesser General Public License (LGPL), or other related free software licenses. The GPL code used in this product is distributed WITHOUT ANY WARRANTY and is subject to the copyrights of one or more authors. For details, refer to the section "The GNU General Public License" below, or refer to the applicable license as included in the source-code archive.

The GNU General Public License

GNU GENERAL PUBLIC LICENSE Version 2. June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

- 3. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
 - a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
 - b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
 - c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

- 4. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
 - Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

- Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
- Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

- 5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
- 6. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.
- 7. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
- 8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

- 9. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.
- 10. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
 - Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.
- 11. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

- 1. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING. REPAIR OR CORRECTION.
- 2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Glossary

- ACL Access Control List. ACLs can limit network traffic and restrict access to certain users or devices by checking each packet for certain IP or MAC (i.e., Layer 2) information.
- ARP Address Resolution Protocol converts between IP addresses and MAC (hardware) addresses. ARP is used to locate the MAC address corresponding to a given IP address. This allows the switch to use IP addresses for routing decisions and the corresponding MAC addresses to forward packets from one hop to the next.
- **BOOTP** Boot Protocol. BOOTP is used to provide bootup information for network devices, including IP address information, the address of the TFTP server that contains the devices system files, and the name of the boot file.
 - BGP Border Gateway Protocol is a protocol used to make core routing decisions on the Internet. It maintains a table of IP networks to register reachability among autonomous systems (AS). BGP makes routing decisions based on path, network policies and/or rule-sets.
 - Cos Class of Service is supported by prioritizing packets based on the required level of service, and then placing them in the appropriate output queue. Data is transmitted from the queues using weighted round-robin service to enforce priority service and prevent blockage of lower-level queues. Priority may be set according to the port default, the packet's priority bit (in the VLAN tag), TCP/UDP port number, IP Precedence bit, or DSCP priority bit.
 - DHCP Dynamic Host Control Protocol. Provides a framework for passing configuration information to hosts on a TCP/IP network. DHCP is based on the Bootstrap Protocol (BOOTP), adding the capability of automatic allocation of reusable network addresses and additional configuration options.
- DHCP Option 82 A relay option for sending information about the requesting client (or an intermediate relay agent) in the DHCP request packets forwarded by the switch and in reply packets sent back from the DHCP server. This information can be used by DHCP servers to assign fixed IP addresses, or set other services or policies for clients.
- **DHCP Snooping** A technique used to enhance network security by snooping on DHCP server messages to track the physical location of hosts, ensure that hosts only use the IP addresses assigned to them, and ensure that only authorized DHCP servers are accessible.

Glossary

DiffServ

Differentiated Services provides quality of service on large networks by employing a well-defined set of building blocks from which a variety of aggregate forwarding behaviors may be built. Each packet carries information (DS byte) used by each hop to give it a particular forwarding treatment, or per-hop behavior, at each network node. DiffServ allocates different levels of service to users on the network with mechanisms such as traffic meters, shapers/droppers, packet markers at the boundaries of the network.

DNS Domain Name Service. A system used for translating host names for network nodes into IP addresses.

DSCP Differentiated Services Code Point Service. DSCP uses a six-bit tag to provide for up to 64 different forwarding behaviors. Based on network policies, different kinds of traffic can be marked for different kinds of forwarding. The DSCP bits are mapped to the Class of Service categories, and then into the output gueues.

EAPOL Extensible Authentication Protocol over LAN. EAPOL is a client authentication protocol used by this switch to verify the network access rights for any device that is plugged into the switch. A user name and password is requested by the switch, and then passed to an authentication server (e.g., RADIUS) for verification. EAPOL is implemented as part of the IEEE 802.1X Port Authentication standard.

EVII Extended Universal Identifier is an address format used by IPv6 to identify the host portion of the network address. The interface identifier in EUI compatible addresses is based on the link-layer (MAC) address of an interface. Interface identifiers used in global unicast and other IPv6 address types are 64 bits long and may be constructed in the EUI-64 format. The modified EUI-64 format interface ID is derived from a 48-bit link-layer address by inserting the hexadecimal number FFFE between the upper three bytes (OUI field) and the lower 3 bytes (serial number) of the link layer address. To ensure that the chosen address is from a unique Ethernet MAC address, the 7th bit in the high-order byte is set to 1 (equivalent to the IEEE Global/Local bit) to indicate the uniqueness of the 48-bit address.

GARP Generic Attribute Registration Protocol. GARP is a protocol that can be used by endstations and switches to register and propagate multicast group membership information in a switched environment so that multicast data frames are propagated only to those parts of a switched LAN containing registered endstations. Formerly called Group Address Registration Protocol.

GMRP Generic Multicast Registration Protocol. GMRP allows network devices to register end stations with multicast groups. GMRP requires that any participating network devices or end stations comply with the IEEE 802.1p standard.

GVRP GARP VLAN Registration Protocol. Defines a way for switches to exchange VLAN information in order to register necessary VLAN members on ports along the Spanning Tree so that VLANs defined in each switch can work automatically over a Spanning Tree network.

- **ICMP** Internet Control Message Protocol is a network layer protocol that reports errors in processing IP packets. ICMP is also used by routers to feed back information about better routing choices.
- **IEEE 802.1D** Specifies a general method for the operation of MAC bridges, including the Spanning Tree Protocol.
- **IEEE 802.1Q** VLAN Tagging—Defines Ethernet frame tags which carry VLAN information. It allows switches to assign endstations to different virtual LANs, and defines a standard way for VLANs to communicate across switched networks.
- **IEEE 802.1p** An IEEE standard for providing quality of service (QoS) in Ethernet networks. The standard uses packet tags that define up to eight traffic classes and allows switches to transmit packets based on the tagged priority value.
- **IEEE 802.1s** An IEEE standard for the Multiple Spanning Tree Protocol (MSTP) which provides independent spanning trees for VLAN groups.
- IEEE 802.1w An IEEE standard for the Rapid Spanning Tree Protocol (RSTP) which reduces the convergence time for network topology changes to about 10% of that required by the older IEEE 802.1D STP standard. (Now incorporated in IEEE 802.1D-2004)
- **IEEE 802.1X** Port Authentication controls access to the switch ports by requiring users to first enter a user ID and password for authentication.
- **IEEE 802.3ac** Defines frame extensions for VLAN tagging.
- **IEEE 802.3x** Defines Ethernet frame start/stop requests and timers used for flow control on full-duplex links. (Now incorporated in IEEE 802.3-2002)
 - **IGMP** Internet Group Management Protocol. A protocol through which hosts can register with their local router for multicast services. If there is more than one multicast switch/router on a given subnetwork, one of the devices is made the "querier" and assumes responsibility for keeping track of group membership.
- **IGMP Proxy**Proxies multicast group membership information onto the upstream interface based on IGMP messages monitored on downstream interfaces, and forwards multicast traffic based on that information. There is no need for multicast routing protocols in an simple tree that uses IGMP Proxy.

Glossary

IGMP Query On each subnetwork, one IGMP-capable device will act as the querier — that is, the device that asks all hosts to report on the IP multicast groups they wish to join or to which they already belong. The elected querier will be the device with the lowest IP address in the subnetwork.

IGMP Snooping Listening to IGMP Query and IGMP Report packets transferred between IP Multicast Routers and IP Multicast host groups to identify IP Multicast group members.

In-Band Management Management of the network from a station attached directly to the network.

IP Multicast Filtering A process whereby this switch can pass multicast traffic along to participating hosts.

IP Precedence The Type of Service (ToS) octet in the IPv4 header includes three precedence bits defining eight different priority levels ranging from highest priority for network control packets to lowest priority for routine traffic. The eight values are mapped one-to-one to the Class of Service categories by default, but may be configured differently to suit the requirements for specific network applications.

LACP Link Aggregation Control Protocol. Allows ports to automatically negotiate a trunked link with LACP-configured ports on another device.

Layer 2 Data Link layer in the ISO 7-Layer Data Communications Protocol. This is related directly to the hardware interface for network devices and passes on traffic based on MAC addresses.

Layer 3 Network layer in the ISO 7-Layer Data Communications Protocol. This layer handles the routing functions for data moving from one open system to another.

Link Aggregation See Port Trunk.

LLDP Link Layer Discovery Protocol is used to discover basic information about neighboring devices in the local broadcast domain by using periodic broadcasts to advertise information such as device identification, capabilities and configuration settings.

MD5 MD5 Message-Digest is an algorithm that is used to create digital signatures. It is intended for use with 32 bit machines and is safer than the MD4 algorithm, which has been broken. MD5 is a one-way hash function, meaning that it takes a message and converts it into a fixed string of digits, also called a message digest.

MIB Management Information Base. An acronym for Management Information Base. It is a set of database objects that contains information about a specific device.

MRD Multicast Router Discovery is a A protocol used by IGMP snooping and multicast routing devices to discover which interfaces are attached to multicast routers. This process allows IGMP-enabled devices to determine where to send multicast source and group membership messages.

MSTP Multiple Spanning Tree Protocol can provide an independent spanning tree for different VLANs. It simplifies network management, provides for even faster convergence than RSTP by limiting the size of each region, and prevents VLAN members from being segmented from the rest of the group.

Multicast Switching A process whereby the switch filters incoming multicast frames for services for which no attached host has registered, or forwards them to all ports contained within the designated multicast VLAN group.

MVR Multicast VLAN Registration is a method of using a single network-wide multicast VLAN to transmit common services, such as such as television channels or video-on-demand, across a service-provider's network. MVR simplifies the configuration of multicast services by using a common VLAN for distribution, while still preserving security and data isolation for subscribers residing in both the MVR VLAN and other standard groups.

NTP Network Time Protocol provides the mechanisms to synchronize time across the network. The time servers operate in a hierarchical-master-slave configuration in order to synchronize local clocks within the subnet and to national time standards via wire or radio.

OSPF Open Shortest Path First is a link-state routing protocol that functions better over a larger network such as the Internet, as opposed to distance-vector routing protocols such as RIP. It includes features such as unlimited hop count, authentication of routing updates, and Variable Length Subnet Masks (VLSM).

Out-of-Band Management of the network from a station not attached to the network. **Management**

Port Authentication See IEEE 802.1X.

Port Mirroring A method whereby data on a target port is mirrored to a monitor port for troubleshooting with a logic analyzer or RMON probe. This allows data on the target port to be studied unobstructively.

Glossary

- **Port Trunk** Defines a network link aggregation and trunking method which specifies how to create a single high-speed logical link that combines several lower-speed physical links.
 - **QinQ** QinQ tunneling is designed for service providers carrying traffic for multiple customers across their networks. It is used to maintain customer-specific VLAN and Layer 2 protocol configurations even when different customers use the same internal VLAN IDs.
 - QoS Quality of Service. QoS refers to the capability of a network to provide better service to selected traffic flows using features such as data prioritization, queuing, congestion avoidance and traffic shaping. These features effectively provide preferential treatment to specific flows either by raising the priority of one flow or limiting the priority of another flow.
 - **RADIUS** Remote Authentication Dial-in User Service. RADIUS is a logon authentication protocol that uses software running on a central server to control access to RADIUS-compliant devices on the network.
 - RIP Routing Information Protocol seeks to find the shortest route to another device by minimizing the distance-vector, or hop count, which serves as a rough estimate of transmission cost. RIP-2 is a compatible upgrade to RIP. It adds useful capabilities for subnet routing, authentication, and multicast transmissions.
 - **RMON** Remote Monitoring. RMON provides comprehensive network monitoring capabilities. It eliminates the polling required in standard SNMP, and can set alarms on a variety of traffic conditions, including specific error types.
 - **RSTP** Rapid Spanning Tree Protocol. RSTP reduces the convergence time for network topology changes to about 10% of that required by the older IEEE 802.1D STP standard.
 - **SMTP** Simple Mail Transfer Protocol is a standard host-to-host mail transport protocol that operates over TCP, port 25.
 - **SNMP** Simple Network Management Protocol. The application protocol in the Internet suite of protocols which offers network management services.
 - **SNTP** Simple Network Time Protocol allows a device to set its internal clock based on periodic updates from a Network Time Protocol (NTP) server. Updates can be requested from a specific NTP server, or can be received via broadcasts sent by NTP servers.

- Secure Shell is a secure replacement for remote access functions, including Telnet. SSH can authenticate users with a cryptographic key, and encrypt data connections between management clients and the switch.
- STA Spanning Tree Algorithm is a technology that checks your network for any loops. A loop can often occur in complicated or backup linked network systems. Spanning Tree detects and directs data along the shortest available path, maximizing the performance and efficiency of the network.
- **TACACS+** Terminal Access Controller Access Control System Plus. TACACS+ is a logon authentication protocol that uses software running on a central server to control access to TACACS-compliant devices on the network.
 - **TCP/IP** Transmission Control Protocol/Internet Protocol. Protocol suite that includes TCP as the primary transport protocol, and IP as the network layer protocol.
 - **Telnet** Defines a remote communication facility for interfacing to a terminal device over TCP/IP.
 - **TFTP** Trivial File Transfer Protocol. A TCP/IP protocol commonly used for software downloads.
 - UDP User Datagram Protocol. UDP provides a datagram mode for packet-switched communications. It uses IP as the underlying transport mechanism to provide access to IP-like services. UDP packets are delivered just like IP packets connection-less datagrams that may be discarded before reaching their targets. UDP is useful when TCP would be too complex, too slow, or just unnecessary.
 - UTC Universal Time Coordinate. UTC is a time scale that couples Greenwich Mean Time (based solely on the Earth's rotation rate) with highly accurate atomic time. The UTC does not have daylight saving time.
 - **VLAN** Virtual LAN. A Virtual LAN is a collection of network nodes that share the same collision domain regardless of their physical location or connection point in the network. A VLAN serves as a logical workgroup with no physical barriers, and allows users to share information and resources as though located on the same LAN.
 - VRRP Virtual Router Redundancy Protocol uses a virtual IP address to support a primary router and multiple backup routers. The backups can be configured to take over the workload if the master fails or to load share the traffic. The primary goal of VRRP is to allow a host device which has been configured with a fixed gateway to maintain network connectivity in case the primary gateway goes down.

Glossary

XModem A protocol used to transfer files between devices. Data is grouped in 128-byte blocks and error-corrected.

A	banner configure equipment-location 121
aaa accounting commands 252	banner configure ip-lan 121
aaa accounting dot1x 253	banner configure lp-number 122
aaa accounting exec 254	banner configure manager-info 123
aaa accounting update 255	banner configure mux 123
	banner configure note 124
aaa authorization exec 256	bgp always-compare-med 1089
aaa group server 257	bgp bestpath as-path ignore 1089
abr-type 1029	bgp bestpath compare-confed-aspath 1090
absolute 187	bgp bestpath compare-routerid 1090
access-list arp 407	bgp bestpath med 1091
access-list ip 386	bgp client-to-client reflection 1076
access-list ipv6 393	bgp cluster-id 1077
access-list mac 400	bgp confederation identifier 1078
accounting commands 258	bgp confederation peer 1079
accounting dot1x 258	bgp dampening 1080
accounting exec 259	bgp default local-preference 1092
aggregate-address 1075	bgp deterministic-med 1092
alias 415	bgp enforce-first-as 1081
area authentication 996	bgp fast-external-failover 1081
area default-cost 1032	bgp log-neighbor-changes 1082
area default-cost 990	bgp network import-check 1082
area nssa 997	bgp router-id 1083
area range 1033	bgp scan-time 1083
area range 991	boot system 139
area stub 1036	bootfile 876
area stub 999	bridge-ext gvrp 576
area virtual-link 1000	shage ext grip 370
area virtual-link 1037	
arp 897	C
arp timeout 898	calendar set 185
authentication enable 242	call 1138
authentication login 243	capabilities 416
authorization exec 259	channel-group 446
auto-cost reference-bandwidth 992	class 640
auto-traffic-control 481	
auto-traffic-control action 481	class-map 636
auto-traffic-control alarm-clear-threshold 482	clear access-list hardware counters 409
auto-traffic-control alarm-fire-threshold 483	clear arp-cache 900 clear collision-mac-address-table 508
auto-traffic-control apply-timer 479	
auto-traffic-control auto-control-release 484	clear counters 422
auto-traffic-control control-release 485	clear dns cache 862
auto-traffic-control release-timer 480	clear efm oam counters 850
	clear efm oam event-log 850
_	clear erps statistics 565
В	clear ethernet cfm ais mpid 815
banner configure 117	clear ethernet cfm errors 827
banner configure company 118	clear ethernet cfm linktrace-cache 836
banner configure dc-power-info 119	clear ethernet cfm maintenance-points remote 826
banner configure department 119	clear host 862
hanner configure equipment-info 120	clear ip bgp 1087

clear ip bgp dampening 1088	disable 112
clear ip dhcp binding 885	discard 417
clear ip dhcp snooping binding 341	disconnect 159
clear ip dhcp snooping database flash 341	distance 1093
clear ip igmp group 759	distance 969
clear ip igmp snooping groups dynamic 673	distance bgp 1094
clear ip igmp snooping statistics 673	dns-server 878
clear ip ospf process 990	domain-name 879
clear ip pim bsr rp-set 1185	dos-protection echo-chargen 375
clear ip rip route 981	dos-protection smurf 375
clear ip source-guard binding blocked 358	dos-protection tcp-flooding 376
clear ipv6 dhcp snooping binding 350	dos-protection tcp-null-scan 376
clear ipv6 dhcp snooping statistics 351	dos-protection tcp-syn-fin-scan 377
clear ipv6 mld group 771	dos-protection tcp-udp-port-zero 377
clear ipv6 mld snooping groups dynamic 699	dos-protection tcp-xmas-scan 378
clear ipv6 mld snooping statistics 700	dos-protection udp-flooding 378
clear ipv6 nd snooping binding 944	dos-protection win-nuke 379
clear ipv6 nd snooping prefix 944 clear ipv6 neighbors 936	dot1q-tunnel system-tunnel-control 592 dot1x default 277
clear ipv6 pim bsr rp-set 1208	dot1x eapol-pass-through 278
clear ipv6 traffic 921	dot1x identity profile 285
clear log 166	dot1x intrusion-action 279
clear mac-address-table dynamic 508	dot1x max-reauth-req 279
clear mrv groups dynamic 723	dot1x max-req 280
clear mrv statistics 723	dot1x max-start 286
clear mvr6 groups dynamic 745	dot1x operation-mode 280
clear mvr6 statistics 746	dot1x pae supplicant 286
clear network-access 321	dot1x port-control 281
clear pppoe intermediate-agent statistics 299	dot1x re-authenticate 284
client-identifier 877	dot1x re-authentication 282
clock summer-time (date) 180	dot1x system-auth-control 278
clock summer-time (predefined) 181	dot1x timeout auth-period 287
clock summer-time (recurring) 182	dot1x timeout held-period 287
clock timezone 184	dot1x timeout quiet-period 282
cluster 190	dot1x timeout re-authperiod 283
cluster commander 191	dot1x timeout start-period 288
cluster ip-pool 192	dot1x timeout supp-timeout 283
cluster member 192 compatible rfc1583 986	dot1x timeout tx-period 284
configure 111	
continue 1138	E
control-vlan 546	efm oam 846
copy 140	efm oam critical-link-event 846
copy 110	efm oam link-monitor frame threshold 848
	efm oam link-monitor frame window 848
D	efm oam link-monitor frame 847
databits 152	efm oam mode 849
default-information originate 968	efm oam remote-loopback 851
default-information originate 987	efm oam remote-loopback test 852
default-metric 1034	enable 109
default-metric 968	enable 547
default-metric 993	enable password 238
default-router 878	end 113
delete 143	erps 545
delete public-key 272	erps clear 565
description 637	erps domain 546
description 1139	erps forced-switch 566
description 417	erps manual-switch 568
dir 144	ethernet cfm ais level 806

ethernet cfm ais ma 807	ip dhcp restart relay 871
ethernet cfm ais period 808	ip dhcp snooping 331
ethernet cfm ais suppress alarm 808	ip dhcp snooping database flash 342
ethernet cfm cc enable 824	ip dhcp snooping information option 333
ethernet cfm cc ma interval 823	ip dhcp snooping information option circuit-id 339
ethernet cfm delay-measure two-way 842	ip dhcp snooping information option encode no-
ethernet cfm domain 809	subtype 334
ethernet cfm enable 811	ip dhcp snooping information option remote-id 335
ethernet cfm linktrace 834	ip dhcp snooping information option tr101 board-id
ethernet cfm linktrace cache 832	336
ethernet cfm linktrace cache hold-time 833	ip dhcp snooping information policy 336
ethernet cfm linktrace cache size 834	ip dhcp snooping limit rate 337
ethernet cfm loopback 837	ip dhcp snooping trust 340
ethernet cfm mep 814	ip dhcp snooping verify mac-address 337
ethernet cfm mep crosscheck 831	ip dhcp snooping vlan 338
ethernet cfm mep crosscheck start-delay 829	ip domain-list 857
ethernet cfm port-enable 815	ip domain-lookup 858
exec-timeout 153	ip domain-name 859
exit 113	ip extcommunity-list 1071
	ip forward-protocol udp 901
F	ip helper 902
	ip helper-address 903
fan-speed force-full 136	ip host 860
flowcontrol 418	ip http port 261
	ip http secure-port 262
G	ip http secure-server 263
	ip http server 262
garp timer 577	ip igmp 754
guard-timer 548	ip igmp authentication 683
	ip igmp filter (Global Configuration) 681
Н	ip igmp filter (Interface Configuration) 685
	ip igmp last-member-query-interval 755
hardware-address 879	ip igmp max-groups 685
holdoff-timer 549	ip igmp max-groups action 686
host 880	ip igmp max-resp-interval 755 ip igmp profile 681
hostname 116	ip igmp proxy 763
	ip igmp proxy unsolicited-report-interval 765
I .	ip igmp query-drop 687
	ip igmp query-interval 756
interface 414	ip igmp robustval 757
interface vlan 584	ip igmp snooping 657
ip access-group (Global Configuration) 387	ip igmp snooping priority 658
ip access-group (Interface Configuration) 391	ip igmp snooping proxy-reporting 659
ip address 890	ip igmp snooping querier 659
ip arp inspection 366	ip igmp snooping router-alert-option-check 660
ip arp inspection filter 367	ip igmp snooping router-port-expire-time 661
ip arp inspection limit 371 ip arp inspection log-buffer logs 368	ip igmp snooping tcn-flood 661
ip arp inspection log-buffer logs 368 ip arp inspection trust 371	ip igmp snooping tcn-query-solicit 662
ip arp inspection trust 371	ip igmp snooping unregistered-data-flood 663
ip arp inspection valuate 309	ip igmp snooping unsolicited-report-interval 664
ip as-path access-list 1068	ip igmp snooping version 664
ip community-list 1069	ip igmp snooping version-exclusive 665
ip default-gateway 892	ip igmp snooping vlan general-query-suppression
ip dhcp client class-id 866	666
ip dhcp excluded-address 875	ip igmp snooping vlan immediate-leave 666
ip dhcp pool 875	ip igmp snooping vlan last-memb-query-count 667
ip dhcp relay server 870	ip igmp snooping vlan last-memb-query-intvl 668
ip dhcp restart client 867	ip igmp snooping vlan mrd 669
hh	

ip igmp snooping vlan mrouter 1163	ip ssh timeout 271
ip igmp snooping vlan mrouter 679	ip telnet max-sessions 265
ip igmp snooping vlan proxy-address 670	ip telnet port 265
ip igmp snooping vlan query-interval 671	ip telnet server 266
ip igmp snooping vlan query-resp-intvl 672	ip tftp retry 149
ip igmp snooping vlan static 672	ip tftp timeout 150
ip igmp static-group 758	ipv6 access-group (Global Configuration) 394
ip igmp version 759	ipv6 access-group (Interface Configuration) 398
ip multicast-data-drop 687	ipv6 address 907
ip multicast-routing 1157	ipv6 address eui-64 908
ip name-server 860	ipv6 address link-local 910
ip ospf authentication 1003	ipv6 default-gateway 906
ip ospf authentication 1003	ipv6 dhcp client rapid-commit vlan 868
ip ospf cost 1006	
·	ipv6 dhcp relay destination 872
ip ospf dead-interval 1007	ipv6 dhcp snooping 344
ip ospf hello-interval 1007	ipv6 dhcp snooping max-binding 349
ip ospf message-digest-key 1008	ipv6 dhcp snooping option remote-id 346
ip ospf priority 1009	ipv6 dhcp snooping option remote-id policy 347
ip ospf retransmit-interval 1010	ipv6 dhcp snooping trust 349
ip ospf transmit-delay 1011	ipv6 dhcp snooping vlan 348
ip pim 1167	ipv6 enable 911
ip pim bsr-candidate 1176	ipv6 hop-limit 924
ip pim dr-priority 1183	ipv6 host 861
ip pim graft-retry-interval 1174	ipv6 mld 766
ip pim hello-holdtime 1168	ipv6 mld filter (Global Configuration) 703
ip pim hello-interval 1169	ipv6 mld filter (Interface Configuration) 706
ip pim join-prune-holdtime 1169	ipv6 mld last-member-query-response-interval 766
ip pim join-prune-interval 1184	ipv6 mld max-groups 706
ip pim lan-prune-delay 1170	ipv6 mld max-groups action 707
ip pim max-graft-retries 1175	ipv6 mld max-resp-interval 767
ip pim override-interval 1171	ipv6 mld profile 704
ip pim propagation-delay 1172	ipv6 mld proxy 774
ip pim register-rate-limit 1178	ipv6 mld proxy unsolicited-report-interval 776
ip pim register-source 1178	ipv6 mld query-drop 708
ip pim rp-address 1179	ipv6 mld query-interval 768
ip pim rp-candidate 1181	ipv6 mld robustval 769
ip pim spt-threshold 1182	ipv6 mld snooping 693
ip pim state-refresh origination-interval 1175	ipv6 mld snooping querier 693
ip pim trigger-hello-delay 1172	ipv6 mld snooping query-interval 694
ip prefix-list 1073	ipv6 mld snooping query-max-response-time 694
ip proxy-arp 899	ipv6 mld snooping router part expire time 606
ip rip authentication mode 976	ipv6 mld snooping router-port-expire-time 696
ip rip authentication string 977	ipv6 mld snooping unknown-multicast mode 696
ip rip receive version 978	ipv6 mld snooping version 697
ip rip receive-packet 978	ipv6 mld snooping vlan immediate-leave 697
ip rip send version 979	ipv6 mld snooping vlan mrouter 698
ip rip send-packet 980	ipv6 mld static group, 760
ip rip split-horizon 981	ipv6 mld static-group 769
ip route 958	ipv6 mld version 770
ip source-guard hinding 353	ipv6 mtu 912
ip source-guard binding 353	ipv6 multicast-data-drop 708
ip source-guard max-binding 357	ipv6 multicast-routing 1160
ip source-guard mode 357	ipv6 nd dad attempts 926
ip ssh authentication-retries 270	ipv6 nd managed-config-flag 927
ip ssh crypto host-key generate 273	ipv6 nd ns-interval 929
ip ssh crypto zeroize 273	ipv6 nd other-config-flag 928
ip ssh save host-key 274 ip ssh server 270	ipv6 nd prefix 931 ipv6 nd ra interval 933
ip ssh server-key size 271	ipv6 nd ra interval 933 ipv6 nd ra lifetime 934
14 3311 3C1 VC1 -KCY 312C 2/1	ipvo na ra iliedine 334

ipv6 nd ra router-preference 934 ipv6 nd ra suppress 935 ipv6 nd raguard 930 ipv6 nd reachable-time 931 ipv6 nd snooping 939 ipv6 nd snooping auto-detect 940 ipv6 nd snooping auto-detect retransmit count 941 ipv6 nd snooping auto-detect retransmit interval 941 ipv6 nd snooping max-binding 943 ipv6 nd snooping prefix timeout 942 ipv6 nd snooping trust 943 ipv6 neighbor 924 ipv6 ospf cost 1041 ipv6 ospf dead-interval 1042 ipv6 ospf priority 1043 ipv6 ospf priority 1043 ipv6 ospf retransmit-interval 1044 ipv6 ospf transmit-delay 1045 ipv6 pim 1190 ipv6 pim dr-priority 1206 ipv6 pim graft-retry-interval 1197 ipv6 pim hello-holdtime 1191 ipv6 pim hello-interval 1192 ipv6 pim join-prune-holdtime 1192 ipv6 pim join-prune-interval 1207 ipv6 pim lan-prune-delay 1193 ipv6 pim override-interval 1194 ipv6 pim register-rate-limit 1201 ipv6 pim register-source 1202 ipv6 pim register-source 1202 ipv6 pim spt-threshold 1205 ipv6 pim spt-threshold 1205 ipv6 pim spt-threshold 1205 ipv6 pim spt-threshold 1205 ipv6 pim state-refresh origination-interval 1199 ipv6 pim state-refresh origination-interval 1199 ipv6 pim trigger-hello-delay 1195 ipv6 route 964 ipv6 router ospf area 1039 ipv6 router ospf area 1039 ipv6 source-guard 362 ipv6 source-guard binding 360 ipv6 source-guard max-binding 363	Ildp 779 Ildp admin-status 783 Ildp basic-tlv management-ip-address 783 Ildp basic-tlv port-description 784 Ildp basic-tlv system-capabilities 784 Ildp basic-tlv system-description 785 Ildp basic-tlv system-description 785 Ildp basic-tlv system-name 785 Ildp basic-tlv proto-ident 786 Ildp dot1-tlv proto-ident 786 Ildp dot1-tlv proto-vid 786 Ildp dot1-tlv proto-vid 786 Ildp dot1-tlv proto-vid 787 Ildp dot3-tlv link-agg 788 Ildp dot3-tlv mac-phy 788 Ildp dot3-tlv mac-phy 788 Ildp dot3-tlv mac-phy 789 Ildp holdtime-multiplier 779 Ildp med-fast-start-count 780 Ildp med-fast-start-count 780 Ildp med-notification 792 Ildp med-notification 792 Ildp med-tlv inventory 793 Ildp med-tlv inventory 793 Ildp med-tlv ned-cap 794 Ildp med-tlv network-policy 794 Ildp notification 795 Ildp notification-interval 780 Ildp refresh-interval 781 Ildp tx-delay 782 logging facility 162 logging history 163 logging sendmail 169 logging sendmail 169 logging sendmail level 170 logging sendmail level 170 logging sendmail level 170 logging sendmail level 170 logging sendmail source-email 171 logging trap 165 login 154 loopback-detection trap 494 loopback-detection recover-time 493 loopback-detection recover-time 493 loopback-detection recover-time 493 loopback-detection renapmit-interval 494
J jumbo frame 136	loopback-detection transmit-interval 494
y ====	M
L I2protocol-tunnel tunnel-dmac 598 lacp 447 lacp admin-key (Ethernet Interface) 448 lacp admin-key (Port Channel) 450 lacp port-priority 449 lacp system-priority 450 lacp timeout 451 lease 881 line 152	ma index name 812 ma index name-format 813 mac access-group (Global Configuration) 401 mac access-group (Interface Configuration) 405 mac-address-table aging-time 505 mac-address-table hash-lookup-depth 506 mac-address-table static 507 mac-authentication intrusion-action 320 mac-authentication max-mac-count 320 mac-authentication reauth-time 312

mac-learning 304	N
mac-vlan 611	name 524
major-domain 549	negotiation 420
management 291	neighbor 970
match 638	neighbor activate 1095
match as-path 1139 match community 1140	neighbor advertisement-interval 1096
match extcommunity 1141	neighbor allowas-in 1096
match externinumly 1141 match ip address 1141	neighbor attribute-unchanged 1097
match ip next-hop 1142	neighbor capability orf prefix-list 1098
match ip route-source 1142	neighbor capability dynamic 1098
match metric 1143	neighbor default-originate 1099
match origin 1143	neighbor description 1100
match pathlimit as 1144	neighbor distribute-list 1100
match peer 1145	neighbor dont-capability-negotiate 1101
max-current-dd 1030	neighbor ebgp-multihop 1102
max-hops 522	neighbor enforce-multihop 1103
maximum-paths 959	neighbor filter-list 1103
maximum-prefix 970	neighbor interface 1104
media-type 419	neighbor maximum-prefix 1105
meg-level 550	neighbor next-hop-self 1106
memory 220	neighbor override-capability 1106
mep archive-hold-time 826	neighbor passive 1108 neighbor password 1107
mep crosscheck mpid 830	neighbor peer-group (Creating) 1108
mep fault-notify alarm-time 838	neighbor peer-group (Group Members) 1109
mep fault-notify lowest-priority 839	neighbor port 1109
mep fault-notify reset-time 840	neighbor prefix-list 1110
mep-monitor 551	neighbor remote-as 1111
mst priority 523	neighbor remove-private-as 1112
mst vlan 524	neighbor route-map 1112
mvr 712	neighbor route-reflector-client 1113
mvr associated-profile 713	neighbor route-server-client 1114
mvr domain 713 mvr immediate-leave 720	neighbor send-community 1115
mvr priority 714	neighbor shutdown 1115
mvr profile 715	neighbor soft-reconfiguration inbound 1116
mvr provide 713 mvr proxy-query-interval 716	neighbor strict-capability-match 1117
mvr proxy-switching 716	neighbor timers 1118
mvr robustness-value 717	neighbor timers connect 1118
mvr source-port-mode dynamic 718	neighbor unsuppress-map 1119
mvr type 721	neighbor update-source 1120
mvr upstream-source-ip 719	neighbor weight 1120
mvr vlan 719	netbios-name-server 882
mvr vlan group 722	netbios-node-type 883
mvr6 associated-profile 735	network 1084
mvr6 domain 736	network 883 network 971
mvr6 immediate-leave 742	network area 1002
mvr6 priority 736	network-access aging 310
mvr6 profile 737	network-access dynamic-qos 312
mvr6 proxy-query-interval 738	network-access dynamic-vlan 313
mvr6 proxy-switching 738	network-access guest-vlan 314
mvr6 robustness-value 740	network-access link-detection 315
mvr6 source-port-mode dynamic 740	network-access link-detection link-down 315
mvr6 type 743	network-access link-detection link-up 316
mvr6 upstream-source-ip 741	network-access link-detection link-up-down 317
mvr6 vlan 742	network-access mac-filter 311
mvr6 vlan group 744	network-access max-mac-count 317
	network-access mode mac-authentication 318
	network-access port-mac-filter 319

next-server 884	propagate-tc 557
nlm 217	protocol-vlan protocol-group (Configuring Groups)
no rspan session 471	605
node-id 552	protocol-vlan protocol-group (Configuring Interfaces)
non-erps-dev-protect 552	606
non-revertive 554	
ntp authenticate 176	
ntp authentication-key 177	Q
ntp client 178	qos map cos-dscp 626
ntp server 178	gos map dscp-mutation 628
T	qos map phb-queue 629
	qos map trust-mode 630
0	queue mode 622
on-match 1145	queue weight 623
on material 1113	quit 110
	quit 110
P	
parity 155	R
passive-interface 1012	radius-server acct-port 244
passive-interface 1012 passive-interface 1046	·
passive-interface 1040 passive-interface 972	radius-server auth-port 245 radius-server host 245
password 155	radius-server host 243
password-thresh 156	radius-server retransmit 247
periodic 188	radius-server timeout 247
permit, deny 682	
permit, deny 704	range 682
permit, deny (ARP ACL) 408	range 705 raps-def-mac 558
1 , , , ,	raps-without-vc 559 rate-limit 474
	rcommand 193
permit, deny (MAC ACL) 401	redistribute 1035
permit, deny (Standard IV ACL) 388	
permit, deny (Standard Pv6 ACL) 395	redistribute 1085
ping 896	redistribute 973 redistribute 993
ping6 921	
police flow 642	reload (Global Configuration) 108
police srtcm-color 643 police trtcm-color 646	reload (Privileged Exec) 112 rename 639
policy-map 640	revision 525
port channel load-balance 444	ring-port 561
port monitor 463	rmon alarm 224
port security 305	rmon collection history 226
port security 303 port security mac-address-as-permanent 307	
power inline 457	rmon collection rmon1 227 rmon event 225
power inline 437 power inline maximum allocation 458	route-map 1137
power inline priority 459	router bgp 1067
power-save 441	router ipv6 ospf 1028
pppoe intermediate-agent 294	router ospf 985
pppoe intermediate-agent format-type 295	router pim 1166
pppoe intermediate-agent port-enable 295	router pim6 1189
pppoe intermediate-agent port-format-type 296	router rip 967
pppoe intermediate-agent port-format-type "230" pppoe intermediate-agent port-format-type remote-	router-id 1031
id-delimiter 297	router-id 988
pppoe intermediate-agent trust 298 pppoe intermediate-agent vendor-tag strip 298	rpl neighbor 562 rpl owner 562
privilege 241	rspan destination 469
process cpu 220	rspan remote vlan 470
prompt 107	rspan source 468
brombe 107	13pail 30ui CE 700

S	show ethernet cfm maintenance-points local detail
server 257	mep 820
service dhcp 876	show ethernet cfm maintenance-points remote
service-policy 651	crosscheck 832
set aggregator as 1146	show ethernet cfm maintenance-points remote detail
set as-path 1146	821
set atomic-aggregate 1147	show ethernet cfm md 818
set comm-list delete 1148	show garp timer 580
set community 1148	show gvrp configuration 581
set cos 648	show history 110
set extcommunity 1150	show hosts 864
set ip dscp 649	show interfaces brief 423
set ip next-hop 1151	show interfaces counters 424
set local-preference 1152	show interfaces protocol-vlan protocol-group 607
set metric 1152	show interfaces status 428
set origin 1153	show interfaces switchport 429
set originator-id 1154	show interfaces transceiver 437
set pathlimit ttl 1154	show interfaces transceiver-threshold 438
set phb 650	show in access-group 392
set weight 1155	show in arm inspection configuration 272
sflow owner 231	show ip arp inspection configuration 372 show ip arp inspection interface 372
sflow polling instance 233	·
sflow sampling instance 234	show in arp inspection log 373
show access-group 410	show ip arp inspection statistics 373 show ip arp inspection vlan 374
show access-list 410	show ip bgp 1121
show access-list arp 409	show ip bgp 1121 show ip bgp attribute-info 1122
show access-list tcam-utilization 126	show ip bgp cidr-only 1123
show accounting 260	show ip bgp community 1123
show arp 900	show ip bgp community info 1124
show auto-traffic-control 489	show ip bgp community-list 1125
show auto-traffic-control interface 490	show ip bgp dampening 1126
show banner 125	show ip bgp dampering 1120 show ip bgp filter-list 1127
show bridge-ext 579	show ip bgp neighbors 1127
show cable-diagnostics 440	show ip bgp paths 1129
show calendar 185	show ip bgp prefix-list 1130
show class-map 651	show ip bgp regexp 1130
show cluster 194	show ip bgp route-map 1131
show cluster candidates 194	show ip bgp scan 1131
show cluster members 194	show ip bgp summary 1132
show collision-mac-address-table 508	show ip community-list 1132
show discard 423	show ip dhcp 885
show dns 863	show ip dhcp binding 886
show dns cache 863	show ip dhcp pool 886
show dos-protection 379	show ip dhcp snooping 342
show dot1q-tunnel 597	show ip dhcp snooping binding 343
show dot1x 288	show ip extcommunity-list 1133
show efm oam counters interface 853	show ip helper 904
show efm oam event-log interface 853	show ip host-route 960
show efm oam remote-loopback interface 855	show ip igmp authentication 688
show efm oam status remote interface 856	show ip igmp filter 688
show efm oam status interface 855	show ip igmp groups 760
show erps 569	show ip igmp interface 762
show ethernet cfm configuration 816	show ip igmp profile 689
show ethernet cfm fault-notify-generator 841	show ip igmp query-drop 690
show ethernet cfm fault-notify-generator 841	show ip igmp snooping 674
show ethernet cfm linktrace-cache 836 show ethernet cfm ma 818	show ip igmp snooping group 675
show ethernet cfm ma 818 show ethernet cfm maintenance-points local 819	show ip igmp snooping mrouter 1164
Show enterner cum mannenance-hours local 013	show ip iamp snooping mrouter 676

show ip igmp snooping statistics 676	show ipv6 ospf 1047
show ip igmp throttle interface 690	show ipv6 ospf database 1048
show ip interface 893	show ipv6 ospf interface 1049
show ip mroute 1158	show ipv6 ospf neighbor 1050
show ip multicast-data-drop 691	show ipv6 ospf route 1051
show ip ospf 1012	show ipv6 ospf virtual-links 1052
show ip ospf border-routers 1014	show ipv6 pim bsr-router 1209
show ip ospf database 1015	show ipv6 pim interface 1196
show ip ospf interface 1021	show ipv6 pim neighbor 1197
show ip ospf neighbor 1023	show ipv6 pim rp mapping 1210
show ip ospf route 1024	show ipv6 pim rp-hash 1211
show ip ospf virtual-links 1024	show ipv6 route 965
	show ipv6 route 903 show ipv6 source-guard 364
show in pim interface 1173	
show in pim interface 1173	show ipv6 source-guard binding 365
show in pim neighbor 1174	show ipv6 traffic 916
show ip pim rp mapping 1187	show I2protocol-tunnel 602
show ip pim rp-hash 1188	show lacp 452
show ip prefix-list 1133	show line 161
show ip prefix-list detail 1134	show lldp config 796
show ip prefix-list summary 1134	show lldp info local-device 797
show ip protocols ospf 1025	show lldp info remote-device 798
show ip protocols rip 982	show lldp info statistics 800
show ip rip 983	show log 166
show ip route 960	show logging 167
show ip route database 961	show logging sendmail 172
show ip route summary 962	show loopback-detection 495
show ip source-guard 359	show mac access-group 406
show ip source-guard binding 359	show mac access-list 406
show ip ssh 274	show mac-address-table 509
show ip telnet 266	show mac-address-table aging-time 510
show ip tftp 150	show mac-address-table count 510
show ip traffic 894	show mac-address-table hash-lookup-depth 511
show ip traffic 962	show mac-vlan 612
show ipv6 access-group 398	show management 292
show ipv6 access-list 399	show memory 126
show ipv6 dhcp duid 869	show mvr 724
show ipv6 dhcp relay destination 873	show mvr associated-profile 725
show ipv6 dhcp snooping 351	show mvr interface 726
show ipv6 dhcp snooping binding 352	show mvr members 727
show ipv6 dhcp snooping statistics 352	show mvr profile 729
show ipv6 dhcp vlan 869	show mvr statistics 729
show ipv6 interface 914	show mvr6 746
show ipv6 mld filter 709	show mvr6 associated-profile 747
show ipv6 mld groups 772	show mvr6 interface 748
show ipv6 mld interface 773	show mvr6 members 749
show ipv6 mld profile 709	show mvr6 profile 750
show ipv6 mld query-drop 710	show mvr6 statistics 751
show ipv6 mld snooping group 701	show network-access 321
show ipv6 mld snooping group source-list 701	show network-access mac-address-table 322
show ipv6 mld snooping mrouter 702	show network-access mac-filter 323
show ipv6 mld throttle interface 710	show nlm oper-status 219
show ipv6 mld snooping 700	show ntp 179
show ipv6 mroute 1161	show policy-map 652
show ipv6 mtu 916	show policy-map interface 653
show ipv6 nd raguard 936	show port monitor 465
show ipv6 nd snooping 944	show port security 307
show ipv6 nd snooping binding 945	show port-channel load-balance 455
show ipv6 nd snooping prefix 945	show power inline status 460
show ipv6 neighbors 936	show power mainpower 461

show power-save 442	show web-auth summary 329
show pppoe intermediate-agent info 299	shutdown 421
show pppoe intermediate-agent statistics 300	silent-time 157
show privilege 241	snmp-server 201
show process cpu 127	snmp-server community 201
show process cpu task 128	snmp-server contact 202
show protocol-vlan protocol-group 607	snmp-server enable traps ethernet cfm cc 825
show public-key 275	snmp-server enable traps ethernet cfm crosscheck
show qos map cos-dscp 631	829
show qos map dscp-mutation 631	snmp-server enable port-traps atc broadcast-alarm-
show qos map phb-queue 632	clear 485
show qos map trust-mode 633	snmp-server enable port-traps atc broadcast-alarm-
show queue mode 625	fire 486
show queue weight 625	snmp-server enable port-traps atc broadcast-control-
show radius-server 248	apply 486
show reload 113	snmp-server enable port-traps atc broadcast-control-
show rmon alarms 228	release 487
show rmon events 228	snmp-server enable port-traps atc multicast-alarm-
show rmon history 228	clear 487
show rmon statistics 229	snmp-server enable port-traps atc multicast-alarm-
show route-map 1155	fire 488
show rspan 472	snmp-server enable port-traps atc multicast-control-
show running-config 129	apply 488
show sflow 235	snmp-server enable port-traps atc multicast-control-
show snmp 203	release 489
show snmp engine-id 214	snmp-server enable port-traps mac-notification 208
show snmp group 214	snmp-server enable traps 204
show snmp notify-filter 219	snmp-server engine-id 209
show snmp user 215	snmp-server group 210
show snmp view 216	snmp-server host 206
show snmp-server enable port-traps 208	snmp-server location 203
show sntp 175	snmp-server notify-filter 218
show spanning-tree 539	snmp-server user 211
show spanning-tree mst configuration 541	snmp-server view 213
show spanning-tree tc-prop 541	sntp client 173
show ssh 276	sntp poll 174
show startup-config 131	sntp server 175
show subnet-vlan 610	spanning-tree 514
show switch master button 197	spanning-tree bpdu-filter 526
show switch stacking button 198	spanning-tree bpdu-guard 526
show system 131	spanning-tree cisco-prestandard 515
show tacacs-server 251	spanning-tree cost 527
show tech-support 133	spanning-tree edge-port 529
show time-range 189	spanning-tree forward-time 515
show traffic-segmentation 384	spanning-tree hello-time 516
show udld 502	spanning-tree link-type 529
show upgrade 149	spanning-tree loopback-detection 530
show users 133	spanning-tree loopback-detection action 531
show version 134	spanning-tree loopback-detection release 538
show vlan 590	spanning-tree loopback-detection release-mode 531
show vlan-translation 604	spanning-tree loopback-detection trap 532
show voice vlan 618	spanning-tree max-age 517
show vrrp 952	spanning-tree mode 517
show vrrp interface 954	spanning-tree mst configuration 520
show vrrp interface counters 954	spanning-tree mst cost 533
show vrrp router counters 956	spanning-tree mst port-priority 534
show watchdog 135	spanning-tree pathcost method 519
show web-auth 328	spanning-tree port-bpdu-flooding 534
show web-auth interface 329	spanning-tree port-priority 535

spanning-tree priority 519 spanning-tree protocol-migration 538 spanning-tree root-quard 536 spanning-tree spanning-disabled 537 spanning-tree system-bpdu-flooding 520 spanning-tree tc-prop 521 spanning-tree tc-prop-stop 537 spanning-tree transmission-limit 522 speed 158 speed-duplex 421 stopbits 158 subnet-vlan 609 summary-address 995 switch all renumber 195 switch master button 196 switch stacking button 197 switchport acceptable-frame-types 584 switchport allowed vlan 585 switchport dot1q-tunnel mode 593 switchport dot1q-tunnel service match cvid 594 switchport dot1q-tunnel tpid 596 switchport forbidden vlan 578 switchport gvrp 578 switchport ingress-filtering 586 switchport |2protocol-tunnel 601 switchport mode 587 switchport native vlan 588 switchport packet-rate 475 switchport priority default 624 switchport vlan-translation 602 switchport voice vlan 615 switchport voice vlan priority 616 switchport voice vlan rule 617 switchport voice vlan security 617

Т

tacacs-server host 249
tacacs-server key 249
tacacs-server port 250
tacacs-server retransmit 250
tacacs-server timeout 251
terminal 160
test cable-diagnostics 439
timeout login response 159
time-range 186
timers basic 974
timers bgp 1086
timers spf 1032
timers spf 989
traceroute 895
traceroute 895
traceroute6 922
traffic-segmentation 380

traffic-segmentation session 381
traffic-segmentation uplink/downlink 382
traffic-segmentation uplink-to-uplink 383
transceiver-monitor 431
transceiver-threshold current 432
transceiver-threshold rx-power 433
transceiver-threshold temperature 434
transceiver-threshold tx-power 435
transceiver-threshold voltage 436
transceiver-threshold-auto 431

U

udld aggressive 500
udld detection-interval 497
udld message-interval 498
udld port 501
udld recovery 499
udld recovery-interval 499
upgrade opcode auto 146
upgrade opcode path 147
upgrade opcode reload 148
username 239

V

version 563
version 975
vlan 582
vlan database 581
vlan-trunking 588
voice vlan 613
voice vlan aging 614
voice vlan mac-address 614
vrrp authentication 948
vrrp ip 948
vrrp preempt 949
vrrp priority 950
vrrp timers advertise 951

W

watchdog software 135
web-auth 327
web-auth login-attempts 325
web-auth quiet-period 325
web-auth re-authenticate (IP) 328
web-auth re-authenticate (Port) 327
web-auth session-timeout 326
web-auth system-auth-control 326
whichboot 145
wtr-timer 564

Numerics	aging time, displaying 510
802.1Q tunnel 591	aging time, setting 505
access 593	administrative users, displaying 133
CVID to SVID map 594	ARP
ethernet type 596	proxy 899
interface configuration 593–596	statistics 962
mode selection 593	ARP ACL 367
status, configuring 592	ARP configuration 897
TPID 596	ARP inspection 365
uplink 593	ACL filter 367
802.1X	additional validation criteria 369
authenticator, configuring 279–284	ARP ACL 407
global settings 277—278	enabling globally 366
port authentication 276, 278	enabling per VLAN 370
port authentication accounting 258	trusted ports 371
supplicant, configuring 285–288	ARP statistics 894
supplicant, configuring 203 200	ATC 180, 476, 938
	control response 481
A	functional limitations 479
AAA	limiting traffic rates 478
accounting 802.1X port settings 258	shutting down a port 479
accounting exec command privileges 254, 258	thresholds 482, 483
accounting exec settings 259	timers 479, 480
accounting summary 260	usage 478
accounting update 255	authentication
accounting, configuring 252	MAC address authentication 309, 318
authorization & accounting 252	MAC, configuring ports 309
authorization exec settings 256	network access 309, 318
authorization method 256	public key 269
authorization settings 256	web 326
authorization summary 260	web authentication for ports, configuring 327
RADIUS group settings 257	web authentication port information, displaying 329
TACACS+ group settings 257	web authentication, re-authenticating address 328
acceptable frame type 584	web authentication, re-authenticating ports 327
Access Control List See ACL	web, configuring 326
ACL 385	Automatic Traffic Control See ATC
ARP 407	
binding to a port 387, 391	В
IPv4 Extended 385, 389	
IPv4 Standard 385, 388	BGP
IPv6 Extended 393, 396	aggregate address 1075
IPv6 Standard 393, 395	AS path access list 1068
MAC 399	cluster ID 1077
time range 186	community list 1069
address table 505	confederation ID 1078
aging time 505	configuration guidelines 1062

description 1053	link trace cache 833, 834, 836
extended community list 1071	link trace message 803, 832, 833, 834
external BGP 1054	loop back messages 803, 837
internal BGP 1054	maintenance association 803, 812, 818
IP prefix list 1073	maintenance domain 803, 809, 818
message types 1057	maintenance end point 810, 814, 819
multihop for eBGP neighbors 1102	maintenance intermediate point 809, 810, 812, 819
neighbor configuration 1095	maintenance level 809
neighbor peer group 1108, 1109	maintenance point 803, 819
neighbor route map 1112	MEP archive 826
path attributes 1055	MEP direction 814
policy-based routing 1135	remote maintenance end point 820, 821, 826, 830
route map, configuring 1137	service instance 812
route map, neighbor 1112	SNMP traps 825, 829
route map, heighbor 1112	class map
route rieflection 1076	•
route reflection 1076	description 637 DiffServ 636
route reflectors 1059	CLI
route selection 1089	command modes 98
route server client 1114	showing commands 96
route servers 1062	clustering switches, management access 190
router ID 1083	command line interface See CLI
BOOTP 890	committed burst size, QoS policy 642, 643, 646
bootstrap router	committed information rate, QoS policy 642, 643, 646
PIM-SM 1176	community string 78, 201
PIMv6-SM 1200	configuration file, DHCP download reference 86
Border Gateway Protocol See BGP	configuration files, restoring defaults 138
BPDU	configuration settings
filter 526	restoring 81, 138, 140
flooding when STA disabled on VLAN 534	saving 81, 138, 140
flooding when STA globally disabled 520	configuration settings, automatic installation 86
ignoring superior BPDUs 536	console port, required connections 66
selecting protocol based on message format 538	continuity check errors, CFM 827, 828
shut down port on receipt 526	continuity check messages, CFM 553, 803, 823, 824
bridge extension capabilities, displaying 579	CoS 630
broadcast storm, threshold 475	configuring 621
	default mapping to internal values 627
	enabling 630
C	layer 3/4 priorities 626
cable diagnostics 439	priorities, mapping to internal values 626
CDP	queue mapping 629
discard 417	queue mode 622
CFM	queue weights, assigning 623
continuity check errors 827, 828	CoS/CFI to PHB/drop precedence 626
continuity check messages 553, 803, 823, 824	CPU
cross-check errors 825, 829, 831	status 127
cross-check message 803, 829, 831, 832	tasks, showing 128
cross-check start delay 829	utilization, setting trap 220
delay measure 842	utilization, secting trap 220 utilization, showing 127
domain service access point 810	cross-check errors, CFM 825, 829, 831
fault isolation 803, 835	cross-check message, CFM 803, 829, 831, 832
fault notification 803, 838, 839, 840	- · · · · · · · · · · · · · · · · · · ·
fault notification generator 839, 841	cross-check start delay, CFM 829
fault verification 803	CVLAN to SPVLAN map 594

D	color aware, trTCM 646
Daylight Savings Time See summer time	color blind, srTCM 643
default IPv4 gateway, configuration 892	color blind, trTCM 646
default IPv6 gateway, configuration 906	committed burst size 642, 643, 646
default priority, ingress port 624	committed information rate 642, 643, 646
delay measure, CFM 842	configuring 635
designated router	conforming traffic, configuring response 642, 643,
PIM 1183	646
PIMv6 1206	description 637
DHCP 890	excess burst size 643
	metering, configuring 642
address pool 875 class identifier 866	peak burst size 646
	peak information rate 646
client 865, 890	policy map 640
client identifier 866	policy map, description 637
dynamic configuration 76	QoS policy 640
relay 870	service policy 651
relay service, enabling 871	setting CoS for matching packets 648
server 874	setting IP DSCP for matching packets 649
DHCP client identifier, setting 85	setting PHB for matching packets 650
DHCP snooping	single-rate, three-color meter 643
subtype field 334	srTCM metering 643
DHCPv4 snooping 330	traffic between CIR and BE, configuring response 643
circuit ID, setting 339	traffic between CIR and PIR, configuring response 646
enabling 331	trTCM metering 646
global configuration 331	two-rate, three-color meter 646
information option 333, 335	violating traffic, configuring response 642, 643, 646
information option policy 336	DNS
information option, enabling 333, 335	default domain name 859
information option, remote ID 333	displaying the cache 863
policy selection 336	domain name list 860, 861
remote ID 335	enabling lookup 858
specifying trusted interfaces 340	name server list 860
sub-length field 334	static entries, IPv4 860
sub-option format 334	static entries, IPv6 861
sub-type and sub-length, disabling 334	Domain Name Service See DNS
subtype field 334	
verifying MAC addresses 337	domain service access point, CFM 810
VLAN configuration 338	DoS protection 374
DHCPv6	downloading software 140
relay service, address 872, 873	automatically 146
relay service, enabling 872	using FTP or TFTP 140
DHCPv6 snooping 343	DR priority, PIM-SM 1183
enabling 344	DR priority, PIMv6-SM 1206
global configuration 344	drop precedence
remote id policy, option 37 347	CoS priority mapping 626
remote ID, option 37 346	DSCP ingress map 628
specifying trusted interfaces 349	DSA encryption 273
VLAN configuration 348	DSCP 630
DiffServ 635	enabling 630
binding policy to interface 651	ingress map, drop precedence 628
class map 636, 640	mapping to internal values 628
class map, description 637	DSCP to PHB/drop precedence 628
classifying QoS traffic 638	dynamic addresses
color aware, srTCM 643	clearing 508

displaying 509 Dynamic Host Configuration Protocol <i>See</i> DHCP dynamic QoS assignment 312 dynamic VLAN assignment 313	firmware displaying version 134 upgrading 140 upgrading automatically 146 upgrading with FTP or TFP 146
E	version, displaying 134
	firmware upgrade, for stack 71
ECMP, maximum paths 959 edge port, STA 529	forwarding information base See FIB
encryption	G
DSA 273	
RSA 273	gateway, IPv4 default 892
engine ID 209	gateway, IPv6 default 906
ERPS 544	general security measures 303
configuration guidelines 544	GNU license 1217
control VLAN 546	GVRP
domain configuration 546	enabling 576
domain, enabling 547	global setting 576
global configuration 545	interface configuration 578
guard timer 548 hold-off timer 549	
	Н
major domain 549 MEG level 550	hardware version, displaying 134
node identifier 552	hash mask length, PIM-SM BSR 1176
non-compliant device protection 552	hash mask length, PIMv6-SM BSR 1200
non-ERPS device protection 552	hello holdtime
propagate topology change 557	PIM 1168
ring configuration 546	PIMv6 1191
ring port, east interface 561	hello interval
ring port, west interface 561	PIM 1169
ring, enabling 547	PIMv6 1192
RPL owner 562	HTTP, web server 262
secondary ring 549	HTTPS 263
status, displaying 569	configuring 262, 263
wait-to-restore expire timer 572	replacing SSL certificate 140
wait-to-restore timer 564	secure-site certificate 140
WTR expire 572	HTTPS, secure server 263
WTR timer 564	
Ethernet Ring Protection Switching See ERPS	1
event logging 162	IEEE 802.1D 517
excess burst size, QoS policy 646	IEEE 802.1s 517
exec command privileges, accounting 254, 258	IEEE 802.1w 517
exec settings	IEEE 802.1X 276, 278
accounting 259	IGMP
authorization 256	clearing groups 759
external BGP 1054	enabling per interface 754
	filter profiles, binding to interface 685
F	filter profiles, configuration 681
fault isolation, CFM 803, 835	filter, interface configuration 685–686
fault notification generator, CFM 839, 841	filter, parameters 681–686
fault notification, CFM 803, 838, 839, 840	filtering & throttling 680
fault verification, CFM 803	filtering & throttling, enabling 681
FIB, description 961	filtering & throttling, interface configuration 683–685 filtering & throttling, status 681

30
77, 911
t) 73, 907
it) 73, 907 3, 910
st) 73, 907 3, 910

K	TLV, MED capabilities 794
key	TLV, network policy 794
private 267	TLV, PoE 792
public 267	local engine ID 209
user public, importing 140, 143	logging
key pair	messages, displaying 166
host 267	syslog traps 165
host, generating 273	to syslog servers 164
	logon authentication 237
L	encryption keys 246, 249
	RADIUS client 244 RADIUS server 244
LACP	sequence 242, 243
configuration 443	settings 243
group attributes, configuring 450	TACACS+ client 248
group members, configuring 447	TACACS+ server 248
local parameters 452	logon banner, configuring 116
partner parameters 452 protocol message statistics 452	loop back messages, CFM 803, 837
protocol message statistics 432 protocol parameters 443	loopback detection
timeout, for LACPDU 451	non-STA 491
last member query count, IGMP snooping 667	STA 530
last member query interval, IGMP snooping 668	
layer 2, protocol tunnel 601	N.A.
license information, GNU 1217	M
Link Layer Discovery Protocol See LLDP	MAC address authentication 309
link trace cache, CFM 833, 834, 836	ports, configuring 309, 318
link trace message, CFM 803, 832, 833, 834	reauthentication 312
link type, STA 529	MAC address, mirroring 463
LLDP 777	maintenance association, CFM 803, 812, 818
device statistics details, displaying 800	maintenance domain, CFM 803, 809, 818
device statistics, displaying 800	maintenance end point, CFM 810, 814, 819
display device information 798	maintenance intermediate point, CFM 809, 810, 812, 819
displaying remote information 798	maintenance level, CFM 809
interface attributes, configuring 783–795	maintenance point, CFM 803, 819 management access, filtering per address 291
local device information, displaying 797	management access, IP filter 291
message attributes 777	matching class settings, classifying QoS traffic 638
message statistics 800	media-type 419
remote information, displaying 798	memory
remote port information, displaying 798	status 126
timing attributes, configuring 779–782	utilization, showing 126
TLV, 802.1 786–787	memory utilization, setting trap 220
TLV, 802.3 788–789	MEP archive, CFM 826
TLV, basic 783–785	mirror port
TLV, management address 783	configuring 463
TLV, port description 784	configuring local traffic 463
TLV, system capabilities 784 TLV, system description 785	configuring remote traffic 466
TLV, system description 763 TLV, system name 785	MLD
LLDP-MED 777	cache, clearing 771
notification, status 792	enabling on VLAN 766
TLV 777	filter profiles, configuration 704
TLV 777 TLV, extended PoE 792	filtering & throttling 702
TLV, extended 1 of 7 92 TLV, inventory 793	filtering & throttling, configuring profile 704, 705
TLV, location 790, 793	filtering & throttling, creating profile 704
,	filtering & throttling, enabling 703

filtering & throttling, interface configuration 706–707	PIMv6 1188
filtering & throttling, status 703	PIMv6-SM 1200
groups, displaying 772	reverse path tree 1185, 1208
last member query response interval 766	routing table, IPv4 1158
maximum response interval 767	routing table, IPv6 1161
proxy routing	upstream interface 1160, 1162
proxy routing, enabling 774	multicast services
query interval 768	configuring 672
robustness value 769	displaying 675
static groups, binding 769	multicast static router port 679
version 770	configuring 679
MLD snooping 692	configuring for MLD snooping 698
configuring 692	multicast storm, threshold 475
enabling 693	multicast, filtering and throttling 681, 703
immediate leave 697	multicast, static router port 1163
immediate leave, status 697	MVR
multicast static router port 698	assigning static multicast groups 715, 722
querier 693	configuring 711, 719
querier, enabling 693	interface status, configuring 720–722
query interval 694	interface status, displaying 724
query, maximum response time 694	IP for control packets sent upstream 719
robustness value 695	proxy query interval 716
static port assignment 699	proxy switching 716
static router port 698	receiver groups, displaying 727
unknown multicast, handling 696	robust value for proxy switching 717
version 697	setting interface type 721
MSTP 517	setting multicast domain 713
global settings, configuring 513	setting multicast domain 713
global settings, configuring 513	setting multicast groups 712, 713
interface settings, configuring 514, 526–537	source port mode 718
interface settings, configuring 514, 520–537	specifying a domain 713
path cost 533	specifying a domain 713
MTU for IPv6 912	specifying a VLAN 712, 719 specifying priority 714, 736
multicast filtering 655	static binding 715, 722
	static binding 713, 722 static binding, group to port 722
enabling IGMP snooping 657	
enabling IGMP snooping per interface 657	statistics, displaying 729
enabling MLD snooping 693	using immediate leave 720
router configuration 679	MVR6
multicast groups 675	assigning static multicast groups 737, 744
static 672, 675	configuring 734, 742
Multicast Listener Discovery See MLD	interface status, configuring 742–744
Multicast Listener Discovery See MLD snooping	interface status, displaying 748
multicast router discovery 669	IP for control packets sent upstream 741
multicast router port, displaying 676	proxy switching 738
multicast routing 1157	receiver groups, displaying 749
ECMP 959	robust value for proxy switching 740
ECMP maximum paths 959	setting interface type 743
enabling, IPv4 1157	setting multicast domain 736
enabling, IPv6 1160	setting multicast groups 737
global settings, IPv4 1157	specifying a domain 736
global settings, IPv6 1160	specifying a VLAN 742
PIM 1165	static binding 737, 744
PIM-DM 1165	static binding, group to port 744
PIM-SM 1165	statistics, displaying 751

using immediate leave 742	default cost for summary route 990 default external route 987
N	default metric for external routes 993
ND snooping	enabling 985
automatic validation 940–941	general settings 984
enabling 939	hello interval 1007
max bindings 943	interface summary information, displaying 1021
trusted interface 943	LSA advertisement interval 1010 LSA database, displaying 1015
Neighbor Discovery Snooping See ND snooping	message digest key 1008
network access	neighboring router information, diplaying 1023
authentication 309	network area 1002
dynamic QoS assignment 312	normal area 1002
dynamic VLAN assignment 313	NSSA 997
MAC address filter 311	process ID 985
port configuration 318	process parameters, displaying 1025
reauthentication 312	redistributing external routes 993
secure MAC information 322, 323	retransmit interval 1010
NTP	RFC 1583 compatible 986
authentication keys, specifying 177	route summary, ABR 991
client, enabling 178	router ID 988
specifying servers 178	router priority 1009
NTP, setting the system clock 176–179	routing table, displaying 1024
	SPF timers 989
	stub 999
0	transit area 1000
OAM	transmit delay over interface 1011
active mode 849	virtual link 1000
displaying settings and status 853–856	virtual links, displaying 1024
enabling on switch ports 846	OSPFv3 1026
errored frame link events 847–848	ABR route summary 1033
event log, displaying 853	area border router 1033
message statistics, displaying 853	backbone 1039, 1040
mode selection 849	configuration settings, displaying 1047
passive mode 849	enabling 1028
remote device information, displaying 856	general settings 1026
remote loop back test 852	interface summary information, displaying 1049
setting to active mode 849	LSA database, displaying 1048
setting to passive mode 849 Open Shortest Path First <i>See</i> OSPF	neighboring router information, diplaying 1050
Open Shortest Path First (Version 3) See OSPFv3	network area 1039
operation cde, automatic installation 82	normal area 1039, 1040
Operations, Administration and Maintenance See OAM	process ID 1028
OSPF 984	redistributing external routes 1035
ABR route summary 991	route summary, ABR 1033
ABR/ASBR routing table, displaying 1014	router ID 1031
area border router 991	routing table, displaying 1051
AS summary route 995	SPF timers 1032
authentication key 1005	stub 1036
authentication type 1003	transit area 1037
auto cost for an interface 992	virtual link 1037
autonomous system boundary router 987	virtual links, displaying 1052
backbone 1003	
configuration settings, displaying 1012	P
cost for interface 1006	password, line 155
	•

passwords 67, 238	interface settings 1190—1195, 1206—1207
administrator setting 239	max graft retries 1198
path cost 527	neighbor routers 1197
method 519	neighbor routers, displaying 1197
STA 519, 527	prune delay 1193
peak burst size, QoS policy 646	prune state, hold time 1192
peak information rate, QoS policy 646	sparse-mode attributes 1189, 1200
per-hop behavior, DSCP ingress map 628	state refresh message interval 1199
PIM 1165	triggered hello delay 1195
configuring 1165	PIMv6-DM
dense-mode attributes 1165, 1174	global configuration 1166
designated router 1183	interface settings 1197
enabling for interfaces 1167	PIMv6-SM 1200
enabling globally 1166	bootstrap router 1200
hello holdtime 1168	BSR candidate 1200
hello interval 1169	BSR elected, displaying 1209
interface settings 1167–1184	configuring 1200
neighbor routers, displaying 1174	DR priority 1206
sparse-mode attributes 1166, 1176	global configuration 1200–1205
PIM-DM 1165	hash mask length for BSR 1200
configuring 1165	interface settings 1206
global configuration 1166	register rate limit for DR 1201
interface settings 1167–1174	rendezvous point 1202, 1204
neighbor routers 1174	RP candidate 1204
PIM-SM 1165	RP candidate, advertising 1204
bootstrap router 1176	RP mapping, displaying 1210
BSR candidate 1176	shared tree 1206
BSR elected, displaying 1186, 1209	shortest path tree 1205
configuring 1165	SPT threshold 1205
DR priority 1183	static RP, configuring 1202
global configuration 1166	policy map
hash mask length for BSR 1176	description 637
interface settings 1167–1174	DiffServ 640
neighbor routers 1174	port authentication 276, 278
register rate limit for DR 1178	port power
rendezvous point 1179, 1181	displaying status 460
RP candidate 1181	inline 457
RP candidate, advertising 1181	inline status 460
RP mapping, displaying 1187, 1210	maximum allocation 458
shared tree 1159, 1162, 1183	priority 459
shortest path tree 1159, 1162, 1182	showing main power 461
SPT threshold 1182	port priority
static RP, configuring 1179	configuring 621
PIMv6 1188	default ingress 624
configuring 1188	STA 535
dense mode, enabling 1190	port security, configuring 304
dense-mode attributes 1189, 1197	port, statistics 424
designated router 1206	ports
enabling for interfaces 1190	autonegotiation 420
enabling globally 1189	broadcast storm threshold 475
global configuration 1189	capabilities 416
graft retry interval 1197	configuring 413
hello holdtime 1191	discard CDP/PVST 417
hello interval 1192	duplex mode 421
	•

flow control 418	trTCM police meter 646
forced selection of media type 419	QoS policy, committed information rate 642, 643, 646
forced selection on combo ports 419	QoS policy, peak information rate 646
mirroring 463	queue weight, assigning to CoS 623
mirroring local traffic 463	
mirroring remote traffic 466	D.
multicast storm threshold 475	R
speed 421	RADIUS
statistics 424	logon authentication 244
unknown unicast storm threshold 475	settings 244
power budgets	rate limit
port 458	port 474
port priority 459	setting 473
power savings	register rate limit, PIM-SM 1178
configuring 441	register rate limit, PIMv6-SM 1201
enabling per port 441	remote engine ID 209
PPPoE 293–300	remote logging 165
priority, default port ingress 624	remote maintenance end point, CFM 820, 821, 826, 830
private key 267	Remote Monitoring See RMON
privilege level, defining per command 241	rename, DiffServ 639
problems, troubleshooting 1215	rendezvous point
protocol migration 538	PIM-SM 1179, 1181
protocol funnel, layer 2 601	PIMv6-SM 1202, 1204
protocol VLANs 604	restarting the system 108, 112
configuring 605, 606	at scheduled times 108
interface configuration 606	showing restart time 113
system configuration 605	RIP 966
	authentication key 977
proxy ARP 899	authentication mode 976
proxy query address, IGMP snooping 670	clearing routes 981
proxy query interval, IGMP snooping 671	configuration settings, displaying 983
proxy query response interval, IGMP snooping 672	configuring 967–983
proxy reporting, IGMP snooping 659	default external route 968
public key 267	default metric 968
PVID, port native VLAN 588	global settings 967–974
PVST	interface protocol settings 971–981
discard 417	interface, enabling 971
	neighbor router 970
Q	passively monitoring updates 972
QoS 635	poison reverse 981
configuration guidelines 636	process parameters, displaying 982
configuration guidelines 050	protocol packets, receiving 978
CoS/CFI to PHB/drop precedence 626	protocol packets, receiving 978 protocol packets, sending 980
DSCP to PHB/drop precedence 628	receive version 978
dynamic assignment 312	redistributing external routing information 973
matching class settings 638	
	routes, clearing 981
PHB to queue 629	routes, displaying 983
selecting DSCP, CoS 630	routing table, clearing 981
QoS policy	send version 979
committed burst size 642, 643, 646	specifying interfaces 971
excess burst size 643	split horizon 981
peak burst size 646	timers 974
srTCM 643	version 975
srTCM police meter 643	RMON 223
trTCM 646	alarm, displaying settings 228

alarm, setting thresholds 224	filtering IP addresses 291
commands 223	global settings, configuring 201–213
event settings, displaying 228	mac address traps 204, 208
response to alarm setting 225	trap manager 206
statistics history, collection 226	traps, CFM 825, 829
statistics history, displaying 228	SNMPv3 209–211
statistics, collection 227	engine ID 209
statistics, displaying 229	engine identifier, local 209
router redundancy	engine identifier, remote 209
protocols 947	groups 210
VRRP 947	local users, configuring 211
Routing Information Protocol See RIP	remote users, configuring 211
routing nformation base, description 961	user configuration 211
routing table, displaying 960	views 213
RSA encryption 273	SNTP
RSTP 517	setting the system clock 173–175
global settings, configuring 517	specifying servers 175
global settings, displaying 539	software
interface settings, configuring 526–537	displaying version 134
interface settings, displaying 539	downloading 140
running configuration files, displaying 129	version, displaying 134
asiming configuration mest, and playing 122	SPT threshold, PIM-SM 1182
_	SPT threshold, PIMv6-SM 1205
5	srTCM
secure shell 267	police meter 643
configuration 267	QoS policy 643
security, general measures 303	SSH 267
serial port, configuring 151	authentication retries 270
service instance, CFM 812	configuring 267
sFlow	downloading public keys for clients 140, 143
destination for traffic 231	generating host key pair 273
destination, IPv6 232	server, configuring 270
destination, UDP port 232	timeout 271
flow configuration 231–235	STA 513
initiating 234	BPDU filter 526
maximum datagram size 232	BPDU flooding 534
owner 231	BPDU shutdown 526
polling period 233	
samping period 234	cisco-prestandard, setting compatibility 515
timeout 231	detecting loopbacks 530
version 232	edge port 529
shared tree	global settings, configuring 514–522
PIM-SM 1159, 1162, 1183	global settings, displaying 539
PIMv6-SM 1206	interface settings, configuring 526–537
shortest path tree	interface settings, displaying 539
PIM-SM 1159, 1162, 1182	link type 529
PIMv6-SM 1205	loopback detection 530
SMTP	MSTP interface settings, configuring 522–525
	MSTP path cost 533
event handling 169	path cost 519, 527
sending log events 169	path cost method 519
SNMP 199	port priority 535
community string 201	port/trunk loopback detection 530
enabling traps 204	protocol migration 538
enabling traps, mac-address changes 208	transmission limit 522

stack	TFTP
backup unit 70	retry count 149
basic concepts 69	timeout 150
configuring 195	time range, ACL 186
firmware upgrade 71	time zone, setting 184
master unit 69	time, setting 172
master unit, setting 196	TPID 596
renumbering 195	traffic segmentation 380
stacking ports, enabling 197	assigning ports 382
topology change 70	enabling 380
unit failure 70	sessions, assigning ports 382
startup files	sessions, creating 381
creating 140	transceiver thresholds
displaying 131, 145	displaying 438
setting 139	trap manager 79, 206
static addresses, setting 507	troubleshooting 1215
static routes, configuring 958	trTCM
statistics	police meter 646
ARP 894, 962	QoS policy 646
ICMP 894, 962	trunk
IP 894, 962	configuration 443
TCP 894, 962	LACP 443, 447
UDP 894, 962	load balancing 444
statistics, port 424	static 446
STP 517	tunneling unknown VLANs, VLAN trunking 588
Also see STA	turneling unknown vertiva, vertiv trunking 500
summary, accounting 260	
summer time, setting 180–182	U
switch clustering, for management 189	UDLD
switch settings	configuration 497
restoring 138	interface settings 501
saving 138	protocol intervals 497–499
system clock	unicast routing 957
setting 172	unidirectional link detection 497
setting 172 setting manually 185	unknown unicast storm, threshold 475
setting the time zone 184	unregistered data flooding, IGMP snooping 663
setting with NTP 176—179	upgrading software 140, 146
setting with SNTP 173–175	upstream interface, multicast route 1160, 1162
summer time 180–182	user account 238, 239
	user password 238, 239
system clock, setting 88	user pussword 250, 255
system logs 164 system software, downloading from server 140	
system software, downloading from server 140	V
	VLAN trunking 588
T	VLANs 575–618
TACACS+	802.1Q tunnel mode 593
logon authentication 248	acceptable frame type 584
settings 248	adding static members 585
TCN	basic information, displaying 579
flood 661	creating 582
general query solicitation 662	displaying port members 590
Telnet	dynamic assignment 313
	egress mode 587
configuring 264	ingress filtering 586
server, enabling 266	interface configuration 584–588
terminal, configuration settings 160	interface configuration 50+ 500

IP subnet-based 608 MAC-based 610 mirroring 463 port members, displaying 590 protocol 604 protocol, configuring 605, 606 protocol, configuring groups 605 protocol, interface configuration 606 protocol, system configuration 605 PVID 588 tag swapping 602 tunneling unknown groups 588 voice 612 voice VLANs 612 detecting VoIP devices 613 enabling for ports 615–616 identifying client devices 614 VoIP traffic 612 ports, configuring 615–616 telephony OUI, configuring 614

voice VLAN, configuring 612
VoIP, detecting devices 617
VRRP 947
authentication 948
configuration settings 947
group statistics 952
preemption 949
priority 950
protocol message statistics 956
timers 951
virtual address 948

W

web authentication 326
address, re-authenticating 328
configuring 326
port information, displaying 329
ports, configuring 327
ports, re-authenticating 327